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fect subsets of D such that for each f, D ¢ S(E:). We notice that all of
the sets mentioned are effectively given. The set D is the set we set
out to construct.

The fact, mentioned in the introduction, that this set does not have
non-zero o-finite Hausdorff measure for any Hausdorff measure is clear.
To have non-zero measure, each of the subsets H; would have to have
non-zero measure, and since there are uncountably many of them in D

_and they are pairwise disjoint, D would have non-o-finite measure.
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On the genus of an n-connected graph
by
F. Harary* and Y. Kodama*

1. Introduction. The conmectivity »(@) of a graph G is.the
smallest number of points whose removal vesults either in a discon-
nected graph or in the graph with one point and no lines. Graph & is
n-conmected it %(@) = n. For n =1, an n-component of @ is a maximal
n-connected subgraph. Thus a 1-component of @ is a (connected) com-
ponent; a 2-component of G is called a dlock of & (by Battle, Harary,
Kodama and Youngs [1] or Harary [3], and & nonseparable subgraph
by Whitney [6]); and a 3-component of & will be called a brick of @.

The genus v (@) of @ is the smallest integer n such that & is imbed-
dable in the orientable surface S, whose genus y(Ss) is #. In [1], we
(Battle, Harary, Kodama and Youngs) proved that the genus of any
graph is the sum of the genuses of its blocks. Our present object is to
study the genus of a graph in terms of its bricks, and in general of its
n-components.

The problem is so complicated that we restriet our study in this
note to the case where an n-connected graph G is the union of two
(n+1)-components, B and 0. We will gee that the number of points
in B ~ 0 is exactly n, that »(@) < y(B)+y(C)+n—1, and by an example
that this inequality is best possible. Let 2y, Vgy ..oy On be the set of points
in B~ C and call Gy the graph obtained by adding line vsv; to @. Then
we will prove that, if y(Gy)> p(&) for all 1<i<j<n, then y(G)
= y(B) +9(0) +n—1. This last equation is gpecialized to the case where
B and C are bricks, i.e., n=2.

2. Results. We will present one lemma, one theorem, one corollary,
and several examples,

Remark 1. Let an n-connected graph & be the union of two
(n+1)-components B and C. Then the number of points of B~ O is
exactly m. Moreover, the set of lines of B~ O consists of all lines of &
whose end points are in B A C.

* * This work was supported in part by the National Science Foundation under
grants NSF G-17771 and G-20637.
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Tt is obvious that the number of points of B~ € is zn. For if
B~ C has <n points, then »(G) < n. But if the number of points of
BACis >n, then »(@) >n+1. Therefore B = ¢ = G

LeMuMA. If an n-connected graph @ is the union of two (n~-1)-com-
ponents B and C, then

(1) 2(6) < y(B)+7(0) +n—1.

Proof. Let M and N be orientable 2-manifolds of genuses y(B)
and y(C) and imbed B and ¢ in M and N, respectively. There exist
digjoint disks Dy, ..., Dy in M such that the frontier Tr(D:) is u cirele
and Fr(Dg) ~n B=wv; for i =1,..,n If we remove the interior points

of L"J D¢ from M, we get an orientable 2-manifold M, with » boundaries.
=1

By the same construction we obtain from N an ovientable 2-manifold
N, with n boundaries. If we identify the boundaries of M, and N, so
that the orientations of M, and N, are preserved, we get an orientable
manifold 4. It is easy to verify that y(4) == y(M)+y(N)+n~1. Let
@, be the image of B'v € under this identification. It is obvious that
@ is a subgraph of G,. Since G,C 4, we get ¥(G) < ¥ (Gy) < y (M) -
+y(N)+n—1 =y(B)+y(0)+n—L. ‘

In the proof of the lemma, the only hypothesis which was used
is that ¢ = B v O and B ~ C contains exactly » points. Hence we may
state the following stronger form of the lemma:

If a graph @ is the union of two subgraphs B and C whose intersection
contains ewactly n points, then y(G) <y (B)+y(0)+n—1.

Remark 2. Let an n-connected graph @ be the union of two
(n+1)-components B and C. By Remark 1, B~ C containg exactly n
points vy, ..., oa. Let Gy, 1 <i<j < n be the graph obtained by adding
line v;v; to G. Then
@) ' 2(6) <p(Gy) <p(@)+1.

TaeorEM. Let an n-connected graph G be the umion of two (m--1)-
components B and O. Let vy, ...,vs be the set of points of B~ 0. Oall Gy
the graph obtained by adding line viw; to Q. If p(Gy) == »(G) -1 for
1<i <)<, then
®3) 7(@) =y(B)+y(0)+n—1.

Proof. By the lemma, it is enough to prove that () = y(B) -+
49(C) +n—1. Let us imbed & in an orientable 2-manifold M of genus
y(f}). Take a triangulation T of M such that the 1-skeleton of 7' con-
tains G and the 0-skeleton of 7' contains the set of points of G. Let
T, be the second barycentric subdivision of 7. Since B is (n --1)-connec-
ted, there exists a component U of (M — 0) such that U {v,, ... 9} B,

On the genus of an m-connected graph 9

Consider the open star 7 = St(FrU, 1) of the frontier Fr(U) of U.
Let & be the number of disjoint circles J; which form the intersection
TtV ~U. Then the set U~V consists of & disjoint open cylinders

— n
Hy, ..., Hp. For any j =1, ..., n, the intersection H; ~ (| vs) # @, where
B=1

— . = »
H; is the closure of Hy in M. For, assume H; ~ (I v)=@. Then the
=1

circle Jy does not intersect G. Therefore, if we cut M at J;, we get an
orientable 2-manifold N with two boundaries L, and L,. Attach two
disks Dy and D, to Ly and L,. Then we get an orientable 2-manifold N,.
It is obviouns that y(Ny) = y(M)—1. Since G CN,, this contradicts

p(M) = p(G). Next, we shall prove that, for each j, ij‘\((l} vy) 18
i=1

m

— n
exactly one point. Suppose that Hy~ (\J o) = J v, m > 1. Since H;
q=1 =1

is an open eylinder and H; is the union of the closures of all components

of H;—@, there exists a component W of H;—@ such that W contains
n —

two points v, and vy of | v;. Then W contains a line L which connects
=1

v, and v, such that FrW ~ L = v, w v. This contradicts the hypothesis
that y(Gw) > p(6). Let us denote by H., w=1,..,a; those open
cylinders H; such that v;  A; and J4, is the circle of FrH, fori=1,..,n,

i k
where D ag == k. Now cubt M at jU Ji = JJu. We get two orientable
q=al =1 1

Uy
2.-manifolds F, and F, with & boundaries such that M =F, v F,. If we
attack % disks D}, j=1,..,% to Fs, we get an orientable 2-mani-
fold My, ¢=1,2,

The next step in the proof of the theorem involves the verification
of equation (3). This can be accomplished by a calculation using the
Buler characteristic (as in Ringel [5], pp. 56-57). But we prefer to emply
a technique which exploity the Mayer-Vietoris sequence as in Bilenberg
and Steenrod [2].

Congidering the Mayer-Vietoris sequence of the triple (M; Fy, Fa),
we find ’

(4) 2y (@) = ky 4 ks

where % is the rank of the homology group Hy(Fi) with coefficients in
the rational field, and also

(8) 29 (M) = bi—(k—1) (i=1,2).

Since 0 C M,, we get
(6) P(0) = p(My)


GUEST


10 F. Harary and Y, Kodama

Let X, i=1,..,n, be n 2-gpheres. We remove a; disgjoint open
disks from X; to get an ovientable 2-manifold Y; with a; boundaries,
i=1,..,n Let A}, w=1,..,a, be the boundaries of ¥, Identity

i K + .
the boundaries Ji, in F, with 4% in |J ¥, in sueh a way that the identi-
=1

fication preserves the orientations induced by those of #, and cach ¥,.
Call M, the orientable 2-manifold so obtained. Comsider the Mayer-

Vietoris sequence of the triple (M,;F, ,igl Yi):
s Hy(Fy) +H,(*Q Xo) > Hy( M) Hl(gj1 T >
Hy(F,) +H1(£J1 Vo) Hy(My) - ;,1;‘[0(7@1 J)-r
ATy + Bﬂ(}:{ Yo) > By M)~ ..

where all homology groups have coefficients in the rational field. The
groups H,(F,), Hy( L“J Y., HyM,) and Hy(F,) arve zero. Since the rank
=1

of H(Y;) is e;—1 and S' a; = k, the rank of HJ(Lj Yy) = k—mn. Thus,
we get the following re;;;ion: -

) 2y (My) = b+ Foy—2m 1 .

From the relations (4), (5) and (7)

(8) (@) = (M) +p(Mp)+n—1.

Now take an interior point w; in Yy, i=1,..,n Since T, is the
second barycentric subdivision, every line of B incident on ¥4 cuts exactly
one circle J§ and cuts it exactly once. Therefore, if we join w; to each

. o . .
point of B A (uUlJf‘) by lines {L.} in Yy such that, if L, and L, ave lines

joining w¢ to different points of B ~ (O J4) with I, A L == wyi, 'we have
U=

an imbedding of B in M,. Thus we have proved that

(9) ?(B) < y(My) .
From (6), (8) and (9),

(@) = y(B)+y(0)+n—1,
completing the proof.

There is a stronger form of the theorem, analogous with the stronger
form of the lemma stated above:

icm®
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Let G be a graph which is the union of its subgraphs B and C. Let
B~ O be a graph with n points vy, ..., vs and let B—(B ~ C) be connected.
Then, if 7(Gw) = »(@)+1 for 1<i<j<n,

y(6) = y(B)+y(0)+n—1.

CoROLLARY., Let G be a graph which is the union of two subgraphs
B and C such that B~ C is a graph with two points v, and v, fmd
B—(Bn~ O) is connected. Denote by G'y, B’ and C' the graphs obtained
by adding one line joining v, and v, to &, B and O, respectively. If

(i) 7(B") = »(B) and y(C') =y(0),
then

(if) y(B) +»(0) 2 (&),
which tn turn implies

Proof. That (i) implies (iii) is any easy consequence of the theq-
rem. To prove that (i) implies (ii), imbed B’ and ¢’ in orientable 2-mani-

B : V1 é@ C: V1, VZ’

Y

Y
Fig. 1

folds M, and M, with genuses y(B’) and y(C"). pet L .and L, -be lines
joining v, and o, in B’ and ¢”. There exigt closed disks Ds in M, i=1,2,
guch that LyC Dy and LinDi=BAaD=0nDy=1 v V. ',l?-y 13.].16
same method as in the proof of the lemma we get the inequality (}1).
In Figure 1, we show a block & with two bricks B and € which
serves to illugtrate the following assertion. -
TxAMprm 1. There exists & 2-connected graph (block) & ,whxoh is
the union of two 3-components (bricks) B and O guch th‘at » (@) = y{G)
and (@) = p(B)-+y(0)+1, where @ is the gra.ph obtained bﬁhaid?ﬁi
the line joining the two points of B ~ ¢. This example S]ELOWS 2 he
converse of the theorem does not generally hold. In Figure 1, bo
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bricks B and C are planar, but y(@) = p(@') =1 since both G and @
contain a homeomorph of K;, the complete graph with 5 points.

ExAMPLE 2. There exists a 2-connected graph & which is the union
of two 3-components B and € such that
(@) =y(B)+9(C), p(B)>y(B) and p(C) =y(0).

This example means that the converses of the theorem and the part (i)
of the corollary do not generally hold.

=
==

Fig. 2

Let us take two rectangles B, and ¥, which contain graphs ¢ and ¢,
respectively, as shown in Figure 2 (compare [4]).

Let us identify the sides with the same number in 1, and H,, pre-
serving orientation. By [5], this identification results in & torus. Let
f be the identification map. Put f(@,) = B, f(G4) = 0 and G =Bu (.
Since ¢ contains a subgraph homeomorphic to IGs, it follows from the

[ S

1

>
-

(=)

6;:

-«
w0
=)

PR -

Fig. 3
classical theorem of Kuratowski that y(0) = 1. Since B in Figure 2 i
isomorphic to B in Bxample 1 and B’ is K5, y(B) =0 and y(B') .= 1.
It is easy to show that y(¢') = 7(0) = 1. But here,

7(6) = »(B)+(0).

ExAmprE 3. There exists a 2-connected graph @ which is the union
of two 3-components B and O such that 7(B') = y(B), p(0") = 9(0)
and y(B)+(0) > y ().

Ow the genus of am n-connected graph 13

This example means that the converse of the second part of the
corollary does not hold. In Example 2, replace the graph & by
a copy Gy of the graph 6, as in Figure 3. Put B = f(G), € = f(Gy)
and @ = B (. We have the relations y(B') = ¢(B) = y(¢') = () =1
and p(&) < y(B)+y(0).

These three examples show that the inequality in the lemma is
best possible in general.
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