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The independence of the ordering principle from
a restricted axiom of choice

by
H. Liuchli* (Berkeley)

The main purpose of this paper is to show that the axiom of choice
for sets of finite sets does not imply the ordering theorem. (This problem
has been mentioned by Henkin [2] and by Xo§ [3] among others.)

However, the ordering theorem is independent of a much stronger
axiom of choice (1):

THEOREM (S). The conjunction of the following two statements is con-
sistent with set theory (theory T below).

(I) Not every set can be totally ordered.

(II) There is a function which assigns to every well-orderable set a well-
ordering of it.

COROLLARIES. The following theorems do not imply the ordering
theorem:

(a) There is a choice function for the class of all well-orderable sets.

In particular, for every class (set) of finite gets there is a choice
function. For every class (set) of countable sets there is a choice fune-
tion, ete.

(b) The union of a well-orderable set of well-orderable sets is well-
orderable.

In particular, the union of a countable set of countable sets is
countable.

It is perhaps worth mentioning that as a consequence of theorem (S),
(II) does not imply the full axiom of choice. However, our prgof will
show that (II) is satisfied in Mostowski’s model too ([4]).

* This paper was prepared for publication during the period when L#uchli was
working on a research project in the foundation of mathematies supported by the
U.S. National Science Foundation (grant G-19673).

(*) The question whether such a stronger result could be obtained by means
of the original method was raised by A. Tarski and E. Specker.
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The theorem (8) refers to a theory T which is essentially the Bernays-
Godel set theory except that we do not assume the axiom of choice
and that we replace the ordinary axiom of regularity by an axiom of
regularity with respect to a basis set B (which may be taken as a set
of sets @ = {#}, cf. [B]).

The proof of (8) will be given in two parts. In the second part,
the group theoretical one, we are going to prove theorem (G). Tor the
statement of this theorem we use the following denotations: Let @ be
a permutation group on a set C. Then, for every ¢C , Heale) is that
subgroup of @ which consists in those permutations which transform ¢
onto itgelf. Ke(e) is the subgroup of thoge permutations which leave e
pointwise fixed. [H;, H,] is the subgroup of G genevated by H; and H,.
E(0) is the set of the finite subsets of C.

THEOREM (G). There ewists a permutation group @G on a denwmerable
set O satisfying

(A) Hele) = Kgle) for every ¢ ¢ B(0).
(B) [Kqle), Kele')] = Kale ~e') for all ¢, ¢ e Ii(0).

(O) For every ee B(C) there are w,v,we (, u,v,w different from
each other, and o,v.e Kgle) such that o: w->v-—>w and 7: w-»u-».

In the first part theorem (8) is proved using the Fraenkel-Mostowski-
Bpecker method ([11, [4], [5]) of interpreting 7' in some theory 71*:
Let 1" be the theory which is obtained in agsuming beside the axioms
of T the strong axiom of choice (choice function for the universal class)
and postulating that the basis set B is denumerable. Since the proof
of theorem (G) could be formalized within 7", it ig provable in 7" that
there is a permutation group & on the basis set B satisfying (A), (B) , (0).
Now let T* be that extension of 7" which is obtained in introducing
a special constant ¢ and an axiom which says that @ is a permutation

group on B satisfying (A), (B), (C). Then T* i consistent provided that
T" i3 consistent.

First Part

) DENOTATIONS. 3 i8 the (uniquely determined) automorphism of the
universal class which corresponds to a permutation ¢ of'B, H(X) is
the subgroup of @ which is determined by the following condition:
Pe H (,_X) iff § transforms X onto itself. K (X): @ e IL(X) iff § leavey X
pointwise fixed. ! H ¢ F iff K (o) < H < @ for gome 6 e H(B) (“<” used
for subgroups).

i Let M = | J4Q., where a rung over the ordinals and Qa is Tecursively
efined by Qy = B, Qus = {0: 2C Qy A H() ¢ F}, =EUAQ; for a limit
<,
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number A. Then, for every set w, v ¢ M itf #C M and H(z) ¢ F. Let M
be defined by

MX)=XCMAHX)eF (“X is an M-class”).

Then M(x) iff # e M (“z is an M-set”).

The interpretation in question of T’ in TI* is given by the following
stipulations: The classes of 7' are the 9M-classes of T*, the sets of T
are the M-sets of 1™, equality and membership relation of 7' are the
same as those of T™ (cf. [5]).

A notion W(Xy, .., X») is said to be abgolute if it is provable
in T* that

(T A oo A M(Xn) > (W( Xy, oovy ) o U (X, ooy X))

Here, A™ is obtained by relativizing all bound variables in % to M.

Generally, we will state the absoluteness of a notion without proof.
The proofs that the statements (I), (II) do hold in our interpretation
of T are given in colloquial language. We use the prefix ‘“I- in re-
ferring to a relativized notion.

Proof of (I). We are going to show that the basis set B (which
is the basis set in the 9 -sense, too) can not be Mi-ordered. Since the
notion “y i an ordering relation on #” is absolute, it is sufficient to show
that no ordering relation on B is an IM-set, i.e. that H(y) ¢ F for every
ordering relation y on B. Now, every H eF contains K(¢) for some
¢ ¢« H(B), and because of property (C) of the group @ it is clear that
no ordering relation on B is left invariant under K (e), q.e.d.

For the proof of (II) we need some lemmas, all of them except one
(namely lemma 4) being provable without using the special properties
of @. Since lemma 4 will be proved using properties (A) and (B) of @
only, (II) is satisfied in Mostowski’s model too.

Let C be the class, the elements of which are the transitivity dao-
mains in V (universal class) under @, i.e.

mEGHw;EOA/\y,z('ye'w—%[zava(p((péG/\a(’y)=z)”.

Notice that every transitivity domain is a set because the rank of
a set is left invariant under the automorphisms of V. C is not an M- class,
but K(C)= @ Let W be the class of all well-orderable sets in the
Pt-sense (i.e. W is the class of all M-well-orderable M-sets). Then
H(W)=G. Let D = C ~ P(W), P(W) being the power class of W.

Lemma 1. K(D) =@, M(D) and W =JD.

Proof. K(D)= G because of DC C and K((C)=@. Since every
element of D is as an element of ¢ and as a subset of W an invariant
set of M-sets, and therefore an M-set, we get M(D). W = D, i.e.
WC D is a consequence of H(W) = G-
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TevmA 2. @ e W iff M(x) and K ().l

Proof. 1. Suppose Mi(x) and K(2) eF. Lot ¢ be a one-one may-
ping from » .onto an .ordinal (axiom of choice in 1I™). Because odi-
nals are left pointwise fixed under automorphisms of V, we get H(p)

S K(s), and hence H(p)eF. Ordinaly ave M-sets, M is closed under

formation of ordered pairs, M(») implies @ C M. Hence ¢C M,
@ ¢ M. Because the notions of an ordinal and of a one-ome corvespond-
ence are absolute, 2 i§ equipotent with an ordinal in the M-senge.
Hence v ¢ W.

2. For the proof of the converse use the above idea and notice
that even H (¢) = K(a).

Let W(y,») express that y is a well-ordering relation on .

LemmA 3. Wiy, x) is an absolute notion.

Proof. Suppose M (x) and M(y). If W (y, ») then obviously Wy, ).
Conversely, if W™ (y, z) then # ¢ W and, using lemma 2, K (») « . Hence
H(z) e P for every 2C o and thus, because of #C M, every subset of
is an M-set, i.e. every non-empty subset of # has a first element with
respect to ¥, i.e. Wy, x), q.e.d. )

LemmA 4. K(x) e F' implies that K () = H (x).

Proof. 1. For every H ¢ I there is an ¢ e (B) such that H -« K(e)
(cf. also [4]). Proof: Let e<B(B) be minimal with respect to the
property H D K(e). Let gpeH. Then H = oHp DK (6)p == K (pe).
Using (B) of theorem (G) we get H D [K (), K(pe)] = K (e ~ pe). Hence
e = ¢ (minimality of ¢), i.e. p ¢ H(e) and because of (A), p e K (¢). Hence
H=K(e), q.e.d.

2. m#0, pe G HeF, pn e H then ¢ ¢ H. Proof: We may as-
sume that m>0. In ‘virtue of 1. let H =K (e). ¢" e XK (e) implies
peHe'wgle) U gie) v ... wgnie) D E(eu ... L @"1(e)) C XK (o).

3. Proof of the Lemma: Let K(v) eI, ¢eH (@), ¥y ew. We have to
show that ¢(y) = y. Let 2 = {p?(y): integers kY. Then = C w, H(2) D K ()
and hence H(2) ¢¥. Because of ¢* e H(z), 2. gives ¢ e H(z), i.0. p(y)
'=cp2m(y) for some m. That is ¢t ¢ H(y). Because of H (y)D K(a;),
ie. H (?[)elf’, and ¢l e H(y) (and 2m -1+ 0), a second application
of 2. gives peH(y), ie py) =y, qe.d.

. 'Proof. ot (II). Let F(X), D(X,Y) respectively expresy that X
is » function, ¥ is the domain of X, Then, in virtue of the abgolu-

;iﬁis:- of the notions invelved (especially W(y, #)), it is sufficient to

(¥} There is a’n’A such that M(A), F(4), D oo ’
@, 09 < 4 impliss Wiy 1) (4}, F(4), D(A, W), and for all w,y,
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The idea of the proof is the following one: Using the given choice
function  for the universal class, pick for every z ¢ D a pair <y,#) such
that @ ez and W(y, 2), and close the class of these pairs with respect
to the whole automorphism group G. Then, looking at the lemmas we
proved, we get a choice function as required.

Tor the detailed proof we define:

7(2) = {<y, @ ez A M(y) A W(y, 2)}
8(#)= 0~ Plr(z)), P=power set,

A =Jt(s(d), ¢ =—choice function
deD .

(note that s(d) is not empty).

A satisfies the conditions stated in (x): We are going to prove that

(a) H(A) =@

(b) ve A implies v = <y, z», where M(y), M(z) and W(y, z).

(¢) For every » € W there is o y such that {y, x> e A.

(d) <y, 2> e A and <y'yx)e A implies y' =y.

Then we get M(A4) because of (a) and (b), F(4) because of (b)
and (d), D(4, W) because of (b} and (¢). Furthermore, (b) says that
{y, xy e A implies W (y, o).

Proof of (a). It is sufficient to notice that H(A) qu)H(t(s(d)))

€
and that H(t(s(d))) = G because of ¢(s(d)} € 0.

Proof of (b). If ved then ver(d) for some deD and hence -
v = {y, ) for some =z, y satisfying x ed e D, M(y) and W (y, z). M(2) is
a consequence of P (D) (Lemma 1).

Proof of (c). Let e W. By Lemma 1, there is a d ¢.D such that
2 ed. t{s(d) being an element of ¢ is not empty. Let <y’ @'y et(s(d))
(and hence <y', 'y ¢ A). Then x' ¢ d, and because of d e DC C there is
a ge@ such that g(a’) =@ Let y =g(y’). Then <y, x> =y, 2)),
and since H(A) = &, we get <{y, ) ¢ 4, d.e.d.

Proof of (d). Let <y, x>, <y, ape A Let d,d eD be such that
&y, 2 et(s(d) and <y, @) et(s(d')). Then s ed ~ @ and therefore d'=d
(element of (). Since t(s(d)) e(, there is a ¢ « G such that @({y, #>)
= ', &), i.6. ¢ € H(x) and p(y) = y’. By (b) above, we have (2}, Lt(y)
and W(y,#). Since W(y,o) is absolute, it follows that x < W. Hence,
by Lemma 2, K(z) ¢ F and thus H(z) = K(#) by Lemma 4. Further-
more, W (y, 2) obviously implies K (») = H(y). Hence H(x) = H(y), what
gives p e H(y), i.e. p(y) =y =y', d.e.d.

3%
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Second Part (*)

In this section we prove theorem (G) which was stated in the intro-
duction. The proof consists essentially in constructing a suitable sub-
group of a free group and considering the latter as a permutation group
acting on the left cosets modulo that subgroup.

DerivrioN. U is said to be a pure subgroup of @, write U< @,
if £l implies & el for every £e® and for every natural number fnp> 0,
LemmA 1. If ® is the free group generated by a, p and U =~ [a8, ap?],
then
(a) a, fé U,
(b) U<G.

(a) i8 an immediate consequence of the fact that the total eX]po-
nent (°) of any element of I as a word in a, § is an integral multiple of 3.

In order to prove (b) we show that the following condition (c) is
sufficient for purity:

(¢) For any A with 1(4)>3 there are A, Aoy X such that A = A, -4, and
such that whenever UAV = U-A.V e U for some U,V then UA, X e U
(and XAV € 1).

Here capital leters denote reduced words in « , B U(4) denotes the
len@h of 4. AB denotes the concatenation of the words A, B and the
dot in 4. B indicates that 4B is a reduced word.

(¢) implies (b).

Let W™ fIJ'Q”'-P"1 E}}l’ where QQ = @.Q. We may agsume that
n > 4 (otherwise consider W* ¢ I) and that Q is non empty. Let A = Q"
'Thel? 1{4)>3. Take 4,, 4,X according to (e). Then, W"=P.4.Q . P el
1mp_]ies PA Xe lfland Vl17” =P Q-A P ¢l implies X~ 4,P" ¢ 1[. Hence
W' =PA XX 4,P7 UL, je. W= W'Y e o, qee.d,

In order to verify condition (¢) for our group, we state without
p;rogf what .Al, Az,.X in the several cases are: Let w,y stand for a or B.
If 4 contains positive and negative letters, i.e. .4 can be written ag
Roy™-8, then set A, = Ror, 4, — y—ig, x—;{ﬁ . ii e=1 a0

8 - a™t if g=e 1 '
letters in A are positive, then, because of 1{4) =3, we are in one of

;ujhe follow1.ng cases: A =R aa ¥, A=R-$8.8, 4 =R fa- 8. Let X

Ae empty in all th‘ree cages and set 4, = R, 4y = aal in the firgt cage,

1=Rpp, 4,=48 in the second case and 4, = BB, 4, = af in the last
cage. If all letters in A are negative we proceed analogously.

(*) The author
reading this paper.

(*) total exponent = the sum of all exponents oceurring in the word,

greatly appreciates the he}p given by Mis. Verena Dyson in
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LeMMA 2. Let G be the free product of its free subgroups Gy, ®;, and
let 8 = {&,m,n} be a set of free generators of ®,. Let Wy < Gy, d e ®,
and let A, B, C be mutually disjoint finite subsets of ®, such that

W If 2,yeAwByw C and © #vy, then o 'y ¢ Uy,

(i) ~tdw € Wy for every xeC.

Let U be the subgroup of ®& which is generated by W, and the set
M =My w Myo My, where

My={o ™% zeduCl,

My={o" pw: e Bu 0, i=1,2},

M, = {7 d  n énm: med o O},
Then

(a) U Gy = Uy,

(b) Wy <p By implies U <, G .

For the proof of this lemma it is convenient to consider the fol-
lowing set N: N=DN,uN,v N;uN,, where N,=DM,, N,= M,
Ny = @ d nén,o: we A and y 'de é W, for every y e B}, N, = {y én:
ved, yeB, y 'dw e Uy}.

Then, under the hypothesis of lemma 2, we have

(e) W 4s generated by W, and N.

Proof. 1. M,C[U,, NI: Let ¢ =a 'd ‘yénm, where wed v (.
If ze(, then ¢=(27'dx)™ o 'pw o & o nyz, where z 'dwel,,
o me Ny, o 'pyweN,. If 2eA, then either pe N, or ¢ = (y 7 "dz) ™" X
Xy ‘my -y e for some yeB, where y dw e Wy, y T my e N, and
Yy Emyw e N,

2. N,C[U,, M]: Let ¢ =y gy, where wed, yeB and y'de
ell,. Then ¢ = (y ‘ny)™" vy ds- o d "nybn,m, where y "y e M, and
m_ldqmé'mw e Ms.

In the following, a String @,e,: ... ox®k, @ € G, and o; e 8% (4 is
said to be a G-word, if o; # oy or wy #1for i =1,2,..., k—1. A string
UoPylly oo @rtlss, Ui € Ug and g e NF is said to be a W-word, if ; + g1
or u;#1 for ¢ =1, .., k—1. The G-word @,0,%; ... 0x%x is said to be
G- oyclically-reduced, it o, % oi* or @ # o . Analogous the notion
€U - eyclically-red”.

Because @ is the free product of ®, and ®,, every element of &
has a unique representation as a ®&-word. Moreover, U is the free prod-
uct of 1, and the subgroup of ® generated by N in the following strong
sense:

(Q) If wopytty .. @iy 98 @ W-word and ¢y, ¢ay ..o, o are the ©-words
corresponding 10 @y, @, ..., Px, respectively, then under composition o v, ...
o Pty M0 ocourence of an S-symbol can be cancelled.

(*) Recall that S = {£, 5y, 72}
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Since every ¢ contains §-symbols, it is sufficient to prove (d) in
cage of an U-word puy. Let us consider one (the least boring one) of the
many cases: Let g ¢ Nz, v e Ny. Assumé that an §-gymbol can be can-
celled. Then ¢ = ™y ', where # e BU 0, and y = &' ~d "y, £n,2’, where
@ ¢ A and y~'da’ ¢ U, for every y « B. Our assumption yields aua’ d™ =1,
and hence z71ds’ ¢ Uy, By definition of N,, this gives w¢ B, ie. we(.
According to hypothesis (i) stated in Lemma 2, we get 2=2dw ¢ U, and
hence z7'¢" ell,. (i) yields @ =a', which contradicts the hypothesis
AnC=0. ‘

Obviously, (c) and (d) together imply the assertion (a) of Lemmsa 9.
Another consequence of (d) is:

(6) The ®-word representing an element of W 4s © - oyolically-reduoed
if and only if the corresponding W-word is U-oyclically-reduced.

Therefore, such a word will be referred to from now on simply ag
to be eyclically reduced.

For the proof of part (b) of Lemma 2 we consider the following
mapping f from & into Gy: Let » « G be represented by the G-word Q.
Then f(w) is the element of G, which is obtained by first replacing in Q
every part of the form (&n)* by @ (¢ = 41), and then cancelling all
Temaining occurrences of §-symbols.. (Note that two parts of the form
(én,)° mever do overlap.)

(£) f maps W into U, and flowy) = uf (0)y for all @,y € By, 0.

I.’z"oof. The second assertion is an immediate congequence of the
definition of f. The first one is proved by induction with respect to the
length % of the -word Q = UoPry ... @rp: If &= 0, then Q = u,, £(Q)
=0e 1[0 If k>0, then Q = u,p, 2, where @ = Uy Qs - P and, by
~ assumption, f(2') e U,. In the simple case where f(2) = f(u,)- Flp) F (2,
we only hajvejslo show that f(g,) e1l,. But Ho)=1ell, if peN;u Nyu Ny,

and f(p) = Y dwelly if g ¢ N,. Moreover, in the case ¢ ¢ N~ it is suf-
ficient to notice that (&™) = f(w)™ for every ¢ . In the troublesome
case, namely, f(Q) + f(u)f(p)f(2'), we have the following situation:
the fﬁ-word Q= s L) (b1, 2 being the G-words corregponding to
931,93 respectively) has a part (£n,)* which involves the last 8 -8ymbol
oceuring in ¢; and the first §-gymbol occurring in {¥. Hence, inspection
of the set N*' gives gy, g, ¢ NE' L Ny de gy = a"'0'n, @, = y 0"y,
v Y€ AUBU 0, g,0' €8 gouy " = (Ena)" imoplies wuyy™ =1, i.e,
i Y 61 lIosm ]iel(l)(;eé bfy hy?othesis (i) of the lemma, » =y and therefore
=1 of ¢, ¢' is ¢ and the other is #Z, one of el
1:0 Ny and t}le other to N3; thus one of w,y is i?:,A v 0 aq;ci?inah: o?zﬁgi
in B ¢. Finally, because of o — Yyand 4 A B =0, we got w e 0. Now
We have 0 = y g1, T — o1 ’ : !
VI Wy by ... A Q' = 1o, gp, -+, and the indicated
occurence of the S-symbol % does not belong to a part (fn,)" of &
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(no overlapping of such parts). Hence f(R') = Uf(pg ...). On the other
band, }(Q) = wyw ' &xuyf (¢ps ...), which gives us f(Q) = u,a  d°xf (2’). But
by hypothesis (i) of the lemma, # ¢ € implies 4 '@  1f,. Hence, because
of f(Q) ey, f(2) ey, q.e.d : . -

(g) Let Uy <p . Then, if ¢* = a,02b, 4,0D, ... anQb,, where a;, b; e &,
and byay = bty = ... = bpay and a;Qb; e W for 1 =1,2,..,n, then ¢l

Proof. The invariance of the products b;a;+: implies ¢" = (a;2bn)"
and, since & is a free group, ¢ = a,2b,. By (f), a;0Qb; U implies a;f(Q)b;
= fla2bs) e Uy, Hence (ayf(2)ba)" = ayf(2)b1ayf (2) by ... anf ()b e Wy (we
use ‘again the invariance of b;a:..). Since a,f(2)bs e Gy and W, <y Gy,
we get a;f(2)by € Uy, and since a,f(2)d, ¢ 1, we obtain b b, ¢ 1,. Since
¢ = 0, Qb, = 0,00, b7"b, and a,0b; ¢ U (hypothesis), we get pell, g.e.d.

Proof of (b). We are going to show that the general case reduces
to the special case treated in (g):

Assume U, <y ®, and let p ¢ ® be such that ¢ € U for some » > 0.
Choose 7ell such that the U-word UgP Uy ... YUy Which represents
om = v~lgry i3 cyclically reduced (cf. (e)) and such that the following
holds:

(%) Bither p, € N3, or yy € N¥* and v, ¢ N for all 4, or gy e Ni¥'w N5
and ;¢ N¥* O NE for oll i (5).

We will show that under these conditions o satisfies the hypothesis
of (g). Then (b) will be proved: We conclude o e X and hence, because
of vell, p =70t ¢

We may assume that %> 0, ie. o7¢ ;. Otherwise we get oell
because of Uy <p B, Now, let 202z' be the G-word which represents o,
where @, 0’ ¢ B, and Q = o@¢’ for some g, o' ¢ §*' (or @ = g, in which
case we identify o' == ¢ and set Q = empty). Using subscripts we distin-
guish different oceurrences of g, o't o = wp, 2014 10,2052 ... Lna’. This
is the &-word representing o, for on and hence ¢ is cyclically-reduced.
Determine Iy, 4 =1, ..., n; such that o occurs in y,. We define a;, b; by

and

(B) bythy = bytty o= == bytty == ' .
It vemains to prove that

1. a,02b,a, 02D, ... 0y 2by = o®,

2. Qb e, 4 =1,..,m,

3. ag, by e By, i=1,.., M.

(5) The ope\raﬁio;l 773...)7 allows us to shift any of the w's to the very left of
the word. . : ) o :
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Since I, =k, definition (A) gives by = [(#22')"'@Q]™¢" and therefore
by = @', (B) gives a; = x. Thus 1. is obvious. 2. follows easily by induc-
tion, using (A). In order to obtain 3., we first prove that

(»%) o; i8 the last §-symbol in yy.

For, since g is the first §-symbol in y;, condition (x) on v, implies
that ¢ oceurs in no y; otherwise but as first §-symbol (in order to verify
this look at the definition of N *1). Now, if oi were not the last §-symbol
in yy, then the symbol g4, (Which is a symbol p) did oceur in other-
wise than as first §-symbol, which is a contradiction.

By (x), (#Qx')"2Q, which is the same as wg, Q0w ... 0;0g}, is
that initial segment of the G-word corresponding to wu,y; ... wyuy, which
ends with the last §-gymbol of yy,. Ience, by definition (A), b;e @,
and therefore, by definition (B), a4, € ®, (set anyy = @,). This completes
the proof of (b) and thus of Lemma 2.

LeMMA 3. There ewists a group § and o subgroup $ of § such that

(4) $ <»8 ‘

(B) For any mutually disjoint finite subsets A, B, O of § and for every
d eF satisfying

(i) ;,ye AVBU 0 and © =y implies v~y ¢ H,

(ii) o~'dw e § for every w0,
there are &, 9y, 1, ¢ § such that

(a) o2we$ for every xed u C,

(b) x™lmw e § for every we Bu C, 4 =1, 2,

(e) 87 d mémm e $ for every m e A C.

(O) For some a, B el we have a8, af* ¢ $ and a, ¢ .

Proof. Let § be the free group with {a, §, &%, 5V, i, £® @ ,@ 3
as a.,n enumerable set of free generators. Consider the subgroups Fo, Fiy Fay -
defined by F, = [a, f], Firs = [F, £, 5, 7], Bnumerate all quad-
ruples v= (4, B, C,d), W-here 4, B, 0 are mutually disjoint finite
{subsgts of & an'd de®, in such a way that every = is counted
mﬁ_mt;ly ;na,ny times ax}d such that ;v Byvu Oy v {d) C & for every
Tt = (A, By, O, di). Define §, = [a8, af?]. It Ay, By, Oy, dy satisty the

conditions (i), (ii) stated in Lemma 3 (bakin, i 1 ther
g $ in place of then
let $i4a =[1, P w MY © U], whero : o

MY = {0y 4, A0 0y,
MY = {m”‘nﬁ'“)m: zeBU Oy i=1,2},
U] —1 g~ g
MP = (o770 i te: me dyu 0.
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Otherwise let $Hip = . In both cases $ <F implies H1 < Frya (nOte
that 4; v Byu Cru {di} C§). In the first case the hypothesis of Lemma 2
is satisfied (taking ©i, D1, Fi, Fa for Uy, U, G,, ®). Hence we have

(a) Hrr1n =N,

(b) 51 <p 31 1mphes 51+1 <p 314.1 .

Since (a) and (b) obviously do hold in the second case too—mnote that
N1 <» T implies £ <p Fiyr because F is a free factor of F.i—(a) and (b)
are satistied for every l. Finally we define § = )% and show that §
and $ have the required properties. )

Proof of (A). By Lemma 1 (b), $ <. By (b) we get Hi <» &
for every I. This implies § <»$. : :

Proof of (B). Given 4, B, 0, d. Because C is finite, (ii) is satisfied
with respect to $, for some r. Since every quadruple v is counted in-
finitely many times, there exists an 1> such that w = (4, B, 0, d}.
Because of $,< §, (ii) is satisfied with respect to & too, and (i) is
satisfied with respect to $; because of $; < $. Hence we are in the first
case (above) where the sets MY, MP, MP are in $y; and thus in §.
That is, (a), (b), (c) are satisfied with respect to 40, b y+h,

Proof of (C). a8, af*e$H because of the definition of $,, and
o, B¢ $ becanse of Lemma 1 {a) and property (a) above.

LemumA 4. There exists a permutation group F on a set D such that
the following conditions are satisfied:

(A) Kr(e) = Hg(e) for every e e E(D).

(B) [Kr(e), Kr(e')] = Kr(e ~¢') for all ¢, ¢ ¢ H(D).

(C) There are w,v,weD, u,v,w different from each other, and
o, v eF such that o: u—>v—>w and 7: W—>u—>2.

“ (Note that assertion (C) of this lemma is weaker than the corre-
sponding assertion of theorem (G).)

Proof. Let §, $ be as in Lemma 3. Let D be the set of the left
cogets of § mod . We denote the coset containing x by #. To every
y € corresponds the permutation y* of D which maps Z onto ¥Z.
We have
(%) ifft 2 lyzed.

Since the correspondence y—»y* is a homomorphism, we have for
any word W(y, ..., ¥x):

() ) (W(?/L ey f’/fK))(E) =32
Let F be the group of the y*’s, y ¢¥. Then F satisfies (A), (B), (0):
)

Proof of (A). We have to show that Hy(e) C Kr(e) for any e « E(D).
Now, if ¢e B(D) and ¢ e Hp(e), then ¢ e Krp(e) for a suitable 2> 0.

yHE) =2

it 2 W (Y, ooy YR)T D -
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But assertion (A) of Lemma 3, namely $ <, v translated by (s«)
into the following: If ¢ e ¥, a D, n > 0, then ¢*(a) == a implies p(a) = q.
Hence ¢ ¢ Kr(e), q.e.d. :

Proof of (B). Given ¢, ¢’ ¢ E(D), we have to show that Kp(e ~ ¢)
C [Kr(e), Knple’)]. Let ¢ e Kple ~¢'). and choose deF such that @ = g,
We denote the set of the cogets corresponding to the elements of a gub-
set ¥ of § by X. Now, picking out one representative of each coset
belonging to one of the sets e—¢', ¢'—6, ¢ ~ ¢, we get mutually diﬂjoixiﬁ
finite subsets A,B,C of § such that e=Ad o and ¢ =B o g,
A, B, 0, d satisty the conditions (i), (ii) stated in Lemma 3. (i) expresses
that different elements of A v B u ( represent different cosets. For the
proof of (ii), let @ € 0. Then T e 0 = ¢ ~ ¢’ and since d* == ¢ ¢ Kp(e ~ ¢),
a*(Z) = &. (x) gives vldwe $. By Lemma 3 (B) and translation ()
there are &, #;, 7, ¢ § such that &* e Kp(e), n¥ ¢ Kp(e') and p == d*~1yf sk
e Kp(e). Hence ¢ = &* = n¥ &5y~ e [Kn(e), Knle')], q.e.d.

Proof of (C). Take a«,feF according to Lemma 3 (C). Detfine
=P v=af, w=0p and o=a* 7=p" Then w=1 because of
@B $ and v=F because of f7ap = (af’) " PPeH. Since o*: s
—>af—>ap and p*: I->f—F we get o: u—v—>w and 7: w->u-—»v; and
since a, f¢ 9, it follows that w,v,w ave different from each other, g.e.d.

Proof of Theorem (G). Let #,.D be as in Temma 4. Take a
denumerable family {<F,, D;>}er of isomorphic copies of (¥, D>, where
the D,’s are mutually disjoint. Then we define @, 0> to be the weak
direct product of the (F,, D,>’s; i.e. ¢ =|JD, and the elements of ¢
are those permutations of ¢ which act on every component D, as an
element of F,, being the identity element of F, for almost overy tel.

Looking at the constructions we wused, it is clear that ¢ is de-
numerable. Then, it is easily seen that the properties (A), (B) of F, D)
are carried over to (@, 0> (in order to get (B) one uses essentially tho
fact that the considered direct product is the weak one). Moreover,
statement (C) of Lemma 4 iy translated into statement (C) of theo-
rem (G). For, if 6¢H(0) then ¢~ D, =0 for some ¢l Now, let
0, % ¢F, and w,v,weD, according to Lemma 4 (@), and let o,v Dbe
those elements of @ which coincide with a,7 on D, and which are

the identity on the remaining components. Then o,7¢Kgle) and o:
U—>V—>W, T W-+U->D, q.0,d.
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