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2. Tall. Dy ~ B, ist nicht zusammenhingend. Dann besteht QieSer
Turchschnitt aus einer Kante von D, und dem dieser Kante gegeniiber-
liegenden Eckpunkt p. L sei der kleinste Teilpogen von B,, der K
und p enthilt. Die Endpunkte von L sind p und ein Endpunkt ¢ von K,
und die Strecke [p, ¢] ist eine Kante von D;. Wir betmcht-en nun den
Bogen B = (B\L) v [p, ¢l Bs ist nicht schwer naehzu}velsen, dafl B
zu B, gehort. Um zu zeigen, da B die Rﬁ_hre Vi durofhdrmgt', be‘merken
wir folgendes: B kann hochsten soviele Teilbogen bes1:czen, die eine von
T, verschiedene Rohre eines zu ¥.,-; gehorenden Wurfels‘ durchlaufen,
wie B, selbst. Da jedoch 7(B,) =7, war und r(B) = 7, sein mufB, folgt
hiera,u;s unmittelbar, daB B ebensoviele Teilbogen enthélt, die ?’0 d..urc]?-
laufen, wie B, selbst. Da natiirlich &(B) < d(B,) ist, ist der Beweis hiermit
beendet. , '
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On a class of order-types generalizing ordinals
by
M. Slater (Chicago)

1. Introduction. The class £ of ordinals 7 may be characterized
by the following properties:

(i) The right half of every Dedekind cut of 7' has a first term,

(ii) ' has a first term.

It does not appear that anyone has investigated those order types
for which (i) holds but (ii) does not. In this paper normal forms are given
for such types, their possible factorizations are investigated, and various
properties generalizing those of ordinals are given.

2. Definitions and netation. Let 7 = (T, <) be a linearly
ordered set. We define a Dedekind cut of T to be a pair (4, B) such that
A#@+£B, AUB=1T, and for aed, beB, a<b. We write T =4 +B.
We say a cut (4, B) is of type J, G, L or B according as both, neither,
only the first or only the second of the following conditions holds:

(i) 4 has a last term;

(i) B has a first term.

For each s ¢ T we define L(s) to be the set of predecessors of s in T,
and L[s] = L(s) v {s}. Similarly for R(s) and R[s]. A subset 4 of T is
an initial (final) segment of T iff A = L(t) (4 = R[t]) for some teT.

Ordinals will be denoted by Greek letters. If

o= W @yt ..o -+ 0%

in Cantor mormal form (see [3], p. 320), we shall typically write
a = (ag, ag, r). We define functions ¢ and p on 2 by setting

0 = —o0, $0 = —oo,
pa=a, (a>0),
We shall use the following valuation-like properties of ¢:
(i) ¢(a--f) = max(pa, pf).
(i) p(a) = pa+pf.
(i) a+p = B iff pa < @p.

ya=a (a>0).
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Expressions such as f = o’d+¢ will be assumed in normal form,
ie. ge<d, d> 0.

We will not usually distinguish between an ordered set and its
order type.

3. RJ sets. We define an ordered set to be RJ iff every cut is of
type R or J.

Let us say S is cotnitial in T' iff for every ¢ e 1 we may find se§
such that s <t Then

TaporeM 1. The following conditions on T are equivalent:

a) T is RJ.

b) Every jinal segment of T is an ordinal.

¢) Any subset of T is an ordinal or coinitial in T.

d) Bvery proper subset of T is RJ.

e) If so> 8> ... is a properly descending infinile sequence in T,
then 8 = {8} is coinitial in T.

) If R is a subset of T such that

(i) R contains an initial segment of T,
(i) t ¢ B whenever L(t) C R,
then R = T.

This last is a generalization of the principle of induection. Compare [3],
. 262.

Proof. a—b. Let § be a non-empty subset of a final segment
R[s,] of T. We show that § has a first term. If s, ¢ 8 this is trivial.
If not, set B = {J{R[s]: se8}, A=T—B. Then (4,B) is a cut of T.
So B has a first term, which is easily seen to be the required first
term of 8.

b->ec. If A is not coinitial in T, then A C R[t] for some ¢ Thus A
is a subset of an ordinal, so itself an ordinal.

c—d. If A is a proper subset of T, and (B, C) a cut in 4, then C
is not coinitial in 7'; hence has a first term.

d->e. If ¢ < s for all 4, then {f} v {852 ¢ =1, 2, ...} is a proper subset
of T, and of type 14 w* which is not RJ.

e->f. Set § = T'—R. Then § has no first term a, since then L(a)C R,
contradieting (ii). Thus if 8 is non-empty we may find an infinite de-
scending chain in it, which is then coinitial in 7. So the initial segment
of T in R is empty. But then T has a first term ¢, contradicting (ii). 8o §
is empty.

f->a. Let (4, B) be a eut of T, and suppose B hag no first term.
Then A satisfies (i) and (ii), yet 4 # R.

COROLLARY. An ordered set is an ordinal iff it is RJ and has
a first term.
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4. Normal forms for RJ types. We shall use the notation
/]
> (Any b) o X (An, l) for

Z whnly = ... 4+ 0hly+ whl 4 whl,,

new*

where 1, < 4 < 4, < ... and each I, > 0. The letter 1 will always denote
1imln.
n

THEOREM 2. An ordered set is RJ iff it is of one of the following forms:
a

ottt a: pa < p.
. Z(Any la).
¥ 4 a: pa> p.
. Ay la)+a: pa A

Proof. It is clear that an ordered set of any of these forms is RJ.
Conversely, define a function f on an initial segment of o inductively
by setting 7(0) = s,, where 8, € T is arbitrary; f(1) = s,, where s, < s, and

B = ¢ls1, 80) = pR[8e] = bo
if such an s exists, and in general f(n) = $», where

CBn = @[50y 8n-1) = fu
provided such an s, exists. If not, we terminate the construction, and
have Df = n.
Suppose first f is defined on all . Then by Theorem le we have

T= D) [Suir, 8a)+ RIS

new*

) = D (@bt ) o <p< e

new*

Suppose B = {f,} is ultimately constant. Let N be the first index
beyond which B is constant. Then for some u

[Snt1; 8n] = c#bpt-yn  for n2N; PBya<u:
Thus

0

.
T= D (@butpm)+ D (@batys)

N-1
N
= Z(a)"bn)-l-a = wfo*+a
for some « such that go = max(pywy, fy—1) < p. So in this case T may

be written in the form 1.

Fundamenta Mathematicae, T. LIV 18
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If B contains a properly increasing subsequence we amalgamate
terms in (A) to reach an expression

T= 2 (0nMu+0n): PO < tin < Mn+1 -
new*
If Oy = sn-+en: @en < a1 < y2n (1w > 0), we may replace each 4,
by #s (n> 0) without changing the sum:

T = D (awnmntn)+5,.
nea*
On expanding each term wsmy,-+x%, and d, into its own normal form,
we find T is expressible in the form 2.
Suppose next f is defined not on all w, but only on N +1. We define
a function & on a subset of w inductively by setting

To=T, fo=1f No=DN; t=F(), £&(0)=0¢R[i].

Suppose we have defined Ts, fs, Ni, 5, £(4) for all i< m, where
m > 1. Then we set
Tm = Tm—l"R[tm—l] .

We may assume 7' is not an ordinal, so that T, is non-empty. We define
fm for Tn exactly as we defined f for T. If Dfw = » we do not define
£(m), and set D& = m. If Dfy, is finite, we seb

Dfn = Natl,  tm= M),  E(m) = pltm, tos) -

By the definition of f,, we have £(0) > &(1) > ... So we have con-
structed a descending sequence of ordinals, defined on DE. Thus DE = p
is finite, and f, must he defined on all w. So by what we have already
proved

Ty=ore*+f  or (i, )

and T = o*w*+a where a =B +R[ty], ot T = Y (is,ls)+a’ where o
= Rftp]. Suppose in the second case pa’ < 2. Then ga’ < 1y for some m,
since 1 is of the second kind. But then we can extend the definition of
I t0 Ny +02 I‘)y setbing f»(¥5+1) to be any point to the left of the final

segment ' (A, ls)+a’ of 7. Thus ga’ 3> 4 and in the second case T is

m
of the form 4. A similar argument shows that in the first case Qo> U,
so that T is of the form 3.

THEOREM 3. No RJ type is of more than one of the five forms.

' Proof. (.}iven any properly descending infinite sequence S: 55> 8, > ...
in Ij, we define functions RS and ¢8 on o by setting BB (%) = R[sq], and
@8 (1) = pR[s].
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Consider the assertions A: RS is ultimately constant; B: o8 is
ultimately constant. If T' is of type 1 (2) it satisfies A for no 8; B for
all (no) 8; if T is of type 3 or 4 it satisfies A for all 8; B for all 8. Further-
more, if T is of type 3 it has an initial segment of type 1, and if T is of
type 4 every initial segment is of type 2 or 4. There are no § iff 7 is an
ordinal; otherwise these properties are mutually exclusive, so that the
theorem is proved.

ToEoREM 4. The expression for an RJ type T of type 1, 2, 3 is unique.
If T is of type 4, ils ewpression is unique modulo amy final segment of
2 (Any ln). :

Proof. Suppose one expression for T'is 1, 2, 3 or 4, as in Theorem 2.
Let 8§ be a given infinite descending sequence in 7.

1. R8(m) is for sufficiently large m of the form w*r 4 a. This det-
ermines o and u. :

2. Given any » we may find an m such that @S(m)> 2,. Then

0
RS(m) = y+2 (An, ,) in normal form. Since normal form is unigue,

* this deterimnes 4, and I, for » < n.

3. We may find an N beyond which RS is constant and LS of type 1.
The constant must be « and the initial segments of the form wtw*+ 6.
This determines a and (by 1) u. :

4. We determine o as in 3. Let s be such that R[s]= a and L(s)

n

=3, la). If also T = (%, ly) + a, we must have L(s) = 3 (44, L)+ B

(for some m and B) of type 2. On expanding § in normal form and using 2,
we see that for some » > 0 and all # > some N,

Z-;z = j"n,+r7 l;» = ln+r ] or An = }v’»+r7 Zn = Zr’n+r .

Since any final segment of 3'(1,,ls) may be absorbed in a, it is clear that
this is best possible.

5. Order-preserving maps. It is well known that an order-
preserving mayp of an ordinal onto itself must be the identity. For RJ
sets we have

TrROREM 5. Let A be an ordered set whose order type T is RJ. Then
the group G(A) of order-preserving maps of A onto itself is the trivial group
unless T is of type 3, in which case it is the infinite cyolic group.

Proof. 1. Let ¢ be RJ, d #0. Then (+6=C iff 0= wo*+ta
is of type 1, and & = w*r+a for some 7 > 0.

2. Suppose now f is an order-preserving map of A4 onto itself, other
than the identity. We may assume without loss of generality that f(d)
= a < b for some b.

8%
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Then L(a) and L (b) have the same RJ order type. But L(b) = L(a)+
+[a, b), 50, by 1, is of type 1. Thus I' must be of type 1 or 3.

3. Let us identify each a ¢ A with the cut (L(e)}, R[a]). On identifying
A with its order type w“w*+a we may write the cuts nnambiguously
in the symbolic form

(i) a=(wo*=r)+p, —f+orta) (PB<mr>0;f<aifr=0)
or
() @= (o (w*+7)+8, —(0r+p)+a) (98 <u, r=1, T of type3).

4. T # wro* For if b= (o/w*~n)+68, —6+w4n), pd< u, then
a = f(b) is of type (i), where we must have r =n; f=46. So a4 = b.

5. f is determined by its effect on ¢ = (w*w* a). For if f(¢) = a,
then R[a] is of type a, and f on E[a] is determined by the properties of
ordinals quoted. above, while L(a) is of type wtw*, so that f on L(a) is
determined by 4. ’

6. Suppose now f(¢) = & given by (i) or (ii) above. Then g = 0 and
go> p, 80 t]‘nat T is of type 3. The mapping f—»r (if ¢ iy of type (ii)) or
f——r (if a is of type (i)) sets up an isomorphism between G(4) and the
infinite cyclic group.

This isomorphism is brought out graphically if we write

T = o*o*+a = o*(0*+ o)+ (—wrtl+a).

COROLLARY. An ordered group H whose order type T is RJ is trivial
or the infinite cyclic group.

For its regular representation is a subgroup of G(T).

In contrast to Theorem 5 we have

T]IEOBE}I 6. ,If- T and T' are RJ, there ewists am order-preserving
map | of T into T' iff the appropriate condition in the diagram is satisfied:

1’ of type 12 34 0
T of type 12 A
*
34 {uSa’
pa<a| ESH
0 a<a

" Here we take 4 = i i
Y we take 2= p+1if T is of type 1 or 3, and 7 = a if T is of
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If T = T it is easy to construct f 7 id. so that f(¢) <t for all te T
iff T is not of type 0, and g = id. so that g(f) > ¢ for all ¢ € T iff T is not
finite or o* (compare [2]).

6. Factorization of EJ sets. We shall find it convenient to
reclagsify RJ sets T in seven types, and associate with each T' ordinals a
and 2 as follows: : :

Group I: T =wo*+a: A=p+1.
type: 1 ga<pu.
2. pa<A< pa.
3. A<ya.

Group II: T=3,lw)+a A=limi,.
n

type: 4. a=0.
5. pa <A< pa.
6. A<vpa.

(B)

If T is an ordinal, we assign it to type 0, and take
a=1T, Ai=9¢l.

It is desirable to have a(T) # 0. We therefore redefine o(T) to be
o’ (T of type 4) and w* (T of type 1, a(T) = 0). We shall say T is RJu
itf T is RJ and of type i (¢ =0, ..., 6). We may regard types 1, 2, 3 as
degenerate cases of types 4, 5, 6, respectively.

TeEoREM 7. Bvery RJ set is of one and only one of the seven types.
Its expréssion in the form (B) is unique (modulo any final segment of X
if T is of type B or 6). In particular, a and A are well-defined functions of T.

This follows from Theorems 2, 3, 4.

THEEOREM 8. Lot T = PQ be a non-trivial factorization of an ordered
set T == @. Then T is RJi iff P is an ordinal and @ is RJi (i =0, ey 6).

Proof. In one direction this needs only a direct verification. Con-
versely, let P and § be orderéd sets. Then the Dedekind cuts of PQ are
precisely the pairs (P4, PB) where (4, B) is a cut of @, and the pairs
(PL(a)+C, D+ PR(a)), where a @ and (0, D) is a cut of P.

Suppose now I' = PQ is RJ. If (C, D) is a cut of type L or G in P,
then o is (PL(a)+C, D+ PR(a)) in T. Such cuts exist since P£0,1;
Q = 0. Thus P is RJ. If P has no first term, then every cut (PA, PB)
in T is of type L or G. Such cuts exist, since P 70, Q+#0,1. So Pis
an ordinal.

If the cut (A, B) of Q is of type G, then so is (P4, PB). If (4, B)
is of type L, then (P4, PB) is of type L or G. So @ is RJ. That @ is of
the same type as T follows from Theorem 7 and the first part of this
theorem.
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6.1. We first examine the factorization of RJL, 2, 3, 5 types.
THEOREM 9. Let T of type 1 or 2 or 3 or 5 be given by

wr*+ 6+,
D (s T+ 8+ 8,

vespectively, where 0 << pf <A<yd, and &= (8i,di,7); a= (a, a, 8)
Then T has a uwnique irreducible right factor S, given by

o*, @~ tug* 1§ 11,

‘ofo*+a,

*
w'o* -+,

@ tay D (—gBtny b)+8 +1,
respectively, where 0" = (—f-+08i,di,7r): o = (—p+as, a:,8). We have
T =8 iff
y=o'm+ae (for some m>0), y=23,
QY =, y = f, respectively.

CoROLLARY. The irreducible RJ1,2,3,5 ses are precisely those of
“the forms -
¥, o*{0* 4+ wo)+1,

DUy )+ o +1,

o*+ oo,
respectively, where ¢ > 0.

Proof. If T is of type 5 we assume, as we may, that lo > pf. We
may check directly that T = y§ whenever y and § are as given, and
that 8 is of the form given in the corollary. If T = &8’ with &' irreducible,
then 8 is of the same type as 7/, so has a right factor of the form given
in the corollary, so is itself of this form. We may then check directly
that 8’ = § and ¢ is of the form given for y. The same argument applied
to 8 shows that § is irreducible.

6.2. RJ4 and 6 types do not in general have irreducible right
factors. We therefore introduce two weaker notions:

DErINITION. We say an RJ type is reduced itf for every right factor §
of T we have a(8) = a(T) and A(8) = 2(T). We say that T is (rvight)
quasi-irreducible (q.1.) iff every right factor § of 7' is at the same time
a right multiple.

It 8 is a right factor of 7, a(8) < a(T) and A(8) < A(1). It follows
that T is reduced if it is q.1i.

We shall need two other notions:

DEFINITION. We define ordinal functions vand 6 of 7
MT) =7+ o’ in normal form (ie.7=0 or yr> 0)
and 6 types 6 5= 0, since A is of the second kind.

DEFINITION. We say that an increasi
ordinals is left step-periodic iff for yome step

by sefting
. Note that for RJ4

ng sequence A = {i(n)} of
a and period p = 0 we have

icm
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Mn+p) = a-+A(n) for all sufficiently large n. It. may be shown that the
set of periods is a semi-ideal in the set of posmye ‘mf-zeggrs,. so that 4
has a fundamental period. We say A4 is step-pem?dw iff it is both left
and right step-periodic (defined in the corresponding manner).

6.3. Suppose now T = 2 (A, ln) is of type 4. We say B is an end-
segment of T' or of ¢ = (A, ls, ) iff for some e
@ B=oa+ (A l, N-1),
LeEMMA 1. The left factors of o or T' are precisely those B such that
either @B < Ay or B is an end-segment of ¢ or T.

Proof. If ¢ or 7'= AU and U is of the second kind, then ¢f < 4,
and for every such f we have fU = p or T, where

(ZG"-—‘ZN.

. . 0
) LU= (bt )
(the sum being finite or infinite). \ ’
If U is of the first kind, and U = 3 (un, "), f = o®d+¢, then

1
0 or T = D (8-t pny mn) + g +é.

Since 8 < 8+ uy, this is in normal form as it stands, so that ﬁ‘ gatisfies
(1) for ¢ = m, and some N. Also ¢f = iy > 4. Conversely, with f as
in (1), we have U = T, where

N+1

(3) U= D (—dntin e, de=1ly. o

This lemma suggests that RJ 4 types may be regfﬂ:dgd as “mﬁmtelye
long” ordinals, and that by continuing to “peel off” right fa,ct:]rhs :lv;e
can obtain an ‘infinite” normal factorization for them parallel wi :
normal factorization (n.f.) of ordinals (see [3], . 340, or [1], p. 8.).

DEFINITION. Let IT = {m, m, ...} be a sequence of non-zero or?ﬂ}a}:
and 7T of type 4. Then we write T'~II iff every final segmengr y _ON( 1)
a final segment of every product mym, ... for n > some '_sw»ic:z.

Given ordinals y = (ai, o, 7) and 0 = (&, di, 8), We'say y i8 y
longer than 6 iff 7> ¢ and ¢ =di and yi = 6¢ for 0 <4 < 8. . "

LEMMA 2. Given a, >0, a is an enjd-segfmefbt ‘of. of zf; B ;sstolfdnd
first kind, and of is sirictly longer than iff B is infinite .of the fi .

LuwMMA 3. Given o sequence IT there' exists a T~IT iff

a) The ms are not wltimately all finite; ‘ )

b) only finitely many s are of the second Tind.

If T emists, it is unique. .

I-‘froof. Th:a firgt part follows from Lerpma 2, and the sgcondnirxtl);l
the fact that 7' is determined by any coinitial sequence of end-seg .
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Lemma 4. If T~II, then cvery product m(m)= mm,...nm is an
end-segment of T iff

e) w; (4> 1) is of the first kind.

Proof. Let ¢ be an end-segment of 7' of length greater than length
#(m). Suppose ¢ is a final segment of = (n), where n > m. Then 7(7m)
is an end-segment of z(n)= 7 (M) %ms1...70n Y an iteration of Lemms, 2,
hence of o, hence of 7. The converse follows from Lemma 2.

Suppose now IT satisties

d) @ (i>'1) is either finite >1 or infinite of the first kind and
irreducible;

o) m satisfies d or is of the form w* (a> 0);

f) No two adjacent m; are both finite.

Then we say I (or ¢) has the amalgamated normal factovieation (anf)
My e (O Myt oo y) it T'~IT (0 = mym, ... 4). Note that conditions
a, b, ¢ are satisfied.

LeMua 5. E’vev‘y o = (A, ls, N) has the unique anf

(4) ¢ = o™l m v ly..Tyly,
Xhem T = P41 %(8) = — o+ A, and we omit Iy if I; = 1, and o if
=0,

Proof. It is clear that this is an anf. It may be obtained from the
n.{. by amalgamating adjacent factors which are both finite or both
of the second kind. Suppose now o = M. 7 I§ any anf. On refining
each =; to its own 1. 1. we clearly obtain an n.f. for 0- On reamalgamating,
‘we return to s, ;... 7, but also we must obtain (4), since the n.f. is unique.
Thus the two anfs are in fact the same.

TEROREM 10. (i) Bvery RJ4 type T has a unique anf IT.

() If T = BU is any factorization of T, then for some m

B=mm..tn 10 in anf; Ut i1 omgr e i1 anf; o = o .

(iil) If Fr~omm,... (not necessarily anf), then BT ~ fm, m,...
Proof. (i) Consider

(3) oLl = mym,... ,

wh.ere Tn = O +1: B(n) = — Ay +1s, and we omit o if 2 =0, and
1, if l,, = 1. By Lemma 3 some T, ~ this, 50 by Lemma 4 every product
7:(%) is an end-segment of T,y. But it is clear from equation (4) that =(n)
is an end-segment of T. Thus 7 and T, coincide on a coinitial sequence
of el}jfiA;egments, so are equal. It is clear that () is an anf for 7.

) ~0103... 18 any anf for T, then o(r) = g0, ... i g

its anf. By Lemma 4, o(r) is an end—segménl of 11’,2 sog:)fdjzf(lz;}sfoi(;zii
# = n(r). By an easy application of equations (1) and (4), o(r) has the
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anf 7,7y 1@ (@] 7tm 0 = 1). By Lemma 5, m = » or 7 +1, and m; = o4
(¢ < 7). Since r is arbitrary, the given anf is unique.

(ii) I T = U, then by Lemma 1 either ¢f < 4, or f is an end-segment.
If @B < A, we may take m =1, 0 = f, v = w*, where u = —¢f-+4,. The
corresponding form for U is (2), and its anf by part (i) is

thniltaly...
where #'(n) = —(—@B+ An—1) +(—@B-+4n) = —dn—1+ 2 = x(n). If B is an
end-segment it is given by (1) and has the anf (4), with d for Iy. We take
7 = ¢. The corresponding form for U is given by (3), and its anf by part (i)
i8 erN41lN+1Th+2eery Where x'(n) = —(—~Ax +Ane1) +(—Av + M) = —Apy +
+Ap = %(n). Thus in each case p and U are of the form stated.

(iii) It is clear from the working of Lemma 1 that an end-segment
of BT is either an end-segment of g or of the form fx, where = is an end-
segment of 7. The result follows.

THEOREM 11. Each RJ4 type T has a unique normal factorization:
that is, there is a umique IT such that T~II and

g) each m; is drreducible;

h) no 7 of the second kind follows one of the first kind;

k) adjacent m; which are both of the second kind, or both finite, ocour
in non-tncreasing order.

Proof. Note first that it is legitimate in an expression

T~m(1)m(2)...
both to refine individual terms—thus 7'~ZX, where
w(d) = o(ni+1)o(ni+2)... 0 (Rig1)—
and to amalgamate blocks of adjacent terms—thus. I'~Z where
(@) = m{ni+1)mw(ne+2) . 7w (Riza) -

We may obtain one n.f. for T by refining the terms of the ant to
their own n. f. s. Unicity is proved by the reverse of the argument used
in Lemma 5.

In terms of the type of factorization introduced here for RJ 4 types,
and also of their normal form, we may regard them as the natural gen-
eralization of ordinals, and take the irreducible RJ4 types to be the
irreducible ordinalg, and these alone. We now consider ordinary factoriza-
tion for RJ 4 types.

6.4. LEMMA 6. An RJ4 type T ds reduced iff ©(T) =0 = a(T).

Proof. We may choose a g given by (1) such that Ay > v. Then
a(U) =0, and A(U) =lm(—Ay+in) = —dy+7+ 0’ =’ =1 iff 7=0.
It o(T) = 0, then 7 is of the first kind, and so is any right factor U so
that «(U) = 0.
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Leyyva 7. T of type 4 is q. 4. iff for some B we have T~BB..., and
T is irreducible iff we may take p irreducible.

Proof. If- T is ¢.i. it is reduced, so of the first kind. Let o>1 be
a left factor. Then 7'= ¢T", 7" = o1, and T = BT where f>11is of
the first kind. If B = may...7n in anf, then an easy argument from
Theorem 10 (ifi) shows that 7' has anf mym,...mum@,... wsm,... (with o
and m; amalgamated if they are both finite). Thus 7'~ pg8... Conversely,
if T~ppp... and T is a right factor, then, by Theorem 10 (i), U~vppp...
for some right factor v of f, and then 7 = U by Theorem 10 (iii), so
that 7' is q.i.

It T is irreducible it follows from Theorem 10 (ii) that every right
factor 7 of § i also a left factor. Lemmas 1 and 5 applied to the anf for B
then show that g is the n-th power ‘of an irreducible ordinal.

Knowing the structure of reduced, q.i. and irreducible RJ 4 types,
and applying Lemma 1 and Theorem 10 (iii), we have

THEOREM 12. If T = 3 (iu, lu) is of type 4, ewactly one of (i), (ii), (iii)
holds:

(i) The following equivalent conditions are satisfied:

a) T has a unique irreducible right factor.

b) T'~yBBp... for some irreducible .

c) The terms Uy are ultimately all 1, and for some N (and hence
all sufficiently large N} {—iy+ Ayin} s slep-periodic of period 1.

d) T=2/(8+am,1)+y: gy = 0.

(ii) The following equivalent conditions are satisfied:

a) T has o finite number m>1 of q. % right factors, the right
factors of each being precisely the others.

b) T~y BBB... for some B not a power of an irreducible ordinal.

¢) The terms l, are ultimately periodic of period P say, and for some
N (and hence all sufficiently large N) {—An+Awin} is left step-periodic of
period g, say, and for no M does pgly =1 for all n = M.

4) T =n‘§. ¥t -yt py = 6; e < a, and we cannot take & = 1.

(iii) The following equivalent conditions are satisfied:
a) T has & countable infinity of distinet reduced right factors,
none of them gq. 1.
b) The terms in any IT such that T~IT are not wltimately
periodie.
¢) For no N is it true that both {lvin} 18 periodic and {—iy+
+ Anin} 48 left step-periodic.
Notes. In cases (i) and (i) T may have reduced right factors which
are not q.i. The left factor corresponding to a given right factor of T
is unique iff the right factor is not .1 In (i) we may take 8 to have
no n-th root (# > 1), and in this case the q.1i. right factors of T are pre-
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cisely the 8(v)~7fpf... one for each right factor v of . We have 8(v)
= y8(v') iff y = vpn0’, where o'v' = f. In (iii) the reduced right factors
are precisely those U given by (2) for which Ay > v(7T'). Further properties
of the set of factors of T' of type 4 are given in section 7.

6.5. We now consider RJ 6 types. We assume a standard notation

T = D (nyla)Fa: limiy, =4,
n

U= D my ma) +y: Vg = .

All assertions and formulas are given modulo an appropriate omission
or change in some final segment of X, and the corresponding renumbering.
In particular, if 6 <21 we may always assume 8 < 2, for all x.

LeMMA 8. If T is of type 6, then T = BU iff ¢f < 1 and
U= Z(—@f+hn, )+ (—pB+ai, as,7).
Proof. If U=V 41, pU = pV +$ is in normal form, so that, for
some %, pf = a;i=ypa > 1= ¢f+u, a contradiction, since px is a limit
ordinal. Thus U is of the second kind, and
BU = D) (@B +pin, mn) + (9B + 74, 01, ) .
The result follows at once.
LemmA 9. T of type 6 is reduced iff v = 0.
Proof. Let v = 0 and 7' = BU. Then ¢f < 1 = o’ ppf < 6, so that

p=lm(—@p+Mn) = —pf+1=—pf+o’ =’ =1.

(6)

Next, ;3> 4, 50 that a; > 6. Thus 0 < pa; = @(pf + vi) = max (ppf, py:)
= gy, since ppp < 0. So ppf < 0 < @y;. But then a; = ¢f+yi = yi, and
v = a by Lemma 8.

Suppose conversely v # 0. Theg T = 'S, where

(M 8= 8(0) = X (—v+ i, ba) o+ (—7+ i, a5, 7)
and Hm(—7+ ) = —7+1 = o # 1, so that T is not reduced.

LeMMA 10. Bach T of type 6 has at least one reduced right factor 8.
If T'=BU for some reduced U, then v < @f <1, and u = o’

Proof. We have exhibited one such 8 in (7). If conversely 7' = U
for some B and reduced U, we have u = say, by Lemma 9. Then
PB+p =14y p(pf-+p) =yi = 0. Bubt p(pf+p)=yu =0, so that o =10
and @B+ w® =7+ «’. Since the right side is in normal form, we must
have gf =tz gn < 0, %o that r < pp <v+ 0l =14 )

We now assign 7 to type 6a or 6b according as 0 is of the second
or first kind respectively.
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" Lesua 11, If U is a vight factor of T, then U is of type 6a (6b) iff T
is of type 6a (6D).

6.6. LevmA 12. Suppose now T s of type 6a. Then the 8 of Lemma 10
is unique, and 8 = T for every B such that v < pf < A

Proof. Suppose T = U for some § and reduced U. By Lemma 10,
pf =7v+m =< b, 50 that ¢gm < 6. Since 6 is of the second kind, we
may choose ¢ so that gn < ¢ < 8. Now u = wf, so that gu, > o for all x.
Thus An = @+ ptn = T+ 7+ pin = T+ pin -

Next, since U is of type 6, pyi=> 0> o, s0 that a; = @B+, =74+n+
+yi=17+y:. Together with Lemma 8 this shows that U = § = 81,
given by (7).

Conversely if 1 <gf <2 and B =7+x with pn < ¢ < 0, then we
may write A, = 7-J, with @8, > o, 50 that if fS = U, then

=T+ +H(—T+ ) =14+ RT+ 0 =T+ 0 = Ay,

and ys = v4+7+(—7r+w) = o; similarly. Together with Lemma 8 this
shows U = T.

THEOREM 13. An RJ 6a type T has a unique irreducible right factor 8,
given by (7). We have T = B8 iff 1 < pf < A.

Proof. By Lemmas 10 and 12 there exists a § and a unique reduced §
such that T = 8. If § is a right factor of 8, it is reduced. Since &' is
also a right factor of 7, §' = § by Lemma 12. Thus § is irreducible. The
second part follows from Lemmas 10 and 12.

CoroLLARY. The following conditions on T of type 6a are equivalent:

() T 4s drreducible.

(i) T is reduced.

(iii) ¢(T) = 0.

(iv) I'= Z(n, bn) + 0o,
where 6 =1, 6 =1, and limi, — oo,

n

The simplest example is
T= et 09 4 @t L o 4 gy L e,

6.7. Suppose now 8= (4, yt)+y is reduced of type 6b. Set
6= §_+1. Then‘ A = 0*un+6, in mormal form, where {un} is non-de-
creasing and hfnun =o. We write S = (&, us, 6, layy) as standard
notation. By Lemma 8 we have § — BT for some p and U iff opf < & and
(8) U=S(u):(f,—'u{-q,pn,&",l,,,y)

where ¢ff = vfu+6 (4> 0) in normal form.
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It follows that the set of all right factors and reduced right multiples
of § is precisely the set

E(8) = {S(u): —co<u< oo}.

If no two S(u) are equal, then E(S) is infinite of type o*+ w, each
member a right factor of all its predecessors, and S is not ¢. i. If for some
» =% u we have §(v) = §(u), then

B8 (u—+7r) = S{u) = 8@) = pS(v+7r),
S(u—r) = p8(u) = 8 (v) = S(v—r),

where ¢f = wfr. Since we may left-cancel 8, we easily see that B(S) is
finite. If its cardinal is ¢, then S(u) = A8 (v) whenever ¢f = w -+ §, where
» = p—u (mod?), so that § is . i. In this situation ¢ is the smallest. integer
m such that for some d > 0 we have

w(n+d)=un)+m, dn+d)=2dn), In+d) =1In)

for all » (where we write u(n) for u,, ete.). Thus {u,} ig step-periodie,
and {I,} and {6,} are periodic, and if their fundamental periods are p, ¢, 7,
and m is the fundamental step of {u,}, then

= dmfp: d=[p,q,7].
We may take it that
w(d—-1) < u(d) = u(0)+1t < 2t,
d(nd+-s) = d(s),
Und+s) = 1(s),
wi{nd +s) = w(s)+nt,
0<g<s<d—1; n=0).

9)

On setting w(0) = §, v (i) = u(4)—u(0), we find .
LEMMA 13. § of type 6b s g.d. iff {l.} is periodic and {As} is left
step-periodic. In this case we may write

8 = 8(t—f) = ) oo+,

new*

(10)
where m(n) = wi(j +in), pyy > &> @d.
In terms of the discussion above, we have
8 = (wto(d)4-0(2), L, a-1).

i ] j 0k <t
The right factors of S are just the sets S(k), 0 < B
In particular, § is irreducible iff ¢ =1, so that m = 1 ffund p = d;;
Then u(d) = u(0)+1 < 2, by (9). But the u(n) are non-decreasing, so tha
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0=u(0)=...=u(d—1) <w(d)=1. Thus u(nd-+s)=n (0<s < d-1).
In this case we may simplify and renumber in (9) to obtain

LevmA 14. 8 of type 6b dis drreducible iff {ia} is left step-periodic of
period p, say, and corresponding step of, and {I,} is periodic of period
dividing p. We may write -

(11) S=2mw5"6+y, 90 < E<guy.
new*
Knowing the structure of reduced, q. i., and irreducible RJ6b types,
and applying Lemma 10, we have

THEOREM 14. If T is of type 6b we may write A, =T+ wfty + Jy,
where {un} is non-decreasing with limit w. Subject to appropriate changes
and omissions of a finite number of the Iy and the appropriate renumbering,
exactly one of the following holds:

() T has a wnique irreducible right factor 8, given by (7). Bquivalently,
{—%+2n} is left step-periodic of fundamental period P, say, and a corres-
ponding step of the form of, and {l,} is periodic of period dividing p. We
have T = B8 iff vt < pf < A, :

(ii) T has a finite number ¢ > 1 of . 4. right factors, the right faclors
of each being precisely the cthers. Equivalently {— 2+ L} is left step-periodic
and {l.} is periodic, and if d is their least common period, then {In} has
a step o't corresponding to the period d. The q-i. right factors are §(j)
(0<j <) given by (10), where Y= (=74, a,r), and T = B8 () iff
9B = v+ Wi (Wt +§) +¢ in normal form. Also 8(j) = BS (k) iff @B = wi(wt—
—j+k)+e (w4 >4) in normal form.

(i) T has an infinite chain {8(u): u> 0} of reduced right factors,
10t g. 4., the right factors of each being precisely its suocessors. 8(u) is given
by (8), where y = (—v+ai, ac, 7). Bouivalently, either {I,} is not periodic,
or {—Ay~+Aaesn} i3 ot step-periodic for any M. T = 8(u) iff of =7+
+otute and 8(v) = p8(u) iff ¢ = wf(u—v) 4o

Summary. RJ 1,2, 3, B, 6a types have g unique irreducible right
factor. The corresponding left factor is unique for types 2 and 5. RJ4
and 6b types have either

(i) a unique irreducible right factor, or

(ii) a finite number of q.1i. right factors, the right factors of each,
being just the others, or

(iii) a countable infinity of reduced right factors, none of them q.i.
The corresponding left factor is unique only for case (iii) of type 4.

Condition (iii) holds in partieular if {pl,} is not ultimately constant.
We may think of such “bad” order types as a countable sum of rapidly
increasing ordinals, just as the “bad” Liouville transcendentals are an
infinite sum of rapidly decreasing rationals.
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7. Arithmetic of EJ types. We first extend the definition of
@, v to arbitrary RJ types by setting

T = max (AT, paT), T = min(AT, paT).

This agrees with the definition of RJ 0 types. We refer to types 4j
and 6j (j = (i), (ii), (ili)) in accordance with Theorems 12 and 14.

7.1. TuroreM 15. The following relations hold whenever the ex-
pressions make sense (i.e. C, D are any RJ types; ¥, 6 are of type 0):

1. ¢(0+y) = max(pC, py),

2. o
3. p(C+y) =y (y #0),

wy (C of the first kind),
L p(r0) = { oy +pC (C of the second kind).

Cancellation theorems:

5. O4+y =Dy iff O(say)= D+e for some e such that gz < ®y.

6. O+y =046 y<diff Cis of type 1 and 8 = wrm+a(0)+7y,
where m > 0 if a(C) # u(0). -

7. y0 =9D, C # D iff y =0.

8. yC =00, C of the first kind, y < &; iff either

(i) C = w* y= wfm+te 6 =cofnte m<mn, or
(i) C~ppp... is q.4. of type 4 with B not an m-th power (m > 1),
and & = yfnr, n> 0.

9. y0 =60, C of the second kind, y <6, iff @(—ey+ed) < gp0
and in addition, if C is of type 6b, then C is q. i., and —py +08 = wita e,
where a =0 and t and & are as in Theorem 14 (ii).

7.2. The sets L(7) and R(T) of left and right factors of an RJ
set T have a well-defined structure which we now consider. For given
ordered sets A, B, let us write 4 <; B iff A is a left divisor of B. Then
< is a transitive relation, but need not be a partial order. Let us say
a class 4 of ovder types is almost linearly ordered by < iff < is a partial
order on s such that whenever A, Bes£ are incomparable, then for
gsome m,n >0 and Cesk we have 4 = Cm; B = Cn. We make the
corresponding definitions for <,.

It will be convenient to exclude 7' from L(T) and 1 from R(T).

Turorem 16L. If T is RJ we have L(T) = L(T) v Ly(T), where

L Ly(T) <i Ly( 1), ‘

2. L(T) is the set of all ordinals a = 0 such that pa <y (so that
Ly(T) is empty iff T is of the first kind). ’

3. Ly(T) is:

a) empty iff T 4s of type 3 or 6;
b) finite, non-empty iff T is of type 0, 2, 5;
c) countably infinite iff T is of type 1, 4.
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4. L(T) is almost linearly ordered by <.
5. Hvery member of Ly(T) has the left factor cwvT.

COROLLARY. (Ly(T), <i) ds a distributive lattice, and (L(T), <)) is
a lattice. It is distributive iff »T < 1.

The proof is by consideration of cases, using property 4. If 7' > 2,
the lattice is not even meodular, since then ¢ =2, b = 0, ¢ = w+1 are
left factors of 7 with ¢ < b, and ¢ v (¢ A b) =2 while (a v ¢) A b = o,
Compare [1], p. 81.

THEOREM 16R. If T is RJ we have R(1) = Ry(T) v By(T), where

0. Ry(T) is the set of right factors of T corresponding to the left factors
in Li(T) (i=1, 2).

1. By(T) <, R(T). .

2. R,(T) is empty iff T' is of the first kind, and otherwisé is a finite
set of RJ sets of the same type and Ekind as T, and is linearly ordered
by <. :
3. By(T) is a set of RJ sels which 1is countably infinite iff T is of
type 4(ili) or 6b(iil), and otherwise finite.

4. (BT, <) is

a) a linearly ordered set if T is of type 3, 6,

b) an (almost) linearly ordered set followed by a finite loop iff T
s of type 4(ii) or 6b(ii),

c) an almost linearly ordered set in all other caseés.

CororLARY. (R(T), <) is a lattice iff T is not of type 4 (ii) or 6b (ii),
and is then moreover distributive.

The “almost” in both parts of Theorem 16 can be omitted iff one of
the following holds:

(i) T is of type 0(4) and every ai(l,) is a prime power (where the
a; are the coefficients of o = a(T));

(i) T'is of type 2 or 5 and a; is a prime power for every ¢ such that

ay < A

7.3. Goldbach’s hypothesis may be stated in the form: any J-set
is expressible as a sum of <3 irreducible sets. Here o J -get is one whose
only cuts are of type J. It is of course either finite or one of @, w*, w*-+ .
For RJ sets we have

THEOREM 17. Suppose T is RJ not of type 1 or 4, and a = a(T)

= (a1, @i, 7). Then T is expressible as a finite sum of irreducible sets iff one of
the following relations holds:

) T=23(n1)+or,

(M) @ = of, but not T = 3(hn, ln) + 0% 6 = wf, unless (i).
(i) @ = 05 @ 5 2.
(iv) ag=0; ay =2 and either T = 2 op a = of (£ 0).
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m

Xf T'is of type 1 or 4 it is so expressible if T' = w* or 7' = 3 (yn, 1)+ a:
y(m—1) < pa < ym, and o satisfies one of (i), (iii), (iv) a,b%ve.

The smallest number of summands needed is at least Y a; (with a
1

as above if T is of type 4), and so is unbounded for every type (except
trivially for type 1, where 7' must be w*).

It is true however that if 7' is RJ and not of type 1 or 4, it may
always be expressed in the form P+ P,+...4 P, —P,, where P; 0
< ) is irreducible. We may even prescribe P, = either 2 or 3.
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