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Algebraic topology methods in the theory of compact
fields in Banach spaces

by
K. Geba (Gdarisk)

Let E™ be an m-dimensional Banach space (m = co means thab
the space is of infinite dimension) and let X be a closed and bounded
subset of ¥ . A continuous mapping f: X >E™ will be called a compact
field provided that f(z) = x—F(z) and 17’(TY) is a compact subset of B™.
If m < co then the notions of continuous mapping and compact field
coincide; if m = oo then these notions are essentially different.

Several well-known theorems on the continuous mappings of subsets
of Buclidean spaces are, in general, false for the continuous mappings
of subsets of infinite dimensional Banach spaces, but remain true if the
continuous mappings are replaced by compact fields. We would like to
mention here such examples as Brouwer’s Fixed Point Theorem, Borsuk’s
Antipodensatz or Jordan’s Separation Theorem.

Thus the theory of compact fields in infinite dimensional Banach
spaces corresponds, in some way, to the theory of continuous mappings
in Buclidean spaces. The reader who wishes to get acquainted with this
theory is referred to the expository paper of Granas [7]. The present
paper is an attempt to introduce algebraic topology methods into the
theory of compact fields in Banach spaces.

Let E™ = Ry +E™ ™ be a direct decomposition where R is of finite
dimension 7. Let us put

P’m-——n — Em—n\{o} , Qm~n — E'm.—n \Q—’

where Q_C ™" ig a half-line with the beginning at 0. Let (X, 4) be
a pair such that X is a closed and compact subset of E™. If m < oo, then
[X,4; P"™™ @™ ™], i.e. the set of all homotopy classes of continuous
mappings of the pair (X, A) into the pair (P™™", ¢™"), can be identified
with [X, 4; 87", p], i.e. the set of all homotopy classes of all continuous
mappings of (X, 4) into (8™ ", p), where 8™ " is an (m—n—1)-di-
mensional sphere and p e 8™ "', Thus, under suitable conditions on
(X, 4), a group operation, analogous with the group operation in
{(m—mn—1)-th cohomotopy group, can be defined in [X, 4; P ™.


GUEST


178 K. Geba

In the case of m = co we shall consider the catiegory & whose objects
(X, 4) are pairs of closed and bounded subsets of B and whose mappings
are compact fields. Two compact fields f,¢: (X, A)—(¥, B) are said
to Dbe homotopic if there exists a homotopy h(w,1) == x—H(x,1) con-
necting f and g and sueh that H(X < I) is a compact subset of E®. Thus
the set of all compact fields defined on (X, 4) and with the values in
(¥, B) is divided into disjoint homotopy classes; we shall denote thig
set by [X,4; ¥, B].

In this paper we give the definition of group operation in [X, 4;
P Q%7; this group will be denoted by 2™ ™"(X, 4). The definition
of group operation in #°~*(X, 4) is a generalization to the case of in-
finitely dimensional Banach spaces of the group operation in cohomotopy
groups. The operation is commutative and thus a*-"(X', A) is an abelian
group. Thus, for each pair (X, 4) from & and each non-negative integer
7 there is defined an abelian group a=-"(X, 4); morcover, if f: (X, 4)—
—(Y, B) is a compact field, then there are defined a homomorphism

f*r 7Y, B) > X, A)
and a homomorphism
0: a® ™ A) >t X, A),

Thus {n-", f* 6} is a contravariant é-functor defined on & with
values in the category of abelian groups and homomorphisms. The main
result of this paper is that {mo-n, % 6} fulfil the Eilenberg-Steenrod
axioms for cohomology theory. We shall now list the ilenberg-Steenrod
axioms, they appear here as properties of the groups a*°~" and homo-
morphisms f* and 4.

1. If ¢: XX i3 the identity compaet field, then 4* iy the identity
homomorphism (Theorem 5.1).

2. It f: (X, 4)~(Y, B), ¢: (¥, B)>(%,0) and f,ge&, then (gf)*
= f*¢* (Theorem 5.4).

3. If f: (X, 4)~>(¥,B), fo 4B, {,f,e& and f is an extension
of fo, then f§6 = &f* (Theorem 5.16).

4. The sequence

X, 4) > == X) 5 a=n(4) A =1 X, A) .
is exact (Theorem 5.14).

P 5.* I(fThf,g: (X, 4)~(Y,B) are homotopie compact fields, then
=gt eorem 5.3).

6. If U is an open subset of B and 4: (XU, ANU) (X, A) is
the inclusion, then

* ae (X, 4) =>a® X\ U, A\U)
is an isomorphism (Theorem 5.17).
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7. If X is one-point subset, then
A MX)~0  for w=0,1,...
{obvious from the definition of me-7(X)).

§ 1 containg the conventions of notation and the sketch definition
of cohomotopy groups and their fundamental properties. In § 2 we give
some lemmas on cohomotopy groups and the homomorphism 4, which
plays an important role jn the whole theory. § 3 is devoted to compact
fields in infinite dimensional Banach spaces. The definition of group
operation is given in § 4. § 5 contains the definitions of the homomorphisms
f* and 6 and the proofs of the Eilenberg-Steenrod axioms. In § 6 we are
concerned with the duality between m*-groups and §-homotopy groups.
The main result of this section is Theorem 6.12, which says that m°-7(X)
and Z(E™\X) are isomorphic. The last section, (§7), contains some
applications and a list of some known n°- groups of the infinite dimensional
spheres.

The author wishes to express his gratitude to Professor Borsuk for
his kindly interest in the paper and to S. Balcerzyk, A. Granas and
J. W. Jaworowski for the care with they have read various versions of
the manuscript and for the many improvements that they suggested.

§1. Preliminaries
DeriNITION 1.1. Denote by X the metric space whose points ave

infinite sequences of real numbers % = (%, %2, ..., ¥n, ...) snch that @, = 0
for all but a finite number of n, the metric being

0w, ') = ,/Zm—wé)z-
3 2

We distinguish the following subsets of X:
B* = {xeX; =0 for i> n} (n-dimensional Buclidean space),
8" = {w e R"™": D} ai =1} (n-dimensional sphere),

Ev}: = {tt e Sn; T = 0},

B == {we SW; Dy =2 0}
p=(1,0,0,..),
Pe=(—1,0,0,..),

87" = A (the empty set),

S;H-l = {0 e Sn+2; W42 == 0},

B = (e 8% B2 2 0, Tuia > 0}
B = {we Sn+2§ Tnte 2 0y Bnya K 0
E'_”_.ﬁ.l = {0 € Srvk‘-'; Tnt2 <0y Bpas > 0}y
B e e Sn+2; Ttz < 0, Bugs < 0}

¥undamenta Mathematicae, T. LIV
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In the sequel, space will always denote a me.tm'c space. By a pair
(X, 4) we shall understand a space X together with a clpsed subset 4.
Tt X is a space, we shall identify X with the pair (X, 4). A mad (X, X, X,)
will denote a space X and two closed subspaces X, and Xg.of X such
that X; v X, = X. We shall say that (X, 4; Xy, 415 Xy, 4y) s a velative
triad if (X, X,, X,) is a triad, (X, 4) is a pair and d;= .A ~ Xy for
i=1,2. For two spaces X, ¥ we shall denote by A: ¥ tlabe]r cfu‘tesian
product. By 8" v 8% we shall denote the subset of 8" 8" defined by
the rule

Sy 8 = (8" {p}) v ({p} < 8 .

We shall say that f: (X, 4)—(X, B) is a mapping of the pair (X, 4)
into the pair (¥, B) if f is a continuous mapping of X into ¥ such that
flA)CB. I f,g: (X, 4)>(Y, B) ave two mappings, then f » g will denote
the mapping defined by the rule

> (@) =(f(@), g(@) e Yx ¥
We shall denote by «o: 8" v 8" —8" the mapping defined by the rule
w(E,p) = op,s)==0.

Let f: X' —Y be a mapping and let A be a closed subset of X. The
mapping f defines a unique mapping ¢: 4+ such that g{(x)=f()
for each x ¢ A. This mapping ¢ will be called the restriction of f to A and
will be denoted by g = fl.; f will be called an extension of g over A.

In the sequel we shall denote by I the closed interval <0, 1) with
the usual topology.

Two mappings f, g: (X, 4)>(X, B) are said to be homotopic (notation
f~g) if there exists a mapping h: (X xI, 4 xI)—(Y,B) such that
hy =71, hy = ¢, where Rhyw) =h( z,1). In this case % is called a homotopy
connecting f and g. The relation f~g¢ is an equivalence relation in the
set of mappings from (X, 4) to (¥, B). As a consequence, mappings
are divided into disjoint equivalence classes, called the homotopy classes
of these mappings. We shall denote by [X, 4; ¥, B] (or [X, Y]if 4 = 4)
the totality of these homotopy classes and by [f] the homotopy class of f,
that is to say, the homotopy class which contains the mapping 7.

All groups under considerations are assumed to be abelian.

Let us suppose that (X, 4) is a pair such that X is a compact spuce
and dimX <212 (dimX denotes the topological dimension of the
space X). It has been shown by Borsuk that in this case it is possible
to introduce, in a natural way, a group structure in [X, A; 8", p]. This
group is denoted by #*(X, A) and called the n-th cohomotopy group of
the pair (X, 4) (Borsuk [1], Spanier [11]).

icm®
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We rvecall here briefly the definition and properties of an(X, 4).
Let a, f be any two elements in 27(X, 4). Choose representative mappings
fay I (X, A)>(8", p) for a, p respectively. Tt has been proved by Borsuk
that, if dimX < 2n—2, then f, < fs: (X, 4)>(8" 8", {p} > {p}) is homo-
topic with some g: (X, A)>(8" < 8", {p} % {p}) with gXycs v s
Every such g is called a normalication of f; it is easy to see that g
depends only on the ordered pair a, . The element [wg] is called the
sum of « and B and denoted by «--8. It has been proved that an(X, 4)
forms an abelian group with this addition.

Suppose that (X, 4) and (¥, B) are two pairs such that X and Y
are compact and dimX, dimY < 2n—2. Let J: (X, 4)~(Y,B) be an
arbitrary mapping and let « ew¥(¥, B). If f.: (¥, B)— (8", p) is a re-
presentative of ¢, then [f.f] depends only on « and f*(a) = [f.f] defines
a transformation f*: a(¥, B)—>an(X, A), which is called induced by f.
It has been proved that f* is a homomorphism.

Let o be an arbitrary element of sn(A). Choose a representative
far A-8". Since BL™ is contractible, f, has an extension f.: (X, A)-
~(BL, 8"). Let h: (BY™ % I, 8" < I)— (8", B be a homotopy such
that ko is an inclusion mapping and &, maps 8" onto p and E%L\S" onto
8""\{p} homeomorphically. It is easily seen that such a homotopy exists
and that [k, f] depends only on «. Thus 8(a) = [k,f] defines a transformation

8 oAy (X, 4).
It is proved that é is a homomorphism called the coboundary homo-
morphism of the pair (X, 4).
It is known that the cohomotopy groups with the induced homo-

morphism and coboundary operator defined above fulfil the Bilenberg-
Steenrod axioms for eohomology theory (Spanier [11]).

§ 2. Finite-dimensional lemmas

DervITION 2.1. Let aen™(X, . 4) and fea™(S" p), where (X, Ad)

is a pair such that X is a compact space and dim X < 2n—2. If a and g

are represented by the mappings fo: (X, 4)—(8",p), fs: (8", p)— (8", ),

respectively, then [fsf.] depends only on the elements a, 8. Let us put
Boa=I[fpf] ea™(X, 4).

Levma 2.2. The operation o a is bilinear, i.e. if a, @, ay e 2 X, A),
By Bus Ba e 78", p), then
(BtB)oa=PHoatpoa, folmta)=Foautfon.

Proof. Denote by fo;fufa: (X, A)>(8", 1) oy fous fu (S"',pﬁ)%
—(S", p) the representatives of a, ay, a5, B, By, P2, -respectively. Since

12*


GUEST


182 K. Geba

fr a8, p)—>a"(X, 4) is a homomorphism and o a == [fyfs] = f¥(p),
we have

(Bu+Ba) o &= falBy+fo) = fE(B) +1ilBe) = Proatfroa.

To prove the second formula, we may suppose, without loss of gener-
ality, that (fu, X fo,)(X) C 8" v 8" Thus a-+up = [@(fa X fe)] and, since
(fafey % fofas) (X) € 87 v 8", we have foa+foay={[0(fpfu X fofu)]. et
us observe that if fu,(#) = p and fu,(¥) =y, then fso(fe X fu,)(®) = fily),
whenee (fafe, X fofa:) (@) = fyo(foy X fur) (). The same is true if fo(z) = p,
whence cu((fﬁfa,) x(f,;f,,ﬂ)) = fpo(fo, X fo) and it means that Bo(a+a,)
= ﬁ o Oy + ﬂ ° Uy,

Let (X, Xy, X,) be a triad such that X is compact and dim X < 25 —2.
Let us put X, = X; ~ X,; following Eilenberg and Steenrod (see [3], 1. 15),
we define the coboundary homomorphism of the triad (X, X,, X,) putting
A = #1978, A (X »a"T(X), where 8: a'(X,)-»a" (X, X,) is the
eoboundary homomorphism of the pair (X, X,), and k: (X, X))~ (X, X)),
j: X (X, X,) are the inclusions, %* being the excision isomorphism.

Let (X, 4; Xy, 4,5 X,, 4,) be a relative triad such that X is compact
and dimX < 2rn—2. Let us put Xy =X, n X,, dg=4; ~ 4,. Let us
denote by ¥ the quotient space obtained by the identification of 4 to
a single point ye ¥. Let #: (X, 4)—>(Y, y,) be the projection and let
Yi=n(Xy) for i=1,2, ¥Yo=Y1n Y,. Thus (¥, %; Y1, Yo; Xy, %) is
a relative triad, and the mapping #,: (X, 4o) >(Xy, ¥o) defined by the
rule ny(®) = 75 (2) for x € X, is the projection. Obviously, n¥: a™(¥,, y,) -
->ah(X,y, 4o) and #*: #UY, ) »at(X, 4) are isomorphisms. ILet
it Yo->(¥y, yo) and i: ¥ (¥, y,) be natural inclusions, then if: a( ¥, v,)
—=a"(¥,) and #*: 7Y, yp) >artYY) are isomorphisms.

Dermaron 2.3, Let us put

A = () A ()

the homomorphism A: 72X, d,)—>n"+(X, A) will be called the co-
boundary homomorphism of the relative triad (X, A; Xy, 4,3 X,, 4,).
LenMA 2.4. Let (X, Aj X;, 4,5 X, 4,) be a velative triad such that X
is compact and AmX < 2n—2. Let us put Xy= X, n X, dg=4 ~ X,
=4, ~ Ay, and Tet f: (Xq, o) (8", p) be an arbitrary wmapping. If
I+ (X, A)>(8",p) is an extension of f such that 1'(X,)C B,
1(X,) C B (such an extension ewists since B and B are contractible)

?
then

A0 =11

Proof. Let h: (8" x I)->8"" e a homotopy such that h, is the
identity mapping and k maps B2’ onto p and EMN\§" onto 8"\ {p)
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homeomorphieally. Let us put f; = %7, It follows immediately from the
definition of A4 that A([f]) =[fy]; on the other hand, [/'] = [f,].
The following lemma iy obvious from the definition:

Levuma 2.5. Let (X, 4; X, 4,; X,, 4,) and (Y, B; ¥;, By; X, By)
be two relative triads such that X and Y are compact and dimX,dim Y
< 2n—2. If 2 (X, 4) (X, B), fo: (Xq, A¢)—~(X,, B,) are mappings such
that f(X4)C X for ¢ =1,2 and f is an extension of fo, then the following
diagram is commutative:

2 ¥y, Bo) 2> an( Xy, o)
14 - L4
Y, B) &> ant (X, A)

Lemma 2.6. If (X, 4; X, 4,; X,, A,) is a velative triad such that X
s compaot and dim X < 21— 2, then the following diagram is anticommatative
(i.e. 64 = —A8):

() > 7+ Xy, Ay)
14 4
nﬂm}-l(A) j_) nn"rﬁ(x, A)

Proof. Let « be an arbitrary element of s#(d,) with a representative
for Ag->8". Let f': Xo->E1™, 771 48" be two extensions of f,, with
F(4,) C BT §7(A,) C B, Define a mapping 1: 8" >8"* by the rule

Ly, sy ooy Bnye, Tyis) = (@) @y ..

obviously 1(8"") = §7+,
by the rule

<y Lntay fvﬂ%s);

Let g: Xyu 4->8""" be a mapping defined

[{"(x) for wed,
glw) = l if'(w) for welX,.

Lot ¢'s X TV be an extension of g, with ¢'(X,) C BV, ¢'(X,) C BYE.
Let h(w, 1) = (@) be a homotopy h: (BT I, 8 % I)—(8™FF, B
such that

(i) Ay is the inclusion mapping,

(i) Ry (B Y (872, p) and B, maps EY. 8" onto 8V {p}
homeomorphically,

(1id) if Ry, ey Bngay Gats) == Y1y v Ynta) Ynta), Then Tppa> 0 (@41 < 0)
implies #ni2 2 0 (Ynie < 0).

Such a homotopy exists since &
to see that

is a suspension of 8. It is easy
[lg]=04(a) and [Ihg']= 4d(a);

on the other hand, it is known (see for example Hu [8], p. 212) that
[Thyg] = —[h,g] in #"T*(X, 4), which completes the proof.
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§ 3. Compact fields

In the sequel, the symbol B will be reserved to denote an arbitrary
but fixed infinite dimensional Banach space. We will suppose that there
are given two sequences of linear subspaces of E™, {E3}, {F™™} and
the subspace @, with the following properties:

(i) Rt is w-dimensional,
(ii) Ry C By,
(lli) Eoo~7z c _E'ao-—mH7
(iv) for each z¢E™ and n=0,1,2,... there exists a unique de-
composition @ = », +m,, @y € Ry, @, ¢ B,
(v) @ is one-dimensional and Q C ﬁ Ee,
n=1
) It follogf from (iv) that there exist linear projections of E™ onto
R£ and 120 N "; we will denote these projections by pl: E” >Ry,
pz: BY>E™7", respectively. Thus, for each ®eB® and n=0,1, ..
there exists a unique decomposition # = p}(x) + pi(x). 7
The subspace B ™" disconnects B onto two (closed) half-sub-
spaces. Let us choose one of them and denote it by EY ™", denoting the
other by EZ™". We will suppose that there is distiguished a point ¢ ¢
such that [g|| = 1. Let us put ’ ‘

Q-={zeQ, m=1g, 1< 0},
P Em——n\{o} , ro—n — Q-.

y Let X Pe an anrbitrary space. We shall say that a mapping F: X -+E”
Is compact if ‘F(X) 13 & compact subset of F”. The set of all compact
Igaggmf}? degned on X will be denoted by C(X). It I is a linear subspace
o y then O(X, L) will denote the set of all compach i fi
on X, with values in L. et mApEER defined
We shall say that (X, 4) is a closed (bo i in B® it X i
2 5 9 g unded : it X s
a closed (bounded) subset ’of B, ( ) e B A
. yLelg (.X, A.) and (¥, B) be two pairs in B”; a mapping f: (X, 4)—-
(y( B’) i)flsl said to })e aF compact field defined on (X, 4) with values in
he mapping #: X i he 1v
i ,compact. pping -, defined by the rule F(®) = x—f(m),
‘We shall use the following notation:
Dy(X, A5 Y, B)—the set of all o i
N - 4 ompact fields defined X
with values in (Y, B), with F(x) = o—f(2) el for we X, o on (X, 4)
r . !
DHL(X, A; ¥, By—the set of all mappings h: (X x I, 4 < I)-(Y, B),

hi{z,t) =a—H(z, 1 i .
pao”r. (01 With H(@, )L for aeX, tel, B being com-

icm

Algebraic topelogy methods 185

In the seguel we shall use the following abbreviations:
DL(X, Y) = DL(.X, .'1; :Y, B),
DHL(X, Y) = DHLX, 4; T, B),
DX, A) = Dg(X, 4; P, Q" ™),
DHI(X, A) = DHy(X, 4; P°7", Q™"
D(X,A4;Y,B)=Dgo(X,4d; Y, B),
DH(X,4; Y,B) = DHp~(X, 4; ¥, B)
Dn(Xr A) = D%N(X, 4),
DHpo(X, A) = DH™ X, A).

Two compact fields 7, g e Dr(X, 4; X, B) are said to be L-homolopic
(notation ng) if there exists a homotopy % e DH.(X, 4; Y, B) con-
necting f and g. Thg relation & is an equivalence relationin Dr(X, 4; T; B).
As a consequence the compact fields in Dr(X, A; ¥, B) are divi-
ded into disjoint equivalence classes, which will be called L-homotopy
classes. We shall denote by [X, 4; X, Blg (or [X, Y] if A= 1) the totality
of these classes and denote by [flz the L-homotopy class of f, that is to
say, the L-homotopy class which contains f. In the case of L = E~,
we shall write [X, 4; Y, B] and [f] instead of [X, 4; ¥, Blg= and [f]z~.
If f and g ave two B -homotopic compact fields, we shall say that f and g
are homotopic (notation farg). Observe that in this terminology it may
happen that f and ¢ are homotopic as mappings and not homotopic as
compacet fields.

The following lemma, first proved by Schauder, will be used later:

LeMMA 3.1 If F: X =B is o compact mapping then for every e >0
there exist a finite dimensional subspace L C E™ and a compact mapping
Fe XL such that

IF (@) —F ()] <& for

For the proof see [7], Theorem IL 5.

TisMya 3.2, If X is a closed subset of B” and h e DH(X, E), then
Y = WX xI) is a closed subset of B

This is asimple generalization of a known lemma, see [7], Prop. IIL 5.

Proof. Let hiz,t) =o—H(w,1). Let {ya} be a sequence of points
of Y, i.e. yn = h(®n, tu) = @u—H (2n, ta), and suppose that },,Eg:yﬂ = Y5
Since H is compact, we may assume, without loss of generality, that
the sequence H (@, 1) is convergent to a point ¥, 1.e. B H (2, ta) = ¥*.

>0

H

relX.

Similarly we may assume that limt, = f,. We have
N—+00
limay, = i (yn + H (@, ta)) = Yo +9*
N~»00

N—>00
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and hence, by the econtinuity of &, Nmh(w., &) = iy, -+ v, l), i.e.
N->00

Yo = h(Ya-+y* to) e H(X R I).

Let f be a compact field, putting & (2, 1) = f(z) we obtain the following
corollary:

Cororrary 3.3. If X ds a closed subset of E™ and f e D(X, B
then ¥ =f(X) is a closed subset of E.

DermNirioN 3.4. Let fe Di(X, A); we shall denote by fr, the ve-
striction of f onto X ~ L:

ot (XA, AnD)>(L P LAQY™).

7

Lmanis 3.5. Let I be  finite dimensional lincar subspace of B, wilh,
Ry-+-QCL, and let (X yA) be a closed and bounded pair in B, If 4,
g« DYUX, A) and fr~gr, then I~ g.

Proof. Let h: (X ~nIL)xI,(d ~L)x I~ (L A P L~ Q™™ be
a homotopy connecting f;, and ¢r. Let H be a mapping, defined on
Y=(X»{0)o(Xxayu (X ~I)x 1) by the following rules:

H(x, 0) = x—f(x) for weX,1=0,
H(z, t)=a~—nh{zx,t) for ®eX~L, tel,
Hz,1) = 2—g(x) for welX,t=1.

It is easy to see that H is continuous and H: Y —TI. By the Dugundji
Extension Theorem (Dugundji [2]) H ean be extended to a mapping
HeC(Xx<I,L). Let us put

W, t) = o —pi(w) —piH (2, 1) .

It_ is clear tvhat; W e DH(X, E®). On the other hand, &'(wx, 1)
=o—H(z,t)—pi{o—Hz,t) = Pife—Hx, 1), 80 W' (%, t) e ™. Since f (x),
g(x) Efi'm—": we have W'(z, 0) = p3(f(2)) = f(2), W(w,1) = iy (@) = g(a).
Since H (, 1) e L and R C L, we have pH (x, )= H(z, t)—pVH(z,1) ¢ L.
I «eX AL then 2—H(@, 1) = (&, 1) e B 30 W(a,1) = I, t); if
& e X T, then pi(a), piH (2, 1) € I; 50 W(x, 1) ¢ L. From that, since (_ C I,
we conclude that % ¢ DHR(X, A) :

. LEanra 3:6. ?et L be a finite dimensional linear subspace of T, with
Ro+QCL. If (X, 4) is a closed and bounded pair in I, then for an
wrbitrary mapping ¢: (X~ L, 4 AL (LA P L~ Q°™ there eaisls
an feDYX, A) sueh that iz =o.

Proof. Let Fe((X,L) be an arbitrary extension of B, ¥ ()
=&—p(2). Let us put f(u)= pfﬁ(m——F(w))_ Using caleulations quite

simjla.r tonthoﬁe in the proof of the preceding lemma, it can be showwn
that 7 e D7(X, 4) and fr=q.
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LedmaA 3.7. If X ds a closed subset of B and feD(X, E¥), then
for every e=> 0 there exist a finite dimensional subspace LC E” and
f. € Do( X, B) such that

f(@)—fil@m)l <& for

Proof. Let f(2) =a—F(2); by Lemma 3.1 there exist a finite
dimensional subspace LCE and a compaet mapping F.: X <L such
that |[F(z) —F(@)] < & for & ¢ X. Let us put f,(z) = &—F(x). Obviously,
f, has the desidered properties.

reX.

DEFINITION 3.8. For an arbitrary subset X C E™ and & > 0, let us put.
X9 = {we B oz, X) < 5} .

Lemya 3.9. If (X, A) and (Y, B) are two closed and bounded pairs
in B and feD(X, 4; Y, B), then jor every &> 0 there exist a finite
dimensional subspace L C B and f, e Dr(X, A; Y, B®Y such that {if () —
—h(@)l < & and f, ~if, where i: (¥, B) (X", BYY) is the inclusion mapping.

Proof. By Lemma 3.7 there exist a finite dimensional sub-
space L and, f, e DL(X, B*) such that [f(2)—f(o)i < e. Obviously,
fre DL(X, A4; Y9, B¥). Let us put

h(w, 1) =1 f(2) + (1 1) fy(@)

evidently, [[h(z,?)—f(2)| < e for weX, tel, and so hiz,?)e ¥ for
weX,tel and h(w,?) e B® for wed, tel.

LemmA 3.10. If (X, A) is a closed and bounded pair in E® and
fe DX, A), then there ewist a finite dimensional subspace LC E™ and
¢ e DIX, A) such that f ~g.

Proof. Let Y =jf(X), B=f(d4). By Corollary 3.3, ¥ and A are
closed subsets of B™; thus (¥, B) is a closed and bounded pair in B®™™,
There exists an &> 0 such that ¢(¥, Rj) > ¢ and o(B, Re+Q) > & By
Lemma 3.9 there exist a finite dimensional subspace LCH™ and
foe Di(X, A5 X9, B®) guch that [f (v) — fo(@)]| < & Let us put g(z) = pifs(a),
h(w, 1) = ¢ f(2) +(L—t)fol@) and h(w, 1) = p2(t- f(@)+ (1 —1)fol®) = @~
—pY(x) _];éb(t-_lf’(m)ﬁ—(1——t)F,,(m)). Thus (2, 0) = g(®), h(z,1) = f(z),
h(w, ) e B for weX, tel. Obviously, M2, ) e ¥ for w ¢ X, tel
and  Ty(w, 1) e BY for ed, tel; thus hy(z,?)¢é Ry for weX and
Tuy(x,8)¢ Rr +4-@Q_ for me A, whence h(w,?) e P*7" for me X and h(w,1) eQ~ "
for w e d. Thus % e DH"(X, 4) and the proof is completed.

LevMa 311, If (X, A) is a closed and bounded pair in ET,
fr9e DX, A) and fry, then there ewist a finite dimensional subspaoe
LCE” and f,, ¢, ¢ DUX, A) such that f,~], g,~g and f, T
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Proof. Let h(z,t) = s—H(»,?) be a homotopy connecting f and ¢,
By Lemma 3.2, ¥ = W(X xI) and B = J(4 x I) are closed subsets of B>,
Obviously, ¥ C P, BCQ™™™ and there exists an ¢> 0 such that
o(¥, BY) > ¢ and o(B, Ry +Q) > ¢; thus ¥ ~ B = A and BY ~ (RY+0)
= A. Let us put Z=H(X xI). If F: Z~Z is the identity mapping,
by Lemma 3.1 there exist a finite dimensional subspace L CE” and
a compact mapping F.: Z—L such that ||F(z)—F. (@) = [z —F(2)| <=
for z ¢ Z. Let us put W(w,t) = a—F H(w, ), W'(»,1) = pi(z—F.H(z,1)
= g—plw—psF, H(z, t); evidently, py(z)-+piF.H (x,t) ¢ L for w ¢ X, te I,
Since

(e, €) ~—0'(w, Ol = | H (&, ) —F H(w, 1)l < ¢,

we have h'(w,t)¢ Ry for weX, tel and A'(x,1) ¢ Ry +Q- for wed,
tel and thus b’ e DHZ(X, 4).

TrEoREM 3.12. If (X, A) is a closed and bounded pair in E., then
for each compact field f e D"(X, A) there ewist a finite dimensional subspace
LCE” and a compact field g e DYX, A) such that f~¢. Two compact
fields f, 9 e D"(X, A) arve homotopic if and only if there exist a finite di-
mensional subspace LC E™ and fy, ¢, e DI(X, A) such that f, ~ e h
and g~ g,.

The theorem follows immediately from Lemmas 3.10 and 3.11.

TrEOREM 3.13. If (X, A) is a closed and bounded pair in B, fy, g,
« D"(A), fare gy and if there exists an fe D(X) which is an extension of
foy then there ewists o ¢ € D™(X) which is an extension of gy such that f~ g.

The above theorem is a special case of the Homotopy Extension
Theoremi proved for eompact fields in [6].

§ 4. Definition of =™ (X, 4)

In this section (X,4) denotes a closed and bounded pair in B

DeFINrrioN 4.1. Let I be a linear subspace of E®. We shall say
that a compact field f e DZ(X, 4) is L-normal if

() f(x) =q for e A ~ T,

(i) If (@l =1 for xeX A L.

The subset of D}(X, 4) consisting of all T-normal compact fields
will be denoted by NDZ(X, 4).

We shall say that a homotopy & e DHY(X, A) is L-normal if

(i) R{w,t) =q for we A AL tel,

(iv) h(w, | =1 for we X A L, tel.

The subset of DHYX, A) consisting of all L-normal homotopies
will be denoted by NDH}(X, A). If A = A, then we shall write NDY(X)
and NDHE(X) instead of NDYX, 4) and NDHL(X, A)
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DErFINITION 4.2. We shall say that a linear subspace LCE™ is
n-admissible it L is finite dimensional, RY+-Q CL and &imL ~ B°~"
=n++4. We shall denote by £ the set of all n-admissible subspaces
of E” partially ovdered by inclusion.

If L is an n-admissible subspace, we shall denote by S7 the subset
of L defined by the rule

St ={xel ~E" " il = 1},

where m -1 = dim(L ~ B®7"); thus diimL = n4+m+1 and 82 is homeo-
morphic with the m-dimensional sphere.

Levva 4.3. If L is an n-admissible subspace of E™, then

(i) for each fe DL(X, A) there exists an fLe NDY(X, A) such that
f '? Tiy

(il) two compact fields f,¢ e NDI(X, d) are L-homotopic if and only
if there exists an L-normal homotopy connecting f and ¢.

Proof. Let g: (L~ P™7")>S87 be a mapping defined by the rule
@ (@) = aflz]. For an arbitrary & > 0, let us put D, = {z ¢ 82, o+ ¢ < &)
Let 77(°): (8% x I) ~87 be a homotopy such that nf is the identity mapping
and 79: (8L, 87 D;)-- (S}, ¢) maps D, onto S¥ {g} homeomorphically.
If f e DI(X, A), then for 2 e A ~ L, fr(x)¢Q_, and hence ofr(x) = —7q.
Sinee fr(4 ~ L) is a closed subset of 87, there exists an & > 0 such that
@fe(4d ~ L) e SZ\D,. By Lemma 3.6 there exists an f, e D}(X, 4) which
is an extension of fz: (X ~ L, 4 ~ L)—(8Z, ¢). Obviously, f, e NDHX, 4)
and, by Lemma 3.5, fx? . Thus the first part is proved. The proof of the
second part is analogous.

Let L be an n-admissible subspace and o, 8 be any elements of
[X,4; P77, "]z. By Lemma 4.3 there exist representatives f,, s
e NDI(X, A) of a and B, respectively. If dimL = n-+m--1, then 8% is
homeomorphic to 8™; let & (87, q)—(8™, p) be an arbitrary homeo-
morphism. Thus

§(fades Efodrt (X AL, 4 A L) (8", p)-

Since dim (X ~ L) < m--n+1 < 2m—2, the group (X ~ L, A ~ L)
is defined. Tet us put d = [£(f.)z], ¥ = [£(fe)z), 6,y ead™( X n L, 4 ~ L).

LeMyA 4.4, Let a, B e[X, 4; PP Q%" and let & (ST, g)— (8™, p)
be an arbitrary homeomorphism; if @: (X ~ L, A ~ L)~ (8", p) is a re-
presentative of «--p, and if ge DYX, A) is an ewtension of £ g, then [g]z
depends only on o and B.

Proof. It is clear that [(f.)r] and [(fs)z] are independent of the choice
of the representatives f, and f;. By Lemma 3.5, [g]; does not depﬂld
on the choice of the extension of £™'p. We are going to show that [£ ¢]
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does not depend on & Let &, & (57, ¢) (8™, ») be any two homeo-
morphisms. Let us put & = &&: L (8™ p) (8™, p),
aj = [fz(fa L] 3 == [fl(fﬂ)la—l ) § = 1; 2 )
agy Pie (X AL, A ~n L). Let ful, Fass Tons Tous Fastpny funtpe D€ Tepresenta-
tives of ay, ay, iy oy 4+ Pry @+ Pa, respectively. By Lemma 2.2
& (Fo)z] -+ [Edf)e] = [Eabalfu)r] - [Eoalfi)r]
= [&] o ([&(fu)z] -+ [&(fn)r]) -

ThUs fogppy~Eofatpe- Sinee & iy a homeomorphisny, we have
-1 —1p -1,
51 flll+ﬂiN§1 Eﬂ/"g"('ﬂﬁ QL f’xz'}"/’ﬂ .

DrrINITION 4.5. Let (X, A) be a closed and bounded pair in B~
and ¢, fe[X, 4; P77, Q7 "z, where L is an n-admissible subspace
of B%. Let us put

a+pf =14,
where ¢ e DZ(X, A) is an arbitrary extension of the mapping E i

This definition is correct, since, by Lemma 4.4, [l depends only
on a and f.

DerINITION 4.6. Let & (SE, ¢) (8", p) be an arbitrary homeo-
morphism. For an arbitrary f e ND}(X, 4), let us put

De(lfle) = [£f2] -
The correctness of this definition follows immediately Imm the.
previous lemmas.

The following lemma is an immediate consequence of the definition
of Dg:

LEaviA 4.7. The transjormation
D [X, 4; P~ ¢

i one-to-one; moreover,

o — 7t

lo+7"(X AL, 4 ~ L)

Be(a+f) = G)E(a) +Dy(B) .

z ﬂCOPOLLAIﬂI' &8 [X, A5 P Q%7 is an abelian group, isomorphic
o the group ="(X A I, AnL If &y & (8L, @)~ (8™, p) are homotopic,
then By = By, ; if not, Gy, = ~®,.

""7‘](:1;1 tie sequel we shall denote the group [X, 4; P¥ ™" ¥ "], by

Let Z and M be two n- admnmble subspace of B> and let I C M.
If f, g e Di(X, A), then ¥, g ¢ DY (X, 4); Jff ~(, then fNJ
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For an arbitrary fe DI(X, 4), let us put
oZ(Ifle) = [flar;
ﬁc—n(

thus o7 a7 (X, 4)>ahy ,4).
Let L and A be two admissible subspaces of E"Q such that LC I
and dimM = dimL+1 =m+n+2. In this case I intersects If into
two halfspaces, which wi]l be denoted by I, and AM_.
Lmvd 4.9, If & (82, )—>(8™, p), 72 (8%, ¢)~

(8™, p) are two
Twmeomorphisms such ﬂwr )

n(e) = E@) for xeSF,
n(@) e BT for  ze 8% A L,
(@) e B Jor  we 8%~ I,

and if 4 is the coboundary homomorphism of the velative {riad (X ~ M,
AnM; X~ My, A My X~ Mo, A~ M), then the following diagram
48 commatative:

J[
7T, A) —> oy (X, 4)
Dg ilﬁn
- A
An(X "L, A ~L) = 2"t (X~ M, 4~ M.

Proof. Let « be an arbitrary element of aF (X, 4). By Lemma 4.3,
there exists a representative cmnpact field fe NDi(X, 4). Thus fr:
(X AL, 4 ~L)->(87, q). Let g: (X~ I, 4 ~ M)>(S% ¢) De an ex-
tension of fz, such that (X ~ 1|[+) COM A My, (X~ M_)C 8% ~ 3L
and ld. q s])M(X A) be an arbitrary extension of p. Obvionsly, [£¢ar]
= of(a) and b, ol (a) = APy a).

LeyMA 4.10. If L and M are two n-admissible subspaces of B™
that L C M, then off: o5 ™X, A) >3y (X, 4) is a homomorphism.

Proof. If dimM = 1+ dimZL, then this is a direct consequence of
Lemma 4.9. In the general case, there exists a sequence of subspaces
Ly =L, Ly, Ly, ..., Iy = M, such that Ly C Lipr and dimLy, = 14-dimL,.
Since

such

M Ly Lo

Ly
O = 0Ly 0Ly OLgy

is a composition of homomorphisms, it is a homomorphism.
Let I be an n-admissible subspace and f e DE(X, 4). Putting or([flz)
= [f] we obtain a transformation

ot g (X, A)>[X, A5 PR Q7T

We shall (1enote by = (X, A) the direct limit of the system
{72 X, A), ¥} indexed by £, — the set of all n-admissible subspaces
partially ordered by inclusion (for the definitions, see Eilenberg-Steenrod
[3), Ch. VIII).
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If I and M are two n-admissible subspaces with L C M, then,
oyt = oz; thus there is defined a limit transformation

o X, A) > [X, 4, P77 Q07N

By Theorem 3.12, ¢ is one-to-one.

DrrrNITION 4.11. Let a, f be any two elements of [X, 4; P™7", @™,
Let

at = ofo=a)+o71B)) .

Thus [X,4; P, Q%™ is a group, which will be denoted by

X, A);
0w (X, A)—>a” A, A)

is an isomorphism.

§ 5. The algebraic properties of #° "(X, 4)

Let (X, 4) and (Y, B) be two closed and bounded pairs in B™ and
let f: (X, A) (Y, B) be a compact field. For any compact field g ¢ D"(Y, B)
gfi e D"(X, A); it ¢y, ¢. ¢ D"(¥, B) arve homotopic compact fields, then
¢/ and g,f are homotopic. The assignment f*([g]) = [gf] defines the
induced transformation
¥ a2~ Y, B)»>no—X, 4).

If L, M are two n- admissible subspaces such that L C M, ¢ ¢ DI Y, B)
and f e D3(X, A; Y, B), then ¢f « Dis(X, 4); the assignment [g]a —{oflar
defines the induced transformation

f*: 7w M¥, B)»a5r (X, 4).
The following theorem iy obvious by the definition of j*:
' TeroREM 3.1. If (X, A) s a closed and bounded pair in B° and
f: (X, A) (X, A) is the identity compact field, then, for each m,
¥ o X, A)>a=-n(X, A)
is the identity isomorphism.
Lemuma 5.2, Let (X, A) and (¥, B) be two compact and bounded pairs

in B*. If L is an n-admissible subspace of B* and feDy(X, 4; ¥, B)
then the induced transformation

f*: a=™(¥, B)>a=-nX, A)

K

is a homomorphism.

Prqof. Let a, bfa any two elements of a~~7(¥, B). By Lemma 4.3
there emsts. an n-admissible subgpace M such that it is possible to choose
representatives f.,fy e ND%(Y, B). We may suppose, without logs of
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generality, that LC M. Thus, fof, fsf ¢ NDj(X, A). Let & §%->8" be
an arbitrary homeomorphism. We have the following commutative
diagram:

oa—n

%
2y (¥, B) Z—) a3 X, 4)
&: | [

§

v -
WY ~ M, A~ ) B (X 3,4 3.

Sinee f3; is a homomorphism,

2 23T, B)»ai (X, A)
is a homomorphism. Let us put a, =[fJw, f = [fslar. Thus, f(a-+p)
= opefM ey +B1) = om(a) + oarf*(By) = f*(a) + ().

By the definition of the induced transformation the following
theorems are obvious:

THEOREM 5.3. If (X, 4) and (Y, B) are two closed and bounded pairs
in B, f,g e D(X, 4; ¥, B) and f~y, then f* = g*.

TueoREM 5.4, If (X, A), (¥, B), (Z, 0) are closed and bounded pairs
in B feD(X,4;Y,B), geD(Y,B; Z,C), then gf e D(X, 4 Z, 0) and
(gfy* = r*g*.

Lemsma 5.5, If (X, A) is a closed and bounded pair in B™ and L is
an n-admissible subspace of B, then for each fe DX, A) there emist
an e>0 and f, e DHX, 49 such that fi1 s an extension of f.

Proof. Let f(x) = & —F(2) and let f,(2) = & —Fy(@), f, e DLXY, B°™")
be an arbitrary extension of f. We are going to prove that there exist
& >0 and & > 0 such that

(i) if o(x, X) < ¢, then fi{x) %0,

(i) if o(w, A) < e, then fy(z)¢ Q.

Suppose, on the contrary, that there is no sueh ¢ . Hence for every
natural m there exists an @, ¢ B™ such that o(2m, X) <1/m and f(zn)
= Iy — Iy (0n) = 0. Thus, 2n el ~ X and we may suppose, without loss
of generality, that @, is convergent. Let i, = limay,. From this )¢ X

N—>00

and by the continuity of f,, fi(#) = f(x,) = 0, which is a contradiction.
The proof of (ii) is quite analogous.

CorROLLARY 5.6, If (X, A) is o closed and bounded pair in B, then
for each aeax™ "X, A) there exist an &> 0 and o e 2~ (X9, A®) such
that a == ™(ay), where

i (X, 4) (X9, 49
ds the inclusion mapping.

THEOREM 5.7, If (X, A) and (¥, B) are two closed and bounded pairs
in B and feD(X, A; ¥, B), then f* is a homomorphism.
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Let a, 8 be any two elements of a~-n(Y, B). There exist, by Cor-
ollary 5.6, an &> 0 and a, f, ea™ (T B9) guch that *ay) = g,
4*(f;) = f. By Lemma 3.7 there exists a compact field f;: X =B weh
that [If (&)~ (@)l < & for @ e X. Thus, f, e D(X, A; ¥, B,

Let us regard the following homotopy:

bz, 1) = t-f(@)+ 1~ fi(@) = 2 —1- F(2) — (1—1) Fyx) .

Obviously, h e DH(X, 4; Y, B®), whence if ~f,. By Theovems 5.3
and 5.4, ff = (if)* = f**, whence

FMatp) = o+ F) = fHlar+ ) = o) +(Br) = *(a)+ 4(B).

Let (X, 4) and (¥, B) be two closed and bounded pairs in B, A com-
pact field feD(X, 4d; ¥, B) will be called a hometopy ecquivalence it
there exists a compact field g ¢ D(¥, B; X, 4) such that gf and fg ave
homotopic to the identity compact fields.

ToeorEM 5.8. If (X, A) and (Y, B) are two dlosed and bounded pairs
in B and if f e D(X, A; ¥, B) is a homotopy equivalence then, for each n,

f*: 2™ ¥, B)»n>-n(X, 4)
48 an isomorphism. :

Proof. The theorem is an easy econsequence of Theorems 5.1, 5.3
and 5.4.

TewoREM 5.9. If (X, 4) and (Y, B) are two closed and bounded pagrs
n B f: (X, 4)>(Y,B) is a homeomorphism and feD(X,A; ¥, B)
then, for each n,

j*: noo—n(Y, B) —>5Z°°"‘"’(X, A)
48 an isomorphism.

Proof. Letf(n) = —F (0) andlet g = f~: (¥, B)-»(X, 4). Since g (@)
:g(w)-:l?’(g(m)) =, we have ¢(») = & F(g(w)) and ¢ D(Y, B; X, 4).
Thus, f is a homotopy equivalence and, by Theorem 5.8, f* is an iso-
morphism for each .

Le.t (X s A) be a closed and bounded pair in % and let I be an
n:a,dmislmble subs)rplace of B*, dimL = n+m+1. Let &: (8Z, )~ (8™, p),
7t (827 ) (8™ »?) be any two homeomorphisms such that

(i} &(=) = n(@) for = e I,

(i) 7(@) e BY™ for we §F A BT,

(i) n(z) e BZ™ for @ G+ ~ BT,

Consider the diagram

-
A,

M4) AT, A)
D [+
§ 1P
a4 ~ L) am+ (X A L,A AL,
in which &, &, are isomorphisms.

icm®
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DEFINITION 5.10. The homomorphism
8 = (B,) 8Dg 2T M(A) AT, )
will be called the coboundary operator of the pair (X, A).

Observe that §(a) does not depend on & and # provided conditions
(i)-(iii) are fulfilled, since in this case [7] is determined by [£] and changes
the sign together with [£].

Lemma 511, If (X, A) is a closed and bounded pair in E™® and if
L, M are two n-admissible subspaces of B such that L C M, then the following
diagram s commadative:

nf--n(A)_ﬁ)nz:—n.—s-l(‘Y’ 4)
NWL g ‘-LU:‘D[
Tar H(A) = a5 X, A).

Proof. It iy sufficient to prove this in the case 1--dimIL = dim.M.
Denote by M, and M _ two halfspaces such that M. o A =M, My~ M_
=L. Let dimL ~ E”™" = m+1. Let & (8L, ¢) (8™, p) be an arbitrary
homeomorphism and let o (857, ) = (8™, p), & (871, )= (8™, p)
be two extensions of & such that £, & fulfil conditions (i)-(iii) of Defi-
nition 5.10 and

(@) e B for
ylw) e B for

re S A AL,
we ST A M.
Let T: &4 8" he the mapping defined Ly the rule
Uy, @y cony Pisny Burin) = (@1y Loy ooy Ty Pinrz) -
Tet p: (85 O 82 —a""* he the mapping defined by the rule

h+1

&re Szu '
-1

€ S})f .

_ | ulw) for

PO = V@) tor

Let »
Uikl

mi (857 9) (8", p)

be an extension of ¢ such that
() e HYLE for
() e BETE for
(i) e BEE for
m(w) e B2 for

@e S A Mo~ BT
we Q5 A Mo~ BV
2 et A M.~ BT,
re S_’{L{-]‘z Mo~ EthnH.
Let us regard the following diagram, in which

A: A ~ Ly »amti(d ~ M),

dr gt (X~ Ly A A L)y»am X ~ M, 4 ~ M)

Fundamenta Mathematicae, T, LIV 13
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ave coboundary operators of the triad (A ~M, A ~ M, A ~ M_) and
the relative triad (XA M, A~AM; XMy, A~ My ; XAM_o, A~ .y,
respectively:

b}

az "(4) aZ ", A)
ANS i34 q?}/
N , )
A AL)S>am (X ~L, A ~ L) .
ol 4 1 —4 v ol
| (A~ M) > a2 ~ M, A~ M)
| oS v \rﬁ\m
7!3}“”(.:1) 4 n?[w%-!—l(;‘:’ A)

We assert that in the above diagram all regions are commutative:

I: by Lemma 2.6,

II, IV: by Definition 5.10,

III: by Lemma 4.9,

V: by Lemma 4.9, since Iy, is an extension of &.

Thus, since @;, 9,, Py, P, are isomorphisms, the exterior square
is commutative.

LeMMA 5.12. If (X, A) is o closed and bownded pair in B, L is an
- admissible subspace of B” and i: A >X, j: X>(X, A) are natwral
inclusions, then the following sequence s exact:

AENE, A) D I D TN A) D aF X, A) > > a(4)

Proof. Let iimL = n+m+1, 87 = weL ~ B, fja| = 1}. Let

us define, by induction, a sequence of homeomorphisms &, &, ..., &,

&: (SPE, ) (8™FF, p) as follows: let & be an arbitrary homeomorphism;

suppose that & is defined, and let &4, be such that &, &4y fulfil con-
ditions (i)-(iil) of Definition 5.10. In the diagram

T ”“(X Ay Saprt "(X)l’ln‘z"‘"“‘(A)i»n°9“"'+"'*1(1' A)
|([)Ek

. 53
k(X nL,A ~L) —)n“‘“‘(XmL) B am k(A ~ L) > gt et (X A L, 4 ~ L)

all squares are commutative and @, arve isomorphisms. Thus, since the

cohomotopy sequence of the pair (X ~L, A ~ L) is exact, the lemma
is proved.

DEFINITION 5.13. Let (X, 4) be a closed and bounded pair in .
We shall denote by

8: 2 MA)>al X, A)
the homomorphism which is the limit of the homomorphisms

0: ap ™(4) »nf—"“(_X; A4).
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We shall denote by
8: @ m(A) >a=-n (X, 4)
the homomorphism defined by the rule
0 = 001,

THEOREM 5.14. If (X, A) is a closed and bounded pair in E* and
it A>X, j: X > (X, A) are inclusions, then the sequence

2o (X, A) D 7oon(X) S go-n(4) S o-nti (X, ) s >a(d)
£8 exact.
Proof. Let us regard the commutative ladder
6&

X, A)—)yz‘”’”(l&) 5 A% Ay > a2, A)

¥ y
ao=(X ) A) D gon(X) 5 o= 4) S qe-nii( X, 4)
in which 4% and j& are limits of the homomorphisms
*: af M(X)—>az Md), §* af (X, A)-af X).
By Lemma 5.12 and Theorem VIII. 5.4 of [3] the top row is exact.
Thus the bottom row is also exact.
LemmA 5.15. If (X, A) and (X, B) are two closed and bounded pairs
in B, L is a finile dimensional subspace of B and f e Dy(X, 4; ¥, B),
then the following diagram is commatative:
i "(B)—> :n“""“(Y B)
| (7]0*
e "(A)—>yz°a ”'H(X A)
Proof. If M is an «-admissible subspace and L C M, then the diagram
" (B) > i (Y, B)
t(ilA
mar L(A)—’ a5 (X, A)
is commutative. The subset of £" consisting of all n-admissible subspaces

containing L is confinal in £". Hence, by Theorem VIIL. 412 of [3],
the following diagram is commutative:

n“""‘”(B)—) a1 Y, B)
RAT/L N 1%
o= A) = =X, A '
In this diagram f% and (fl)% are limits of the induced homomor-
phisms f* and (f]4)*. Now it is sufficient to apply to the last d]agram
the isomorphism ¢.

13*
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TueoREM 5.16. If (X, 4) and (X, B) are two closed and bounded
pairs in B and f<D(X, A; X, B), then the following diagram is com-
matalive:
7= B) 2> 7o-1+1( T, B)
‘L(flA)' fad

nco—-n(A) _d_) noo—ﬂ-H(X, _A_) .

Proof. Let « be an arbitrary element of #~-*B) and let g = §(w)
ea® (¥, B). By Corollary 5.6 there exist an &> 0, o e 2™ "(BY)
and By e 27X, BY) such that if(a;) = a, i*(8,) = f where iy: B->B®,
it (Y, B)—>(¥"“, BY) are isomorphisms. By Lemma 3.9 there exist an
n-admizssible subspace L C B and a compact field f' ¢ Di(X, A; ¥, B)
such that f'~if and f'|4~iyfla.

Consider the following diagram:

7="(B) L > gt (Y, B)
) 1
ig* _ 8 - (o
dlae] 1 AT B S g E9, B DI
(f'|A)‘/ v \(-’f’)*
a®-m(4) g Rt (X, A,

Regions I and III are commutative by Theorems 5.3 and 5.4, and
regions IT and IV by Lemma 5.15. Thus

fré(a) = 1*(B) = (F')X(B1) = 8(F'|)*(e) = 8(f.)(a) -

TueorEM 5.17. If (X, A) 15 a closed and bounded pair in ™, U is
an open subset of B” and i: (X\U, A" U) (X, A) is the inclusion mapping,
then

2> X, A) e XU, A\U)
is an isomorphism.
Proof. Let L be an n-admissible subspace of B, dimL == i 4-m 41,
Thus

i X AL, 4 A L)»an{(X'\U) A L, (4\U) ~ L)

is an is?morphism by Theorem 7.6 of [12]. Thus, by Theorem VIII. 4.13
of [3], in the commutative diagram

001
T

"‘:‘“ (SR TP
(X, ) > X\ U, A\U)
¢ ix Lo
(]
w X, A) > ao-n(XNT, A\T)
% 15 an isomorphism. Sinee o are isomorphisms,
So far we have defined, for every clo

the sequence of groups w=-»(XY , 4)
f* and 8. Thus {n=-n, f*,

2 15 an jsomorphisn.
sed and bounded pair (X, 4),
. together with the homomorphisms
6} is a contravariant funetor from the category
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of closed and bounded pairs in ™ to the category of abelian groups.
Obviously, {n®~", f*, 6} depends not only on E™ but also on the system
{E™", Ry Q}- i _

Now let us suppose that there is given another system {£~7", Ry, @}
such that conditions (i)-(v) of the § 3 are fulfilled and that halfsubspaces
E27" EX7™ and a point § e @ ave distinguished. Tn this case, the contra-
vaviant functor {we=m, f*, 0} is defined.

We shall prove a theorem which says that in this case funetors
{aomn, %, 8} and {7, I 8} are “almost” isomorphie.

THEOREM 5.18. For each n = 0 there ewvists an isomorphism

Qp: a® KX, A)y»>a>"KX, d),

defined for each closed and bounded pair (X, A) in E® and each k< n
and such thai:
(i) if (X, A) and (X, B) are any two dlosed and bounded pairs in E”
and if f e D(X, A; X, B), then the following diagram is commutative:
KT, B) D oKX, 4)
On

2 -

7ok Y, B> 7e-NX, 4),

(ii) for each closed and bounded pair in B the following diagram is
commutative:

aok(A) > o FH1(X, A)
e On

Fok(4) > TeH(X, A).

Proof. Let us put B ™" =E,+Q, B°" =E,+q, By=E:n E,.
Obviously, B® = E,+M, where dimM <2n-+2. Let ¢ E°>E” be
a linear isomorphism such that

(i) p(x) == for » e By,
i =0, p(@-) =@,

éii; ZE%Z“"‘) ;%‘”"‘, (B = BY7F, for k< n. o

Tt is easy to see that such a ¢ always exists. ffeD(X,4; P77, @77,
then gf e D(X, 4; P*™", @°7"). Putting

2(11) = lgfl

we obtain a one-to-one transformation of ot X, A).onto ﬁf*"(x , 4).
Tt is easy to verify that Q is an isomorphism and that (i) and (i) are true.

§ 6. Duality theorems
Tn this section we arve going to prove some theorems on .duam.]ity
between 7 and §-homotopy groups. These theorems are genera,k'za‘mons
of the duality theorems proved by E. Spanier and J. B. O. Whitehead
in S-theory.
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Let X be an arbitrary space; we shall denote by 8X the suspension
of X. It f: XY is a mapping, then we shall denote by 8f: 8X 8y
the suspension of the mapping 7. If f,¢: X ¥ are two homotopic
mappings, then Sf~8g; thus a transformation

8: [X, Y]-[8X,8Y]
is defined.
Let k=n+m+1, and let 8 = {we 8, o= o, = .. = @, = 0}. Tt
X is & compact space and dim X < 2m —2, then we shall identify [X, 87
with #™(X). Thus
8: g X)—>amt (S X),

Similarly, §: o(X)—>m,1(8X). It is known that in these cases &

Is a homomorphism (see [11], p. 162). We have the following exact
sequences:

il X) S raa(8) S S (8F) S n(8700) S

ey

d
AE) S A HSE) S L S g S g L

The limits of this sequences are denoted by Zu(X) and X,(X) and
called the S-homotopy and 8-cohomotopy growps. For more precise de-
{initions and properties of the functor S, see [12] and [13].

If X is a compact space and dimX < 2m—2, then

8: WﬂH—Ic(S’cX) __)nm+k+.1(s'c-l<1X)
s an isomorphism (Spanier [11]); in this case we shall identity XZ™(X)
and am(X).
If X,YC8" are subcomplexes of §° in some triangulation 7,

k= n+m+11, then we shall call ¥ a k-dual to X if Y is a deformation
retract of §°\X. In this case there iz defined an. isomorphism

Di: Z™(X) >Zy(¥)

which has properties analogous to the Alexander-P:
isomorphism (Spanier, Whitehead [13]).
subcomplexes of 8%, ¥,,
are inclusions, then the

ontrjagin duality
In particular, if X, X, arve
Y, are their k-duals and i XX, i YT,
following diagram is commutative:

i
Z™(X,) = Z™(X,)
WD (D
Zn(Yy) ~ Zu(Y,)
We would like to point out that in this

Y " brief exposition of the
Bpanier-Whitehead theory we have restricted ours

elves to the very simple
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cage. The original theory is more general, for example, the notion of
%-dual is more general. .

Tet us denote by 4: ¥—(8% X) the inclusion mapping. Sinee ¥ is
a deformation retract of S""X, i Zu(Y) —>E‘,L(S"'"-KX) is an isomorphism.
In what follows we shall identify these groups. We denote by

Dy Z™(X) > Z(85. X)

the composition of Dx and i,.

LeMMA 6.1. Let T be o triangulation of 85 such that 8 is a subcomples.
Let X be a subcomplex of S and let Y be k-dual for X, such that ¥,
= Y ~ 8% is k-dual for X=X ~ 8%, It i: Yo ¥ is the inclusion mapping
and A: a(Xy) » amti(X) ds the ecoboundary operator of t.hfa triad
(X, X ~ B X ~ B, then the following diagram is commutative:

nm(Xu) _:L n""'“(X)
D, D
211( Yo) _" Zﬂ( Y)

Proof. Let T, be the triangulation induced by I' on S’“ Let T, be
the suspension of T,. Denote by %’ﬁ”l) the p-th baricentric subd1v1s1g;}1
of T,. Let Z® be a subcomplex of § : consisting of all simplexes of T1",
whoge vertices do not belong to & ‘\Xo.~There exists a p, such that
X C Z*; let us put Z = 7%, Thus ¥, is (k +1).-dua1 to SX? -and Z7
Let 4: Yo— Y, be the identity mapping a.nd let iy: 8SX,—>Z, iy X2
De the inclusion mappings. Consider the diagram

— s ah(X)

‘ “' l,t; \(g)k'ﬂ

s 1
(X )~ (8 Xp) < I Z) UL Ty ¥)
i) I Dea T [ D S

(f0)e

> Zn( Yo)+— Zu(Ty)

(fo)s

ke
Zn(¥o)

. m+1
in which 4 is a coboundary homomorphism of the triad (X, X ; E.,.Sm,
X ~ B, Let o be any element of a™(Xy), 1‘epresen1t;e+(} by y:,:l.+ Ko —;k Sk
Let f: Z -8y be an extension of f, such that (Z A E'+ ) C Sih r\_ :(5;
H(Z ~ B™C SR A B Let us put b= [f1. Obwoush; S’(a) = nz;m_
e am+1(8X,) and #(f) = 4(a). Since regions I, IT and IIT are cor

tative, we have
D4 (@) = Diesr () = uDifa) -
Let X Dbe a compact subset of §%, dimX <2m—2, m+n+1= k.

Let T be a triangulation of 8%, Let T® be the p-th baricentric s.ubdiv‘ision1
of T. Let X® be a subecomplex of §° consisting of all k-dimensiona
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simplexes of 7% with non-empty intersections with X and theiy faces.
Consider the sequence
0L yo o ywin
vy
where 4, are inclusions. It is easily seen that X iy honieomorphic in
a natural way to the inverse limit of this sequence. Thus, by Theorem 13.4
of [11], a%(X) is isomorphic to the divect limit of the sequence
.nm(X(l)) _"_1; nm(l—(:z))__.nm(;\w(p)) 11‘1 nm(;‘-(p-f 1)) -
Consider the sequence
WX E (g X)L (8 WXV B g ey ,
where j, are inclusions. Passing to the homotopy groups, we obtain the
sequence
a(FNZP) 3 (8 XD) (85 XY (8 T
Observe that 1;31@ direet limit of this sequence isi yomorphic in a nat-
ural way to ﬂn(lsl: \X). Indeed, if ¥ is a polyhedron, then for every
mapping f: ¥ —>(8"\X) there exist an ¢ > 0 and a mapping g: ¥ ->(8* X)
sueh that 7 is homotopic to g.
Similarly, Z,(§™\X) is the direct limit of the sequence
Z‘n(s"*-\;&'“)) _>2"(Sk; ‘Y(i))m Zn(ﬂk\x"”)f"ﬂ; En(sk-\x(» }-1)) i
Consider the following commutative ladder:
"X LX) s 30 B e
\L‘Dk , \Ir‘Dk \l,ka \L‘:Dk
i* J,
Za(BNXY) 5 (8 X®).... (85X ) 5 (9 X0
Thus, Dy is an isomorphism of the direct se MM ¢
i sequence {n"(X onto
Zu(8NXP); let us denote by i

Dp: 2™ X) > Zn(85 X)
the limit isomorphism.
kLEXm§2 é{ Xisa com(l,:aot subset of S"H, dim A < 2m—2, m 40 41
=k Xo=X 8 and i: (§N\X,) (8™ X) is the incluss J
following diagram is commutatifue:o ) ¢ telusion, fher the
A X) S (X
Dz . $ Dk
Zu(BNX,) 3 Zo(81\ X)

(4 is the coboundary operator of the triad ( X, XA E’f'l, XA Elz—%l).
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Proof. Let 7' be a triangulation of 8t such that §* is a subeomplex.
Let X% be the sequence of polyhedrons defined above, and let us put
XP = X ~ §°. Denote by ip: X XO, . (gh+ g0, (ghtt x@i)
Tpr (BNXP) (8. I™) the natural inclusions and consider the follow-
ing diagram:

nm( If,p) ) 4 Lt ( X(p))
b L i1 }
™ ngﬂ—l)) _"> Y X(p«:—l)) |
ol T Dy, E}l Disa N Dy,
| S(@REP) I 5 (8 X0+
R ' X 74
Zy(85. ) & +> D8 X®)

‘We assert that all regions are commutative: I by Lemma 2.5, IIL
by Lemma 6.1; the commutativity of II and IV is a property of D
(see [13]) and V is manifestly commutative. Thus, by Theorem VIII. 3.14

of [3], the lemma is proved.
Let &z B*->8° be a mapping which maps R* onto 8*\{p} homeo-
morphically and is such that for n < %

W(RY) = BL Py, WRL) =EI\{},

CoROLLARY 6.3. If X 45 a compact subsel of R*™, ¥ =1y (X), X,
=X AR, ¥, =UW(X,), k<2m—2, then the following diagram is com-
amatative:

L(8°Y) = gE L.

I .
(o) (o)
] ]

nm+J1V(X)&1> ﬂmiﬁ(;[) .

Obviously, (le)x: Zp(R*\X) -»Zp(8%, ¥) is an isomorphism for p < n—2-

DEFINITION 6.4, Let X be a compact subset of R, k< 2m—2;
putting
Dy = ()7 " Dx(1) ™
we obtain an isomorphism

Dy: 2"(X) > Zu(RFX).

Luata 6.5. If X s a compact subset of B, Xo = X R, k< om—2,
k=n+m+1l and i: (R"\XQ)»(R"“\.X) is the inclusion mapping, then
the following diagram is commutaiive:

am(Xy) S i X)
3D : 1 De
Zu(RAX,) > Zp(RFN\X) .
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Proof. Let ¥ =lp(X), Yy=10(Xo) =T 8% let 4 (8 ¥y
(8" ¥) Dbe the inclusion mapping. Consider the following diagram:

7™ X,) 4 w1 X)
N U1,/
7 Ty) = 2 +3( T
Dy e 1 Dx Dipga
k. (e o1,
Zn(8™\ X o) — Zu(8°THX)
¥ K/ (UM i (r+1)s V
SR X,) L Za(RFN XY,

In this diagram all regions are commutative. Thus the exterior
square is commutative.

Let ¢: RE>RF, b =mn +m+1, be a homeomorphism such that ¢(R")
= E"and ¢(85-;) = 8i-1. Let X be a compact subset of B, dim X < 2m—2
and Y =g(X). If a is any element of a™(X) with a representative
far X871, we shall put

oxla) = [plap™") € [T, 8ia] = a™(¥) 5
thus
¢x: 7 X)->a™(¥)
is an isomorphism.’
Anologously we define the isomorphism

95 Zu(BX)Zu(R* ).

Lmyva 6.6. If X s a compact subset of R’”, dmX <2m—2, k =n+
+m-+1, then the diagram
7%
M X)—— o X)
i/l)k zpaY ‘!/D’C
Z(R™ X)— Zy(RM\ )
8 commutative.

Proof. The diagram is commutative for the subcomplexes of 8*
(see [13]). Thus the commutativity of the diagram follows from the
definition of Dj.

The subspace Ry of E is linearly isomorphic to R"; we shall suppose
that there is given an isomorphism #n: Ry —>R" Let L be an n - admissible
subspace of ™, dimL =% =n-+m-+1. We shall say that the (linear)
isomorphism ¢: L—R* iy n-admissible if ® is an extension of u, and

qJ(LmE"“*n)={meR",wl=m2=_,,=m”=0}_

DErFINITION 6..7. Suppose that X is a closed and bounded subset
of ¥%, L an n-admissible subspace of E”, dmL =% =n+m+1,v: L >R
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an n-admissible linear isomorphism Y = v(X A L)
‘We shall denote by

and f e ND(X).
wet ay (X))
the isomorphism defined by the rule ”

wl[flz) = [ofzr™] € [ ¥, Sia] = 2"(¥).

LeMMA 6.8. Let X be a closed and bounded subset of B, L an n-ad-
anissible subspace of W, dimL =k =m+n +1, and 1, 1,: LR any
iwo n-admissible linear isomorphisms; then

(H);le’l’n = (T‘Z);IDIC"ptg

where (te)yt: Zu(BE X)) > Zn(LX), V=1L~ X) for i =1,2.

Proof. Let us put p=mu7"", p: R*>R". By Lemma 6.6, Dpgt,
‘ B . -1
= gi*Di. Since ¢, = pa(ps)” and gy, = m)ulr)i’y we have Dipq(y)
= (T)(7e)x Dy Thus

(72)y Distpey = {z3)y Disr, -

DerIvITION 6.9. Let X be a closed and bounded subset of E*, L an
n-admissible subspace of E®, &imL =k =n+m+1 and 7: L+R" an
n-admissible isomorphism. Denote by

Ans 7 X)) >Zu(L ~ X)
the isomorphism defined by the rule

An =7 Dy, .

By Lemma 6.8 this definition is independent of =.

LEMMA 6.10. If X is a closed and bounded subset of B, L, I are
two n-admissible subspaces of E*, LC M and i '(Ln X)—>(J'1f[ ~ X) is
the inclusion mapping, then the following diagram is commutative:

U}tl oo—n
ay X))~ mar (X)
\l/AVI i 4n
(LN X))~ Z(MNX).
Proof. It is sufficient to prove this in the case of dim = dimL+1

=Tkl = n4m+2. Let v, L>R' 7z M->R* be two n-admissible
isomorphisms such that r is an extension of 7,. Let ¥ =v(M ~ X),
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Y, =1L~ X) = ¥ ~R* and let 4: (B* ¥o)>(R*'"¥) be the inclusion
mapping. Consider the diagram:
M

() & - a5 ()
[ & ¥ T Yo,/ |
Hm( Yﬂ) _i:, St -H( YJ
4y I JDe (11§ 4 D w4,
| SR T) J{; Zy(RFIY) g
3 Ao ) AN N
Za(INX) . 2u(M0X) .

We assert that all regions are commutative:

I: since 7 is an extension of 7,

II, IV: by the definition of ,,

IIL: by Lemma 6.5,

V: this is an elementary property of X.

Thus the exterior square is commutative.

It follows from Lemma 6.10 that 4, is an isomorphism of the direct
sequence {mz "(X), o2’} onto the direct sequence {Z,(I\X),z,}. It is
easy to verify that the direet limit of the first is isomorphic to 2,(E 2 X)
and the direct limit of the second is isomorphic to a™—7(X).

DEeFINTTION 6.11. Denote by

AT 7 TNX) > D (B XD
the limit isomorphism.

THEOREM 6.12. If X 4s a closed and bounded subsel of B>, then
A7 a T X) > ZBON\X) ds an isomorphism. If X, X, arve elosed and
bounded subsets of B, X,C X, and i: X,~»X,, j: (B X)) = (B Xy)
are snclusions, then the following diagram is commatative: ‘

a9 =(X,) 22 geo-n(Xy)
- V-
Zu(EN\X) 2 Zn(BX),

Pro_ of. The first part was proved above. An inspection of the proof
of the first part shows that the second part ig true.

§ 7. Applications

'_EHEOREM 7.1. _If (X, A) is a closed and bow
7}, « D™(4), .thm fo is extendadble to a compact field f e D™(X) if and only
if [fd e Imd*, where i: A >X is the imclusion mapping.

Proof. The condition is manifest]
e Yy necessary. We shall prove the
sufficiency. I [f,]  Tm*, then there exits a g ¢ DYX) such that fo~ gi.
Thus, by Theorem 3.13, f, can be extended to a compact field f e D™(X).

nded pair in B® and
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From the exactness of the sequence

n;m»-n(:(’) B, nm—w(A_) ,‘L n@b—*u‘{vl(X’ _‘_1)
we obtain

OoROLLARY 7.2. If (X, A) is a closed and bounded pair in E”,
fo € D"(4), then fo can be extended to fe DMX) if and only if S8([f]) =0.

In particular, if @YX, 4) ~0, then each compact field f, € D'(4)
can be extended to a field 7 e D"(X).

TagoreM 7.3. If X is @ closed and bounded subset of B, then n(X)
is @ free abelian ¢roup and there exists a one-to-one correspondence belween
the generators of s (X) and the bounded components of BN\X.

This theorem i3 a slight generalization of the theorem proved by
Granas in [7] (Theorem IX.12), which may be formulated as follows:
¥ disconnects E™ if and only if «7(X)# 0.

Proof. By Theorem 6.12, 2”(X) is isomorphic to Z,(E*- X). By the
Hurewicz theorem Z(E™:\X) is isomorphic to Hy (¥ \X)—the reduced
singular homology group. It iy easy to verify that Hy(E™- X) is free
abelian and that the generators of Hy(E™\X) are in one-to-one cor-
respondence with the set of bounded components of B X,

For completness we would like to give more details. Let {U.}eeu be
the set of all bounded components of E*X. For any a e }et s put
X, = Uy. Lot de XX, (B™\X,) (B X) be the inclusions.

€MWa#f .
Zn(E‘J\Xu;lis infinite cyclic and 5 Z(E™\Xo) »Zy(E” ‘.\‘X) is a mono-
morphism for each a ¢ A and {&} is an injective representation of Zy(E~  X)
as the direct sum of the groups Zy(E™ X). Thus, by Theorem 6.12, we
obtain

COROLLARY T.&. For ecach a e, x>(Xe) is an infinite cyclic group
and {i5), % a2(X,) »a=(X) is an injective representation of n°(X.) as
the direct sum of »>°(Xe).

CoROLLARY 7.5. If X and Y are two closed and bounded. sgcbsets of
B, f: X>Y is a homeomorphism and feDYX, X), then BT X and
B\Y have the same number of components.

This is an immediate consequence of Theorems 5.9 and 7.3. .

It X is o closed and bounded subset of E™ and feI.)(X, F*), Uis
a component of B\ X and ¢ [(X), then the?e is deﬁnet} a numbt?ll'
a(f, U, ap)—the Leray-Schauder degree Qf_ 17; §1nqe a2, ¢ 7(X), we have
(@) = f (@) —m, # 0 for w e\ and thus gwel) (X). Leb y € U, and f?ﬁ(liﬂ)
= p—1y for ze.X,, fo e D'(X,). Then = (Xg) s 1rsomorphlc to Z-' :
group of integers—and [f)] is a generator of 7=(Xo). Thui there ixx; S
a (uniquely determined) integer m such ﬂl‘ﬂth lg] = .«:L-ﬁ—amu([f‘,]) e ‘.(4 ).
Tt is easy to see that m = d(f, Us) i) and it is possllble to deduce some
properties of ¢(f, U, @) from the algebraic properties of 7(X).
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DepixmroN 7.6. Let X, ¥ be closed and bounded subsets of B™
A mapping de DH (X, E”) will be called a compact deformation of X
onto Y if dy(x) =2 and d(X) = Y.

TeeoREM 7.7. Let X, Y be closed and bounded subsets of B™ and q
a compact deformagion of X onto Y. Let W be a finite dimensional poly-
hedron such that W C (™ X) ~ (B™\Y). Denote by i: W (B X) and
iz W>(B\Y) the inclusion mappings. If there exists an element o ¢ Zu(W)
such that ia) 7 0 and (i,),(a) = 0, then there exist xy ¢ X and ty e I such
that d(w,, t,) € W.

Proof. Let Z,= d(X x I). Suppose, on the contrary, that ZyA W = 4.
Since W is a polyhedron, then there exists an open and bounded
subset U of E” suchthat Z, ~ U = A4 and W is a deformation retract of U.
Since Z, is a bounded subset of B>, then there exists an » > 0 such that
Zyw UCTV, = {we B, 0| <7}. Let Z =V \U. Denote by jii Y2
j: X~Z the inclusion mappings and replace Zu(U) by Zu(W); then:
by Theorem 6.12, we have the following commutative diagrams: /

wo=n(Z) 23 ao-n( ) wo=(2) L meo-n( )
£y ey T Ja
L(W)3LEX), S s ).

Since 47 is an isomorphism, we have Korj* = (4%°)! i
] 2 Y 5 g 7 = (d3) " (Keriy)
Kerj, = (47) " (Ker(i,),). On the other hand, j~ j,d;, and 1101:00 J* = i**]i‘z
and Kerjf C Kerj*, which is a contradiction. '

. Theorem 7.7 is a generalization of the Sweeping theorem proved
in [4]. Let d(f,’ t) be a compact deformation of a bounded and closed
su;?set X of B” onto Y. Let #, be a point in the bounded component of
E™X and unbounded component of E™\Y. Let @, be a point in the
unb?unded component of T™\A(X x I). Since ZWEN\X) and Z(E™\Y)
aie ﬁfmorplne to the reduced singular homology groups, the assunnptibns

0 eorem 7.7 are fulfilled. Thus there exist points 9
el that (a4 o g points zy e X and tyel
o (301;0LLARY 7.8. Let d be a com;?aot deformation of a closed and bounded
1,: se' = g::,to 1§ 1}:1 p: 8= (B X) ~ (B\X) be a mapping; denote
i;z,czjn' d}; ) > Ho B\ X) and {2 Ha(8")~Hy(E°\Y) the homomorphisms
uced by (p..If there exists an a ¢ Hu(S™) such that n{a) # 0 and &(a) =0
then thet*e ewist @y € X and tye I such that d(w,, to) € p(8™). ’
@ It 1)3 saff;;llent to observe that X,(8™) ~ Hy(S") (by the Murewicz
heorem) an P y i i i .
o a pute Corollary is an immediate consequence of Theorem 7.7.
B0 = o e B, Jof) = 13.

THEOREM 7.9, nm“n(g’“—ﬂ)&, Em(sm,%-n—p)‘
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Proof. If L is an n-admissible subspace of E®, dimL = n+m+1,
then a "(8777) is isomorphic to Z™(8""™7?). Thus = (§°7) is a direct
sequence in which all homomorphisms are isomorphisms.

Since Zg(8™)~ Z™(8%) (see [7], p. 225), we have = "(§°77)
P~ Z‘,H,,,_,,(S’"). Thus, since some stable homotopy groups of spheres are
known (see [7], p. 332), we obtain

COROLLARY 7.10. We have

a8 0 for  p>a,

e Y o pe—n,

o VY~ Zy for n—p=1,

M8~ 2, for n—p=2,

a8 ~e 2y, for a—p=3,

a8 & 0 for n—p=4and n—p =35,
28T~ Z, jor m—p=26,

7 TSPV A By for w—p=17,

TSPV Lyt Ey,  for m—p =8

(here Z is the infinite cyelic group and Z, the cyclic group of order q).
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