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a connection form on E, we define the connection form o' on E’ by set-
ting it to be equal f *w on f(E) and extending it by means of for;nulae
(23) of section 5.1. Then the values of o’ on f(I'(E)) are contained in
h(g), and =z is simply identical with 7' (it does not depend on w in
this case). The induced connection coincides with the given connection
o on E.
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An arc is tame in 3-space
if and only if it is strongly cellular *
by
R. H. Bing (Wisconsin, USA) and A. Kirkor (Warszawa)

A set Z in Buclidean #-space E" is tame if there exists such a homeo-
morphism f of E® onto itself that f(Z) is a polyhedron. There are known
some necessary and sufficient conditions of tameness of an arc in E3,
e.g. [4] and [5]. We shall give here another one based on the reinforced
notion of a cellular set [2). A set Z in E" is strongly cellular if there is
an n-cell ¢in E" and a homotopy h: € :I-0 such that, if hi(x) = h(2,1)
and 8§ =Bd( is the boundary of (', then

(1) ho = identity mapping and h|Z = identity for all t,

(2) hel8 = homeomorphism for 7 <1,

(3) ha(8) ~ he(8) = 0 for t =1,

(4) hy(C) =Z.

The set Z will be said to be a strong deformation retract of the cell C.
By M. Brown’s generalization of the Schoentlies Theorem [2] there will
be no loss of generality if the cell C is assumed to be a ball.

THEOREM 1. An arc is tame in EP if and only if it is strongly cellular.

COROLLARY. An are A in E® is tame if and only if there are two con-
centric balls B, and B, B, C IntB, and a mapping f of B into E® such that

(1) /B —B, = homeomorphism, ,

(2) F(By) = 4.

Proof of the Corollary. It is obvious that the conditions of the
Corollary ave necessary. In order to prove that they are also sufficient
Jet us observe first that f(B) is a 3-cell by M. Brown’s Theorem 1 of [2].
Then assume C = f(B) and next consider the homotopy 12 BxI—+B
retracting B to B,. Now define the homotopy h: €' xI—( in the follow-
ing way:

B, t) =fe[f ), f] for wel—d,
for xed.

* Work on this paper is supported by contract NSF-611665.
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It is easy to check that 4 i3 a strong deformation retract of € and so
the proof has been reduced to the Theorem 1.

QUESTION. Is the Corollary still valid if the set B, is assumed to be
an acyelic continuum?
The Theorem 1 is an easy corollary of the following one:

THEOREM 2. Let @ be the ball x*+y*+2 <4, I, be the segment
—~l<e<l,y=25=0 and let A be an arc which is a strong deformation
retract of Q. Then any homeomorphism of I, onto A can be extended to
a homeomorphism of @ onto itself. .

Proof of the Theorem 2 will be preceded by some lemmas. Let the
symbols Z, C, S and % keep the meaning they got in the definition of
strong cellularity.

Remark. If X and ¥ are disjoint subsets of 8 and 7 (X) A hy(T)
= 0 then

MX XI)AR(Y <xI)=0.

Let henceforth Z = 4 and [ = ,|S.
LeEMvA 1. If Bis a continaum in A then {~'(B) is a continuum in S.

Proof. Suppose [ {B)=B' =X u¥ and X~ Y =0. Since the
0-dimensional homology group Hy(B’) # 0, then by a standard duality
theorem H, ,(S—B’) # 0 and there exist two cycles 3° in B’ and yé’_l
in §—B’ which are linked in §. They can be chosen so that the carrier
of 1° is the set {z, y} and the carrier of y5™" is a continuum M. Then
F =f(3) is an are or a point and does not intersect B.

Denote by f(x) f(y) the subarc of B with the end-points 7 (x) and (y).
Let Jy be the arc Ahl{z, y} «I] v f(x) f(y) and J, be an arc with the end
points # and y which Hes in (E"—C) v {z, y}. The simple closed curve
J =J, uJ, carries a eycle y; which links y¥~ in E" On the other hand
R(M 2I) and J are disjoint by our Remark and therefore 5™ is homo-
topic in B"—J to a cycle lying in F; but every cycle bounds in F and
50 957 '~0 in E"—J. This contradiction was a result of our false assump-
tion that f~(B) is not connected.

Further considerations will be restricted to the 3-space FB.

Leyva 2. If B is a connected subset of A containing one end-point
of A, then f7U(B) is a simply counected subset of S.

Proof. Let B +* 4 for otherwise the Lemma 2 is obvious. If B is
open in 4 then its complement B’ is an are or a point. Therefore f~(B’)
= 8—f"%B) is a connected set by Lemma 1. Hence f (B) is simply
connected. If B is closed in 4 then B’ is open and 7 (B’) is connected;
hence 77'(B) is simply connected.

Let 8; = he(S) and C; be the 3-cell bounded by S§; in E3.
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LEMMA 3. For any interior point x of the arc A fthere exists a topo-
logical disk Dz in C such that the following conditions are satisfied:

(1) Dz S; is a simple closed curve for t < 1, and the point x for t = 1.

(2) Dg cuts the cell C between the end-points of A.

(8) Dy is locally tame at every point except perhaps at .

(4) For any two disks Dy and Dy, m 3y, there is a number 1, such
that 0 <ty <1 and Ciy ~ Dy~ Dy = 0.

(B)If 0<ty<t<1 and W is the closure of Ci,—Cr,y Q" is the clo-
sure of any component of W—Dy and P is the closure of that component
of Cs,—(Dz v Dy) which contains no end-points of A, then Q' is a tame
3-cell and T = W ~ P is a tame solid torus.

Proof. Construction of D;. We adopt the following notation:
Let a,b be the end-points of 4; B, =[a,z) be a closed-open subarc
of A; Gy = {7 (By) is a simply connected domain in § with the boundary
Bd G, contained in fi(x); F =f'(a) is a closed, simply connected set
in Gz; Ry = G—F is an open annulus.

Define a sequence {Jm} of simple closed curves in Rs as follows:
Tet J, = J be a simple closed curve which cuts G between F and BdGs
and such that the distance o(Jy, BdGy) < 1. Suppose that J» has been
already defined for some m > 1. Let Jme1 be a simple closed curve which
cuts G, between Jn, and Bd B, and such that o(Jwm+1, BdB;) < 1/(m+1).

Denote the annulus in G, bounded by Jm and Jn:1 by Em and con-
struct the following deformations:

a. A sequence of isotopies g&m: I % [(m—1)[m, 7n/(-7n+1)L—>Rm
m=1,2,3,.., simply denoted by g™ and such that if ap) = g"(p, t)
then

Jom—1yim(P) =D 5 Gpmr1Tm) = Tma -

b. An isotopic deformation g: J5x[0,1)—>Rs such that

- m—1 L =1,2,3,..
42(p) = g gm o Gip(p)  for  ——<i< g and m=1,2,3,

¢. A pseudoisotopy ya: Js xI->C such that
alp s 1) = Tagi(p) 0<t<1,
Pa(p,1) = -
Then D, = yoJs xI) is the desived disk. It is evident that D, satisfies
condition (1). Now we check the other ones. -
Condition (2). Let I" be that component of O -—D, which contains

the point a. It follows from the construetion that ' C {z} v Rl (Ba) x.I]. ]
but be {x} U h[f (Bs) xI] and so there is no continuum in €—D; which

could contain both a and b.

for
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Condition (3). Let p e Dz—{x}. There is a number s such that
0 < s<1and peDs—0Cs. Let D be the closure of a component of §—D,,
D’ be the closure of a component of S;—D; and R = D;—C;. Then

peRCDUROVD =§

and 8" is a sphere. It can be easily shown that S’ is bicollared and hence
tame by M. Brown’s Theorem 1 [2]. Therefore D; is locally tame at p.

Condition (4). By construction Dg= yz(JzxI) and similarly
Dy = py(Jy xI). Notice that y,(J,x1) ==z for z=x,y. Given disjoint
neighbourhoods U, and U, of x and y respectively we can choose
a number #, such that 0 <t <1 and w(J, « [, 1])C U, for 2=z, y.
Then {, is the right number.

Condition (5). It is easy to see that @' is a tame 3-cell because
its boundary is a tame sphere by much the same reason that S’ is one.

In order to prove that T is a tame solid torus it will be sufficient
to show that its boundary is a tame torus and that there are two tame
disjoint disks in T which span BdZ.

a. BAT s a tame torus: It is clear that BdT is a torus for

BdT= Tr‘\ (_Dszyu St,,U Stl) .

Also it is quite obvious that BdZ is locally tame at the interior
points of the sets '~ D, 2=, y, and T A Sy, i = 0,1. And at the
boundary points of these sets Bd T is locally tame by Doyle’s theorem
concerning the unions of cell pairs in E® [3]. Hence, by the theorem
of Bing and Moise [1], Bd T is tame.

b. There are two disjoint, tame disks Dy, D, in T such that

DinBAT =BAD;, i=1,2.

By condition (4) the simple closed curves J.; — ¢i(J.), =&, y, arc
disjoint subsets of §. In the annulus bounded by these curves choose
two disjoint arcs 4,, 4, having with each curve only one end-point
in common. The mappings ¢, ¢ define an isotopy of the set Jo ;U Jyy,
which can be extended to an isotopy

0 (Jagg v dyg v Ad;o 4,) <[y, 18

Let hg*(p, ) stand for h[g*(p,1t),1]. Then the sets Dy = hg*(d; x[ty, 1,1
4 =1,2, are the desired disks.

Proof of the Theorem 2. Let y: I,—>4 be a homeomorphism
of the segment I, onto the arc 4. In order to produce an extension of
this homeomorphism to a homeomorphism of @ onto itself there will be
given two isomorphic decompositions P, and P, of ( into tame 3-cells,
tame solid tori and points of I, or 4 respectively.
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Standard decomposition P;. Let Ky, m =0,1,2, ..

"”‘I'lx.z_, ~m+1?)2, m-"—1~‘1<1
my2?) T\ Y TimaT ) s

Notice that Ky =Q, K1 CIntKy, and ) Kp = I,.

m=0
For each fraction of the form p/2? in lowest terms and with
—1 < p[2? <1, let

.y be the set

Eppa = {(&,y,3) e Kol & = p/2q} -

Note that Eype is a disk which spans K, and Fyo Fyp v Eyaw E_gy v
U ... w Bi_sq separates K, into 2'7¢ pieces. The closure of each compo-
nent of K,—K,.; minus the sum of the E’s is either a tame 3-cell or
a tame solid torus. The elements of P; are the points of I, these 3-cells,
and these solid tori.

Curvilinear decomposition P,. Adopt the following notation. The
number s will stand for both the point (s, 0,0) of I, and for its image
in A under the homeomorphism y. This should cause no confusion. With
the aid of Lemma 3 we construet disks Dps which meet the are 4 at
the points p/2? and ave the counterparts of the disks Eppe.

Let Dj be the disk D, promised by Lemma 3. Let t; be the number
suggested by Condition 4 of that lemma such that no pair of D_i» ~ Cy,
Dy~ Cyy, Dip ~ Cpy have a point in common. Then let Dy = D_y2 ~ Cyy
and Dip = Dy~ Cy.

Let £, be a number such that ; <t, <1, 1/2 <1, and no pair of
D_y, D_spp, Doy, Doy Dujay Dip, Dy of Lemma 3 intersect in .
Then D' g4, Doy, Din, Dy, ave the intersections of the appropriate
D’s with Cy,. - .

Continuing in this fashion we describe a monotone increasing se-
quence of numbers f, =0, , ... converging to 1 such that Dy~
 Depan Oy = 0 i af2° 5= ¢/2%, 2° <2, and 27 < 2°. Then Djje = Dppers Cly-

The elements of P, are the points of 4 and the closure of the com-
ponents of the (Cy—Ci,,)’s minus the D”s. Note that fhese elements
are either points, tame 3-cells, or tame solid tori. The decomposition
P, is isomorphie to the decomposition P,.

Eaxtending the homeomorphism . Let z: I, Bd@ -4 v Bd@Q be
a homeomorphism such that z is an extension of the homeomorphism
mentioned in the statement of Theorem 2, y¢: BdE,—»BdD;, and x¢
takes the right half of BdQ = Bd K, into the closure of the component
of Q—D; containing the point (1,0,0) of 4. Extend y, to a homeo-
morphism y,: I, v BdQ v By—~4 v BdQ v Ds.

Yow extend y, to a homeomorphism x: Iow (Ky—Ky) v Eyw B v
U Ba—sA U (Q@—0C4) v Dy w Dy v Dip. We continue extending z so
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that in general y; takes (K,—Kir) onto (§—Cuy)y Lo onto A, and Epu
onto Dppe if 27 <2 The Lmit of the /s is the required extension

taking @ onto itself.
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On a special metric and dimension *
by
J. Nagata (Warszawa)

Once we have characterized [3] a metric space of covering dimen-
gsion <» by means of a special metric as follows:
A metrie space B has dim < »n if and only if we can introduce a met-
ric p in R which satisfies the following condition:
For every e > 0 and for every n-—3 poinds Z,¥q, ..., Yn+2 0of R safis-
Tying
o(Sal®), ) <&, i=1,.,0+2()
there is a pair of indices i,] such that
ey, y)) <e  (i5#7]).
For separable metric spaces, this theorem was simplified by J. de
Groot [2] as follows:
A separable metric space R has dim < n if and only if we can intro-
duce a totally bounded metric ¢ in R which satisfies the following condition:
For every n—3 points &, Yy, ..., Yz th R, there is a triplet of indices
4,7,k such that
ey, ¥i) < elm,ye)  (1#]).

~ The former theorem is not so smart though it is valid for every
metric space. The problem of generalizing the latter theorem, omitting
the condition of totally boundedness, to general metric spaces still re-
mains unanswered. However, we can characterize the dimension of a gen-
eral metric space by a metric satisfying a stronger condition as follows.

THEOREM. 4 metric space R has dim < n 4f and only if we can tntro-
duce a metric o in R which satisfies the following condition:

For every n-+3 points Xy¥y, ..., Yuss it R, there is a pair of indices 1, ]
such that

elye, y)) < olry ) (E1]).

* The content of this paper is a development in detail of our brief note On & spe-
cial meiric characterizing a metric space of dim < n, Proc. of Japan Acad. 39 (1963).
(*) Sea(x) = {y| e, y) < &2}
Fundamenta Mathematicae, T. LV 13
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