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Conclusions. We summarize the results of the preceeding section
of this part by the following theorem:

TreorEM 4.4. There is o countable collection D of mutually disjoint
connected subset of 3* which has properiics (11) and (XXI) but which does
not have property (I).

This theorem provides a negative answer to problem 2. We point
out that the particular collection congtructed also is a suitable set for
rejecting problem 1. Algo, since D is a subcollection of C, there iy an
effective method for constructing D.
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Most knots are wild

by
J. Milnor (Princeton)

Let BEmb(X, R") denote the topological space consisting of all
embeddings of a compact space X into the n-dimensional euclidean
space R". This is a Baire space (). We will say that most embeddings
of X in R" have some given property P if the set of all fsEmb(X R")
which satisfies this property P containg a dense G,.

THEOREM 1. Most embeddings of the circle in euclidean 3-space are
wildly FEnotted.

THEOREM 2. For n =
knotted.

(Note however that knotted embeddings do exist for all n > 3.
See Blankinship [2].)

Proof of Theorem 2. We will show that Bmb (8", R*) contains
a subset Bmb (8", B™") xF (8", R) which is a dense @4, and consists
entirely of unknotted embeddings.

Let F(8', R") denote the Banach spa,ee consisting of all mappings
from & to R". We will identify (8", B*) with the product F (8%, B*™) x
%P (8, B). Since n—13 3, the subset Emb(S', B*™) CF (S, R"™) is
a dense @;. (Hurewicz-Wallman [6], p. 56.) Therefore Emb(S1 R x
xF(8', B) is a dense G5 in F (&', B*), and hence a fortiori it is a dense
Gy in Bmb (8, B™).

But an argument due to Bing and Klee shows that every

> 4 most embeddings of the circle in R™ are um-

{7, g) e Bmb (8, B* ™) xF (8", R) C Emb (&', E")
can be transformed into the standard embedding by an isotopy of R™
First consider an isotopy of the form

hi(z, y) = (2, y+1p (@),

(*) See Lemma 2. J¥ is a Baire space if every countable intersection of dense open
subsets is dense. A subset S ¢ F is called a @, if § can be expressed as a countable
intersection of open subsets.
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fvhere 0 ’<t<1, zeRB"™, yeR. Such an isotopy can transform f,9)
;nto h(f, g) Wh;;;e 1g': 8'—R is any desired mapping: it is only neeess;,ry
0 choose p: R —R as an extension of the mapping #(s "(8)—
om0 Pping f(s)->g'(s)—g(s)
_In particular ¢’ can be chosen as a function having only one loeal
maximum and one local minimum on . But then, according to Milnor
([7], §4.5), the embedding (f,¢') is unknotted. Therefore every (f, g)

e Bmb (8, B") xF(§", R) is unknotted; which compl f
(] y H ompletes the proof of

Remark. More generally, let X be a com i

; b pact polyhedron of di-
mension 'd = 1. If n>3d+1 then most embeddings of X in R™ are un-
knotted (i.e. are ambient isotopic to a standard embedding).

" vThi&;ﬁf(ﬁlo;lvs from Bing and Kister [1], together with the argument
ove which shows that most embeddings can be deformed into s -
plane of dimension 2d 1. f fnto 8 hyper
The proof of Theorem 1 will be based on the followi i
; n owing. Congider
an embedded solid torus 7 C R* with interior T; and an embedding

k: 8t->T

which has winding number -+1. (Com
1 . pare Schubert [9].) In other words
We assume that t.he induced homomorphism %,: Hy(8")—H,(T) is an iso-
morphism. The simple closed curve %(S!) C 7' will be denoted by K.
Lievva 1. The complement R—T is a retract of R3—K.
(I am indebted to J. Kister for suggesting this formulation.)

Proof. It clearly suffices to show that the boundary torus 7" is
a ret?:a.et of T—K. In other words we must gshow that the identity maJI;
of T" extends t.o a mapping T—K->T". This is an extengion problem
of. the type which is studied in obstruction theory. (See, for example
Hilton and Wylie [4], § 7 -} The only obstruction to the e’xistenee of aI;

extension is a cohomology eclass in the relative cohomology group

Ef*‘( T‘_K , .’I', (1)), We will prove that all of the cohomology groups
of ( TK s I") are zero, so that there is no obstruction.
First note that the inclusion KT ig g homotopy equivalence

Therefore the relative ech eohomolo T,
a duality theorem of the form & gromes E‘(T’ ) wre sero. But

H{(T, E) ~ H, (T-K, T)

is not difficult to establish. (Compare [8], Lemma 2. If N C T ig
polyhedral neighborhood of K, one ean first establish the i
HYT, N) < Hy (T—N, T"), and then y
shrinks down to K.) Therefore the pair
and hence has trivial cohomology. This

a compact

omorphism
Pass to the direct limit as N
(T'—K, T') has trivial homology,
completes the proof.
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An important consequence of Lemma 1 is the following. Define
the rank of K (or of T) to be the minimal number of generators for the
fundamental group my(R*—K) (or for = (R—T)). Then it follows that

rank K >rank T'.

To prove Theorem 1 we will also need to know that the space
Emb (8, B*) is a Baire space. This is clear since Emb (8, B?) is a dense
@; in the Banach space F (8, R?). More generally:

LeMMA 2. If X is compact and Y is complete metric, then Bmb (X, Y)
48 a Baire space.

Proof. This follows since Emb(X, ¥) is a Gy in F(X, ¥) (see [6],
p. 57 (B)), and hence is a dense G, in its closure in F(X, ¥) which is
a complete metric space.

Proof of Theorem 1. Let U,C Emb(S!, k) be the open set con-
sisting of all embeddings & such that %(8*) C T with winding number 1
for the interior 7' of some differentiably embedded solid torus, with
rank (1) > 7.

This set Uy is dense: Any embedding % can be approximated by
2 differentiable embedding %', and one can tie a number of small
trefoil knots into %' so as to guarantee that its rank is >r. (Compare
Tox [5].)

Let W C Emb (8, R*) be the intersection of the dense open sets Ur.
For any ke W we have ke Uy and hence rank (k(S4)) =7 for all inte-
gers r. This implies that rank (%(S8%)) = oo so that k& must be wildly
knotted.

Concluding remarks. These two theorems raise a number of
questions. Is it true that most embeddings of the unit interval [0, 1]
in B3 are wildly knotted? Theorem 1 suggests that this is true without
suggesting a proof. What can be said about 2-spheres in 3-space; or
more generally about %-spheres in n-space?

A different type of question arises if we ask whether an embedding
is knotted “with probability 1”. (Such a question is quite different from
our Baire space arguments: even in the Baire space R" a dense G, set
may have measure zero.) One way to make sense out of this question
iy to put the probability measure on F([0,1], R") which is associated
with Brownian motion. In dimension 3 such a Brownian motion has
self-intersections with probability 1. (See [3].) In dimension 4 however,
it is an embedding with probability one, hence for n > 5 it follows that
a Brownian motion is unknotted with probability 1. (Compare the proof
of Theorem 2.) There remains the question as to whether a Brownian
motion in 4-gpace is knotted.
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