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Some theorems on vector spaces and the axiom
of choice *

by
M. N. Bleicher (Madison and Warszawa)

I. Introduction, definitions, and notation. In the study of
the theory of infinite dimensional vector spaces there are many theo-
rems, especially those dealing with the existence and cardinality of bases
and the relative complementation of subspaces and subsets, all known
proofs of which require some form of the axiom of choice. In the case
of such a theorem it is natural to ask whether or not the use of the
axiom of choice is essential, and if it is essemtial, is its full strength
essential; i.e., is the theorem equivalent to the axiom of choice or to
some weakened version of it. In this work we address ourselves to these
questions concerning five such propositions to be listed below. We also
consider these propositions in the context of axiomatic dependence
(abstract linear dependence relations).

The notation is the usual set-theoretic notation accompanying the
use of ¢ v, ~, and * for the notions of membership, union, intersection,
and relative complement. The set of all subsets of a given set X (the
power set of X) is denoted by P(X). The empty set is denoted by @.

In the statements of the proposition with which we are concerned
the vector space is denoted by V. At times the class of vector spaces
over which ¥V ranges is restricted to certain special classes; e.g. the class
of all vector spaces over the reals, over the two-element field, over finite
fields, etc.

The first propogition with which we are concerned is the Hamel
Bagis Theorem.

PropPOSITION 1. The wector space V possesses o basis.

* This paper is based on part of a doctoral dissertation prepared at the Uni-
versily of Warsaw under the direction of Professor H. Rasiowsa whom the author
would like to thank for her help and encouragement.
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The second proposition is & strengthened version of the first.

PrOPOSITION 2. If the subset G of the veclor space V gemerates V then
there is @ subset of G which is a basis.

The next three propositions have to do with various forms of rela-
tive complementation. If X CV then by [X] is denoted the subspace
generated by X, or equivalently, the least subgpace containing X.

ProrosiTioN 3. For each subspace 8 of the veclor space V ihere is
a subspace ' of V such that 8~ 8 = {0} and [Sw 8] =V.

PROPOSITION 4. If B is a basis for the veclor space V y;,(m for cach
subspace 8 of V ihere is a subset § of B such that 8~ [§] == {0} and
[fu R =7.

PROPOSITION 5. If B is o basis for the vector space V then for each
independent subset X of V there is a subset X* of B such that X o X*
i & basis for V.

Without loss of generality it may be assumed that X ~X* =@
for if not X* may be replaced by X*- X. In the sequel we assume that
X and X* are disjoint.

These theorems have been improved and generalized in many ways by
various authors. Some have stated the conclusion functionally and shown
that the function can be made to satisfy auxiliary conditions; others
have shown that the propositions remain true in more general struct-
ures, e.g. generalized vector spaces, exchange lattices, etc. The reader
interested in pursuing the more general agpects of these propositions
would consult [1]-[6], [8]-[10], and [12]-[14] which contain the results
most pertinent to this discussion, and also references to further literature.

It is convenient to define here precisely what we mean by the axiom
of choice and the weaker versions of it which arise in the discussion.

By the axiom of choice we mean the following:

If T is any non-empty set of non-empty sets then there ewisls a funolion
f defined on T such that for each set T e T, f(1) e T.

It is well known that if we require that T consist of digjoint non-
empty sets or that T be of the form T = P(X)\{§} for some get X, we
obtain equivalent formulations of the axiom of choice.

By imposing the restriction that T consist of only finite sets we
obtain the awiom of choice for finite sets; namely,

If T is such a family of non-empty sets that for each element T ¢ T,

T is a finite set then there is a function f defined on T such that f(T)e T
for -each element T e T. ‘

) The axiom of choice for finite sets iy weaker than the axiom of choice
in the sense that there are models of set theory in which the axiom of
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choice for finite sets holds while the axiom of choice does not. This is
the case for example in the model of Mostowski [10] sinece the propo-
sition that every set may be linearly ordered implies the axiom of choice
for finite sets (viz. e.g. Sierpifiski [14], pp. 412-3).

Many authors have considered weakened versions of the axiom
of choice obtained from the full axiom by putting various restrictions
on the domain T of the choice function. In this work only the above
mentioned weakened form of this type is needed. Another less studied
method for obtaining weakened versions of the axiom of choice is to
put less stringent conditions of the range of the choice funetion (%), We
need here one family of such weakened versions of the axiom of choice.

Let n by any positive integer then by FSn is meant the following
proposition:

FSn. If T is any non-empty set of non-empty sets then there is a fumnc-
tion f defined on T such that for each element T ¢ T, f{T) is a finite non-
empty subset of T amd the number of elements of f(T) is relatively
prime 0 n.

F81 requires only that the function yield a finite subset of the argu-
ment. It is clear that FSn and the axiom of choice for finite sets together
imply the axiom of choice. In an intuitive sense FS1 and the axiom
of choice for finite sets are complementary parts of the axiom of choice.

We define now certain vector spaces which repeatedly play im-
portant roles in the forthcoming discussion.

Let X be an arbitrary set and F any field; by L(X,¥) we denote
the vector space over F' which consists of all finite linear forms with
indeterminants from X and coefficients from ¥. Symbolically:

1
L(X,F) = {1+ folbat eec+[on: fseFy, e X, 0<i<n, n=1,2,.7}.

The usual conventions are assumed about the order of factors, zero
coefficients, addition and scalar multiplication (). The form 1 is written
simply 2 and is identified with the corresponding element of X. Thus
X may be considered as a subset of L(X,F), and so considered it is
clearly a basis for L(X, F).

Ly(X, F) denotes the subspaces of L{X,F) in which the sum of the
coefficients of each linear form are .zero. Symbolically,

L X, F) = {fiwe+ o+ . +fun e L(X, F): fi+fot oo+ fu =0}

If zeX it is clear that B, = {z—y: y e \{@}} is a basis for L(X, F).
Further if ¥ C X it is clear that (after the obvious indetifications)

(1) (Added in proof.) See A. Lévy, Fund. Math. 50 (1962), pp. 475-483.
(%) This ean, of course, all be made quite precise by defining L(X, F) to be the
appropriate subset of the set of all funetions from X to I, etc.
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LY, F) is a subspace of L(Y, P, L(X, ), and L(X, I); further, L(¥,F)
ig. a subspace of L(X, F).
When the field under consideration is clear from the context the
reference to it in the above notation. is ommitted; thus LY, F) = Ly ¥).
If {Va: aed} is o family of vector spaces over the same field F,
then their weak direct product, denoted by H{V.: ae A}, is the vector
space over F defined by

) et T D)
H{V,: aed)={t-+0-F...+¥: VeV, aied, 0<in, n=1,2,..},

Again the usual convenfions are made concerning zeroes, order of fac-
tors, ete. (3).

II. Main results. We begin this section with some lemmas which
are not only helpful in the proof of the second theorem, but which are
interesting in themselves and also illustrate necessary techniques.

LemmA 1. If for some field F in which 141 £ 0 Proposition 2 holds
for all vector spaces over I, then the axiom of choice for finite sets holds.

Proof. Let T, be a given non-empty set of finite non-empty sets.
Let X = \J{T: TeT,) and let T = {{&, I>: tel}: I'e P(X) where
T ig finite}, then T is a family of disjoint finite sets and for each T e T,
there is an effective correspondence to an effactively isomorphic ele-
ment of T.

We now eonstruet a choice function defined for the elements of T;
because of the effective correspondence between elements of ‘C; and T
and because of the effective isomorphism between corresponding sets,
the choice function on T uniquely determines a choice function on T,.
A choice function on T is uniquely determined through iteration by
a function = defined on T which satisfies the following conditions:

(1) If 7' is a one element set, #(1) equals the single element.

(2) I¥ 7 has more than one element then @ # =(1) == T and
n(T)CT.

We now define the function z. Let 1' e T and suppose 1' has » > 2
elements. We consider the vector space V = W{L(1): T T}. Since
Gp={m—y: 2,yeT, v+ y} is a generating set for Ly(1"), it follows
that G =\J{Gr: TeT} is a generating set for V. Since, by hypothesis,
Proposition 2 holds for V, there is a basis B contained in ¢, It iy easy
to see that By = B Gp i3 & basis for Ly(1).

The space Ly(T) is an n—1 dimensional vector space since, for any
2z eT, the n—1 element set {w—y: @ # y ¢ I} is a basiz, Since the di-
mension i§ finite, we know without the aid of any choice principle that

(*) Here again this can be made rigorous by defining the weak direct produst
as the appropriate set of functions from A4 into w{V,: aed}.
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every basis has the same number of elements; hence Br has n—1 ele-
ments. Since each element of By is a pair of elements of 7, there are
2(n—1) occurences, counting according to multiplicity, of elements of 7'
in some element of Bp. If n = 1,2, then = does not divide 2(n—1)
hence not all the elements of T' oceur with the same multiplicity. In this
case define #(T) to be those elements of 7' which occur with minimal
frequency. If # = 2, then Br consists of one term z—y. Since 1+1 5= 0,
it follows that +1 s —1, and we can define =(T) to be the element
which has coefficient +1. If # =1 we define =(T) to be the single ele-
ment of 7. We have constructed a function which satisties Conditions
(1) and (2), and the lemma follows.

CoroLLARY. If ¥ 4s a field of characteristic 2 and Priopostion 2 holds
for all wector spaces over F, then: if T is any non-empty set of sets each
having an odd finite number of elemenis then there is a choice function
on T, and if T is any non-empty set of finite non-empty sets there is o func-
tion which assigns to each T ¢ T a one or two element subset.

Proof. In the above proof of the lemma if # is odd, then either
a(T) or T\#(T) is an odd set, hence we may assume that =(7) is an
0dd subset of 7. In this manner we avoid the possibility of obtaining
a two-element set in the iteration of m in the case 7' has an odd number
of elements; since the case n = 2 ig the only time the fact that 1-4+1 = 0
is used in the proof of the lemma, the first part of the corollary follows.
The second part of the corollary is immediate since the function = always
yields a proper non-empty subset of a given finite set if it has more
than 2 elements.

Lemma 2. If for some field F Proposition 3 holds for every. vector
space over ¥, then FS1 holds.

Proof. Let T be a non-empty set of non-empty sets; without loss
of generality we assume they are digjoint. Consider the vector space V'
defined by
V = m{L(T):
and a subspace V, of it defined by
= H{L(T): TeT}.

According to Proposition 3, there exists a subspace V§ such that V, ~ V}
= {0} and [V, v Vg] =7V; thus, every element in ¥ can be expressed
uniquely as a sum v-+2" with ¢ ¢V, and 2" ¢ V§.

We construet now a function z defined on T satisfying the con-
ditions of FS1. Let 7' be an arbitrary element of T and s and t be ele-
ments of 7' regarded as elements of ¥. We can write in a unique manner
¢ =040 and t=w-+w where v, weV, and v, w ¢V;. Since v, w,
and s—t are in the subspace ¥y, it follows that v —w’ is also. On the

*
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other hand, since o' and w' are in the subgpace V¢, it follows that their
difference is also. Hence,

W —w') e Vo m Vi = {0}

Thus for each set 7' of T there is a well-defined element of Vg, say wp,
such that for each ¢ ¢ T there is an element v, e Vy such that ¢ = wyp-v,.
It follows that the sum of the coefficients of the terms from 7' in the
form wyp is one. If we define =(T) by

a(T) = {i: ¢ has a nonzero coefficient in wy}

it is clear that z({T) is & non-empty finite subset of 1'. Sinee m(1L') sabis-
fies the conditions of FS1, the lemma is established.

By putting certain restriction on the field we are able to arrive
at a stronger conclusion. The next lemma ig an example along these lines.

LeMMA 3. If for some field F of finite characteristic p, which is
orderable as a set, Proposition 3 holds for all vector space over I then
FSp holds.

Proof. The proof of Lemma 3 parallels that of Lemma 2 until we
obtain the element wy. Suppose f;, ¢=1,2,..,% are the non-zero
coefficients occuring in wy as coefficients of elements of 7', and = arve
their respective frequencies of occurence as snch coefficients. We know
that the sum % f; +nyfs + ... + 9% fr = 1. It follows that not all the n; are
divigible by p. Since the set of f; ix finite, the order on the field in-
duces a well-order on the f;. Let f; be the least f; for which =4 is not
a multiple of p. If we now detine = by =(T) = {t 1" the coefficient
of ¢ in wy is f;}, it i3 clear that =~ satisfies FSp. Lemma 3 is thus
established.

Lemva 4. If for some field B Proposition 5 holds for every wvector
space over I then the axiom of choice for fimite sets holds.

Proof. Let T be a given non-empty set of finite non-empty sets.
Without loss of generality we may assume that the elements of T are
disjoint. Let B =\J{T: T ¢T}. Let the vector space V be defined by
V =L(B). Let X = (b+t+...--t: {fy, by, ..., &} € T}, then regarding X
as a subset of ¥ it is clear that X is an independent subset. On applying
Proposition § to the independent set X with respect to the basis B wo
obtain a set X* digjoint from X such that X*C B and X u X* is a basis.
It is not diffieult to verify that, regarding L(Z) as a subspace of V,
LI)~n (X v X*) s a basis of L(T). If 7 = {t,,4, .., %}, then any
basis of L(T) must have k elements. Since L(T) ~ X = {t; 1, - ... - f&},
it follows that L(I)~ X* has k-1 elements. However (L(Z)~ X*
C (L(T) ~ B) = T thus the set T\(I(T) ~ X*) contains a single eloment.
If we define f by f(T') = the unique element in the get INEL(T) ~ X¥),
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then f i3 a choice function on T. Thus the axiom of choice for finite
sets holds and the lemma is proved.

We are now in a position to prove Theorem 1.
THEOREM 1. The following are equivalent:
(1) The axiom of choice.

(2) For some field F Propositions 1 and 5 hold for all vector spaces
over F.

(8) For some field F' Propositions 3 and B hold for all vector spaces
over F.

Proof. We first show that (2) implies (3). It is sufficient to show
that Propositions 1 and 5 imply Proposition 3 when restricted to vector
spaces over F. Let § be a subspace of V. Since § is itself a vector gpace
over F, it has a basis, say X. X is then an independent subset of V.
Again by Proposition 1, ¥V has a basis B. By now applying Proposition 5
to V for the basis B and the independent set X we obtain a set X* such
that X ~ X* = @ and X u X*i5 a hasis of V. If we define &’ by 8’ = [X*]
it is eagy to show that 8 ~ 8’ = {0} and also that [Su 8'T=7T; ie.,
8’ satisfies the conditions of Proposition 3.

We now show that (3) implies (1). The statement to be proved
follows immediately from Lemmas 2 and 4.

Since the proof that (1) implies (2) is well known, the truth of the
theorem is established.

THEOREM 2. The following are equivaleni:

(1) The axiom of choice.

(2) For some field F' such that either 1+1 520 or 141 =0 and F i3
orderable as a set, Propositions 2 and 3 hold for all vector spaces over F.

Proof. For the case in which 141 £ 0 it follows immediately from
Lemmas 1 and 2 that (2) implies (1). In the other case Lemma 3 yields
a function which is a finite odd subset and by the corollary to Lemma 1
this situation may be handled. The reverse implication is to be found
in the literature cited, e.g., [3].

TeEOREM 3. The following are equivalent:

(1) The axiom of choice.

(2) For some field F Proposition 4 holds for all vector spaces over F.

Proof. Let T be a given non-empty set of non-empty sets which,
without loss of generality, are disjoint. As in the proof of Lemma 2,
we define ¥V and V; by

V=mI(T): TeTt and V,=mL(T): TeT}.

It is clear that V, is a subspace of ¥V and that B = {J{I: T'eT} is
a bagis of V. We apply now Proposition 4 to the subspace ¥V, with respect
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to the basis B and obtain a subset 7, of B. Let T'«T; then W = TV,
has at most one element, for let s, belong to W then (s—1%) e ([Vo] A V)
= {0}, and hence s =t On the other hand W is non-empty since for
any element ¢e T, ¢ =v+7 where veV, and 7 € [V,]. The sum of the
coefficients of terms from 7T in o is zero since v eV,, hence the sum of
the coefficients of terms from T in % must be one. It follows that ¥, must
contain terms from 7' and hence that W s~ @. We may now define (1))
to be the unique element of W. Since f is clearly a choice function, the
truth of the theorem is established. .

Before investigating what additional strength is acquired by the
assumption of the truth of Propositions 1-5 in the case of generalized
vector spaces, it i3 perhaps appropriate to make a few comments on
the results thus far obtained.

It can be noticed, particularly in Lemma 1, and Theorem 2, thab
vector spaces over fields of characteristic 2 seem to be a separate case
from those over fields with other characteristics. It would be interesting
to know if there is something inherently different in that case or if it
is only an accident of the methods of proof.

It is also interesting that while both Propositions 2 and 5 imply
the axiom of choice for finite sets (Lemmas 1 and 4) at the same time
their conjunction implies the axiom of choice. This would indicate that
one of Lemmas 1 or 4 is unnecessarily weak. It may well be that it is
Lemma 1, in ag much as Dr. J. D. Halpern has communicated to the
author a proof that the truth of Proposition 2 in all vector spaces over
all infinite fields of a given characteristic is equivalent to the axiom
of choice.

If Proposition 3 is assumed to hold over any sufficiently large class
of vector spaces, for example all vector spaces over finite prime fields,
then we can obtain as a consequence the conjunction of FSp for all
primes p. The relationship between this conjunction and the axiom
of choice is still open, but the difference between them is not great.
The author plans to elucidate elsewhere some of the more interest-

ing consequences of the propositions FSp and various conjunctions
thereof.

IIL. Generalized vector spaces. The characterization of abstract
dependence used in this section is (except for minor modifications) the
same as the system used in [3], [5], [8], and [9]. This system is in fact
equivalent to many of the other seemingly different systems, but we do
not concern ourselves with that problem here.

Let V be any set, X, ¥, and Z subsets of V, and # and y elements
of V. A relation € between the subsets of V is an abstract linear depend-
ence relation if it satisfies the following:
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Ll. YCX implies ¥ €X.

12. X,EY for every aeAd implies | J{X.: a e A}E Y.
L3. XEY and YEZ imply X EZ.

L4, {@}€Xu fy} and {#} € X imply {y} €X u {u.

5. {z} € X implies there exists a finite subset F C X such that
{w} EF.

The ordered pair <V, € is called a generalized vector space. When
only one dependence relation is being considered on the set ¥, this
couple is denoted simply by V.

In the usual interpretation X € ¥ is read X depends on Y, or X
is dependent upon Y. A set X is called independent if for no # ¢ X is it
true that {#} € X\{z}; X is called dependent otherwise. A basis is an
independent set B for which ¥V € B. A subspace is a set 8 for which
{x} € 8 implies z € 8.

Tor the proofs that Propositions 1-3 hold in generalized veetor
spaces the reader should consult the papers cited earlier, especially [3],
[5], and [8].

‘We do not develop any of the theory of generalized vector spaces
here, but other than the fact that Propositions 1-6 hold, the results we
use are easily verified from the L1-L5.

THEOREM 4. The following are equivalent:
(1) The axiom of choice.
(2) Proposition 1 holds for generalized vector spaces.

Proof. We prove here only that (2) implies (1). Let T be a given
non-empty set of sets which we suppose are disjoint and non-empty:
Tet V= J{T: TeT}. We define a dependence relation on V in the
following manner: For all X, Y e P(V), XE Y if and only if for each
TeT, (XnT)+0 implies (Y ~nT) #9.

T1-L3 follow immediately from the definition. We now show that €
satisfies L4, Let {z} € X w {y} and {z} ¢ X. Since x ¢V, there is a unique
T ¢ T for which ¢ T. Since {&} ~ T # @, it follows that (X w {y}) ~n T # O.
Sinee {#} ~ T" =@ for all T’ ¢ T {I} and {z} ¢ X, it follows that X ~ 1'
=@, Therefore y ¢ T. It follows that {y} € X w {z}. L5 can be verified
as follows: gince {z} € X, it follows that X ~ T = @ where vel. Let
y € (X ~ T); then by putting F = {y} it is clear that L5 is satisfied.

By Proposition 1 there is a basis B for V. Since V € B, it is clear
that for all Te¢T, B~ T # @. Let s,1¢ (B~ T). Then since B is inde-
pendent, it follows that {t} ¢ B\{1}. Since 1"~ {t} =9 for T # 1 and
T'eT, we see that (B\{{}) ~» T=@. Since s¢(B ~ T), it follows that
s = 1. Thus we can define f(T') to be the uniquely defined element of T
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in B ~ T. This function is clearly a choice function for T. The desired
implications is established.

Tt is clear that we can gubstitute Proposition 2 for Proposition 1
in Theorem 4.

THEOREM 5. The following are equivalent:

(1) The axiom of choice.

(2) Proposition 3 holds for generalized veclor spaces.

Proof. We prove only that (2) implies (1). As mentioned in the
introduction it is sufficient to construct a choice function for an arbi-
trary set of the form P(X)\@ for some set X. If p is any prime number
we denote by p* the Galois Field with p elements. For any set Y e P(X)
we denote by L(X, p*)* the vector space defined by

L(Y, p*)* = (o, p, Y e L(Y, p)}

with addition and sealar multiplication on the first member of the triple.
Thus L(Y, p** ~L(Y, ¢*)* =@ unless Y=Y and p =g LY, p*}*
denotes the subspace of L(Y,p*)* which corresponds to Ly ¥, p*).

By defining the appropriate generalized vector space we are able
to simultaneously apply Proposition 3 to all the spaces L(Y, p*)* for
Y eP(X) and p a prime. This process enables us to define on P(X)
a funetion which simultaneously satisties FSp for all primes p. Such
a function however is a choice function on P(X). The details are given
below.

Let V = J{L(X, p*)*: p a prime, ¥ ¢ P(X)}. Let R and § be sub-
sets of V. We define the relation € by R € § if and only if for every
prime p, and every set Y e¢P(X), R~ L(Y,p*)* is dependent on
8 ~L(Y, p*)* in the vector space L(Y, p*)*: more symbolically,

R €8 if and only if B ~ L(Y, p*)* C[8 ~ I(Y, p*)*] for all primes p
and all ¥ e P(X).

The verification of L1-L3 and L5 present no difficulty. To verify L4
we assume that {r} € R {s} and {r} € R. It follows that for precisely
one pair p, ¥ it is true that r ¢ L(X, p*)* and that for the identical p
and ¥, s e L(Y, p*)* Since L(Y¥,p*)* is a vector space, it satisfies T4
and r and s may be exchanged in it. Since {s} ~.L(Z, ¢*)* = @ unless
g=yp and Z =Y, it follows that {s} € R {r}. Thus we see that V is
a generalized vector space.

Let V= {L(¥,p%)*: Y eP(X) and p prime}. It is straight-
forward to verify that V, is a subspace of the generalized vector space 7,
?vhen the dependence relation on ¥, is taken to be that induced upen
it as a subset of V. We now apply Proposition 3 to the subgpace V, and
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obtain a new subspace Vg such that Vo~ Vi =[] and [VooVil=7,
where [@], the subspace generated by the empty set, is given by

[0] = {0, ¥, p>: p a prime ¥ ¢ P(X)}.

We first show that Z = Vi~ L(Y, p*)* is at most a one dimen-
sional subspace of L(Y, p*)*. Let r,seZ; and let f be any element of
the field p*, then {fr} € {r} EV; and since V, is a subspace, it follows
that freVs. Thus if reZ and fep* jreZ. Therefore after possible
multiplication by the appropriate scalar we may suppose that the sum
of the coefficients of » and s are the same. Since {r—s} € {r, s} €V; and
V3§ is a subspace, it follows that r—s e V§. But the sum of the coefficients
of the terms in r—s is zero, hence r—s eLy (Y, p*)*. Since ¥y~ T§
A LY, p")* = {0, Y, p)}, it follows that »=s and Vy~L(Y, p*)* is
at most one dimensional.

On the other hand, if ¢ ¢ ¥ then t = (', ¥, p> belongs to L(X, p*)*,
but {t}¢Vo since it is mot in [V, ~ L(Y, p*)*], while {t} € (V, v Vo).
From the definition of € we have that 1 e¢[(V,u Vo) ~ L(¥, p*)*], and
therefore V§ ~ L(Y, p*)* is non-empty. It follows that Vi~ L(X, p*)*
is a one-dimensional subspace of L(Y, p*)* which is not contained in
Lo( X, p*)*

Let ¢ be the unique element of Vi~ L(Y, p*)* for which the sum
of the coefficients is one. Let n; be the number of terms of r which
have ¢ for their coefficient, ¢ =1, 2, ..., p—1. Since the sum 1n,42n,--
4o +{(p—1)mp-1y = 1, there is a least value of 4 for which n¢ is not
divisible by p; define m (Y, p) to be the terms having that coefficient.
It ig clear that = (Y, p) is a finite subset of ¥ the number of elements
of which is relatively prime to p.

Let ¥ be any subset of X with more than one element and let p
be the least prime dividing the cardinal of ¥ (if Y is infinite, p = 2).
Either #(Y, p) is a one element set or there iy a least prime p’ dividing
the cardinal of the finite set = (Y, p). The set n(n(Y,p),p’) is a proper
finite subset of (¥, p). We continue in this well-defined manner and
after a finite number of steps we obtain a single element subset of Y.
It is now clear that the function = leads in a well-defined manner
to a choice function for P(X), and the proof of the theorem is
complete.

We have now shown that any of Propositions 1-4 for generalized
vector spaces is equivalent to the axiom of choice. The problem with
applications of Proposition 5 seems to be in the restricted nature of its
domain, independent sets. It i3 relatively easy to create proper sub-
spaces of various vector spaces, but it appears that it is necessary to
name some particular element if one is to name an advantagenous
non-maximal independent set.
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IV. Conecluding remarks. The fact that the truth of any of
Propositions 2-5 for all vector spaces over some field is independent
from the axioms of set theory without the axiom of choice is now ap-
pavent, for: (a) Proposition 4 is equivalent to the axiom of choice,
(b) Proposition 3 is independent since, according to Lemma 2, it, to-
gether with the axiom of choice for finite sets implies the axiom of
choice, while the axiom of choice for finite sets alone does not, [11];
(e) Propositions 2 and 5 since they each imply (the field having char-
acteristic 2 being excluded for Proposition 2) the axiom of choice for
finite sets, and this is known to be independent of the usual axioms
of set theory ([6], pp. 53-53); (d) Proposition 2 in the case the field has
characteristic 2 implies the axiom of choice for families of finite gets
of odd cardinal and this can be shown to be independent of the usnal
axioms of set theory.

By the axioms of set theory is meant any of the common systems
which possess the axiom of foundation, for example, that used by
Mostowski in [11]. All the work done in this paper can be carried out
in this system. By a proposition being independent of an axiom system
is meant that there is a model for the system in which the proposition
does not hold.

There seems to be o lack of information relating the axiom of
choice with the proposition which states that any two bases have the
same cardinal. It is hoped that this void can soon be filled.
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