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Remark. Theorem 12 is the version of the recursive continuit
theorem given in Ceitin’s [1]. As Ceitin mentions there, it implies direetly
that a recursive operator on a recursively separable subspace ¥, of F intz
b_T = (N, Jzy © = y) is the restriction of some partial 1'ecwsi'vel]‘mwtional
{in the sense of Kleene [4], § 63) whose domain contains F, to F,. This
Problem Wwas proposed by Myhill and Shepherdson in [12] and wasls.olved
independently of Ceitin by Kreisel, Lacombe and Schoenfield in [5].
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A remark on Sikorski’s extension theorem
for homomorphisms in the theory of Boolean algebras
by
W. A. J. Luxemburg * (Pasadena, Calif)

1. Introduction. In [1], Sikorski proved the following important
extension theorem for Boolean homomorphisms.

THEOREM (R. Sikorski). Let B, be a subalgebra of a Boolean algebra B,
and let B’ be a complete Boolean algebra. Then every homomorphism of By
into B' can be ewtended to a homomorphism of B into B'.

Sikorski’s proof of this thecrem consists of two parts: (i) First the
following fundamental lemma is proved.

Lemma. Let B, be a subalgebra of a Boolean algebra B, and let B’
be a complete Boolean algebra. If a, ..., ay are a finite number of elements
of B and if B, is the subalgebra of B generated by By and the elements
Gy vy G, then every homomorphism of By into B’ can be extended to a homo-
morphism of B,,.

(ii) Using Zorn’s lemma or transfinite induction in conjunction with
the preceding Lemma, it is shown, in a standard fashion, that every
homomorphism of B, into B’ can be extended to all of B.

By specialization we obtain that Sikorski’s theorem implies the prime
ideal theorem for Boolean algebras (see p. 114 in [2]), i.e., every proper
ideal in a Boolean algebra can be extended to a prime (= maximal) ideal.
It was shown, however, by J. D. Halpern (see [3]) that the axiom of
choice is independent from the Boolean prime ideal thecrem in a seb
theory which will be made more explicit in due course. It seems therefore
natural to ask whether may be Sikorski’s extension theorem follows
already from the Boolean prime ideal theorem rather than from the
axiom of choice?

In the present paper we shall report on some results which were
obtained in trying to settle this question. The present investigations
seem to indicate that Sikorski’s theorem is independent from the Boolean

* Wolrk on this paper was supported in part by National Science Foundation
Grant G-19914.
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prime ideal theorem and that the axiom of choice is independent from
Sikorski’s theorem. We shall prove, however, that Sikcrski’s extension
theorem for complete and atomie Boolean algebras is logically equivalent
o the Boolean prime ideal theorem. This result can be proved in a number
of ways. The proof we shall present in this paper is based on the method
of construction by reduced powers. We have chosen this method as it
seexus to be particularly suitable for attacking extension problems. For
instance, as a by-product of our investigations, we obtain that Sikorski’s
theorem is logically equivalent to one of its immediate consequences
namely, that every complete Boolean algebra is a retract of every Boolea,n’
a].gebm of which it is a subalgebra. Furthermore, we are also able to
discuss with this methed the case that the Boolean algebra B’ is not
complete.

The remainder of this paper consists of four sections. In section 9
we first of all state which axioms of set theory are supposed to hold’
throughout this paper. Then we give a formulation of the result of Halpern
quoted earlier. Section 2 is concluded with the enumeration of a few
other axioms which will be used in this paper and which are known to
be equivalent to the Boolean prime ideal theorem. In section 3, we recall
some definitions of the theory of Boolean algebras in connection with
the notion of a reduced power of a Boolean algebra. It concludes with
2 result which is the crucial result in proving the main theorem of this
paper. The main result of this paper concerning Sikorski’s extension
theorem is given in section 4. Finally, in section 5 we shall discuss briefly
what can be said about the extension of Boolean homomorphisms it
we do not assume that the range space is complete.

The author is pleased to acknowledge that his thinking on the subject

of the present paper was greatly stimulated by conversations with
J. D. Halpern. ‘

2. Set t’heory. The axioms of set theory which shall be used
throughout “thls paper consists first of all of the axioms of groups A, B
and O of G'Ofiel (see [4]). In place of Gidel’s axiom D, the axiom of re-
gularity, which states that for every class X there exists an element
% e X such that_ @~ X =@, where @ is the empty set, we shall assume
that the following weaker form of the axiom of regularity holds:

A’XIOM D’ There‘ewists @ non-findte (in the sense of Tarski) set § of
reflemive sets (a set x is called reflexive whenever @ = {}) such that every
class X has an clement @ e X such that © ~ X C S. ‘

Axiom D' still implies the non-existence of a non-finite descending
sequence of sets (i.e., wyy; e, £ =1, 2, .0

In this paper, we shall assume that the system of azioms of groups

A, B, C and the awéom D’ hold. Thus we do not assume that the axiom
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of choice holds. The system of axioms of groups A, B and C will be denoted
by G; and G+D’ will be denoted by 2. If a theorem in this paper is
stated without further specificaticn it means that it holds in X",

The result of Halpern (see [3]) quoted in the introduction can now
be stated more precisely as follows:

TaeorREM (J. D. Halpern). If @ is consistent, then in X’ the aziom
of choice is independent from the Boolean prime ideal theorem.

In the remainder of this paper we shall also use the following axioms
which are known in X" to be equivalent to the prime ideal theorem for
Boolean algebras. (See section 47 in [2].)

(i) The Stone representation theorem for Boolean algebras, which
states that every Boolean algebra is isomorphie to an algebra of both
open and closed subsets of a totally disconnected ecompact Hausdorff
space. '

(ii) The Tychonoff theorem for compact Hausdorff spaces, which states
that every Cartesian product of a family of compact Hausdorff spaces
is compact and Hausdorff in its product topology.

(iii) The wultrafilter theorem, which states that every non-empty
family of non-empty subsets of a set which has the finite intersection
property is contained in an wultrafilter.

3. Reduced powers of Boolean algebras. For terminology
and notation about Boclean algebras which is not explained in this paper
we refer the reader to [2].

We shall only consider non-degenerate Boolean algebras; and Boolean
algebras will always be denoted by B with or without superseripts or
subscripts. The elements ¢f a Boolean algebra will be denoted by a,b,...
and sometimes by 4, B, ... (do not confuse this use of the letters 4, B, C,
which they were used in the preceding section); the zero element and
unit element of a Boolean algebra will always be denoted by 0 and 1
respectively. The Boolean operations of join and meet will be denoted
by v and A respectively. The unique complement of an element a will
be denoted by —a.

We shall now briefly recall the definition of a reduced power of
a Boolean algebra. The definition of reduced power we shall adopt here
was first given by Frayne, Scott and Tarski in [5] and has its origin in
earlier work of X.of [6].

Let B be a Boolean algebra, and let D be any set. The seb BP of
all mappings of D into B can obviously be made into a Boolean algebra
by defining the Boolean operations pointwise. Thus, for instance, if
A,B, 0B, then ¢ = AvB means that C(n) = A4(n)vB(n) for all
n ¢ D, Similarly for jein and complementation.
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Let ¥ be a filter on D. If A, B « BP, then we write 4 =¢ B if and
only if {n: A(n)= B(n) and n D} ¢§. It is easy to see that the relation
A =g B defines an equivalence relation between the elements of B2,
The set of all classes of equivalent elements defined by this equivalence
relation will be denoted by EBD/E}. It is convenient to denote the equiv-
alence class determined by an element A B2 by a. Thus with this
convention, A e a.

The set B°/F can be made into a Boolean algebra in the following
Way: avb = ¢ means there exist elements Aea, Beb and (eo such
that {n: # eD and A(n)vB(n)=C(n)}eF and similarly for the Boolean
operations of join and complementation. Since & is a filter, it follows
immediately that the preceding definitions for the Boolean operations
in BP/§ are independent from the particular choice of the elements 4, B
and € in a, b and ¢, respectively. This justifies the definitions of these
operations and it is easy to verify that with these definitions for join,
meet and complementation, B/ is a Boolean algebra. The Boolean
algebra B7/F is called a reduced power of B. In fact, BY/F is a factor algebra,
of the Boolean algebra B”. Indeed, if 35 = {A: A «®B” and {n: A(n) =0
and n eD} €&}, then since § is a filter, we obtain immediately that R
is an ideal in B2, and the factor algebra BP/Jy is isomorphic to the reduced
power BYF of B.

It VY% is a reduced power of B, then it is obvious that B is isomorphic
to the subalgebra of B”/F determined by the constant mappings of D
Into B. We shall always assume that B is identitied with this subalgebra
of BY/F and we shall write, without hesitation, B C B7/g.

If § is an ulirafilter 1 on D, then B® /U is called an wulirapower of B.
The Boolean algebras B/ and B are isomorphic whenever 1l is a fixed
ultrafilter, i.e., an ultrafilter on D consisting of all subsets ¢f D which
contain a fixed element of D.

Sikorski’s extension theorem implies the interesting result that if B
is complete and if B C B,, then B is a retract of B,. In particular, if B
is complete, then B is a rvetract of its reduced powers. In view of Theo-
rem 4.4, it seems to be questionable whether this last result holds in X"
If we assume, however, that the Boolean prime ideal theorem holds,
then we can prove at least that we have the following result which plays
a fundamental role in the proof of the main result of this paper.

TEROREM 3.1. Under the assumption that the Boolean prime ideal
theorem halds, we have thai every complete and atomic Boolean algebra is
a refract of ils ultrapowers.

Proof. It is well known that a complete and atomic Boolean alge-
bra B is isomorphic to the algebra of all subsets of the set of all atoms
of B, and hence, is isomorphie to a Cartesian product of two-element
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“ Boolean algebras. Thus, by the Boolean prime ideal theorem, B isa compact
and Hausdorff space in the product topology. From the definition of
this topology it follows immediately that the Boolean operations are
continuous and that this topology is the order topology of B. Now, let
BP/1( be an ultrapower of B. Since B is compact and Hausdorff, it follows
that for every A B2 , limy A exists uniquely. From the definition of
convergence of functions relative to filters we have that if 4 =y B, then
limy 4 =limyB. This justifies the following definition u(@) = Hmy 4
whenever 4 ¢ a. Then « is & mapping of BY/U into B. Since the Boolean
operations are continuous, we obtain that u is a homomeorphism of B/1
into B. Furthermore, by its very definition,  leaves B C B2, /U pointwise
fixed. Hence, % is a homomorphism of B/ onto B which leaves B
pointwise fixed, ie., B is a retract of B2/, and the proof is finished.

Remark. In connection with the method used to Drove the preceding
theorem it may be of interest to point out that if a complete Boolean
admits & compact Hausdorff topology such that the Boolean operations are
continuous, then the Boolean algebra is atomic and this topology is the order
topology.

4. Sikorski’s extension theorem. We shall now prove the
main theorem of this paper.

TovoreMm 4.1. In X', we have that the Boolean prime ideal theorem
18 logically equivalent to Sikorski’s extension theorem for complete and atomic
Boolean algebras.

Proof. For the sake of completeness, we shall include a proof that
Sikorski’s extension theorem for complete and atomic Boolean algebras
implies the Boolean prime ideal theorem. For this purpose, let I be
a proper ideal in the Boolean algebra B, and let B, be the subalgebra
of B consisting of all elements of I and their complements. We define
a mapping &, of B, into the two-element Boolean algebra {0, 1} as fol-
lows: hy(a) = 0 whenever a ¢S, and kya) = 1 whenever —a ¢ 3. Then Ty
is 2 homomorphism of B, into the complete and atomic Boolean algebra
10, 1}, and hence can be extended to all of B. The kernel of this extension
is a prime (= maximal) ideal containing .

Conversely, assume that the Boolean prime ideal theorem holds.
Let B, be a subalgebra of B and let h, be a homomorphism of 8B, into
the complete and atomic Boolean algebra B’. Then we denote by D the
set of all homomorphisms % of subalgebras of B, which contain B,
into B’ and which are extensions of hy. D is not empty since h, ¢ D. For
every a « B we denote by D, the set of all ¢ D such that « is contained
in the domain of %. Since the Lemma, quoted in the introduction, holds
even in X, it follows that the family {D,: & ¢ B} of subsets of D is & non-
empty family of non-empty subsets of D which has the finite intersection
Fundamenta Mathematicae, T. LV 17
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property. The prime ideal theovem for Bool'ea-n algebra?s implies that
there exists an ultrafilter U on D which contains the family {Ds: a € B}.
We shall denote by B’ the unltrapower B/ of B'. We shall now con-
struct & homomorphism %* of B into B’ which extends 7. ]ijf)r t{lus
purpose, we assign to every element a ¢ B the element h"i(a) of B' which
is determined uniquely by the requirement: there emsts' an elem?nt
H ¢ h*(a) such that H(h) = h(a) for all & el?a. The?l h* is a mapping
of B into B’ which has the following properties: h.* is a Boolea'n homo-
morphism and I*(a) = Rola) for all a By, ie., h* is an extension of &,
into B”. Of the first part of this statement we shall only prove that
R*(aVb) = I*(a) vA*(b) since the proofs of h*(aAb) =.h*(a)/\h*(b) and
R*(—a) = —h*(a) are similar. To this end, let Hyvp e h*(ayb) su._ch. that
Heyvo(h) = h{avb) for all h ¢ Dygvp and let H, and Hy be def'med similarly.
Since h(avbd) = h(a)vh(b) for all h e Dyvy ~ Do~ Dy e, .1t- follows tgat
Hyoplh) = Hy(h)VvHy(h) on an element of . From the d(lﬁﬁmtlon of B/
we conclude that h*avbd) = h*(a)vA*(D). If a<B, %nd it He hj“(a) such
that H (k) = h{a) for all h € Dy, then, since every % is an extension of k,
we have that H(h) = hya) for all heD,. Hence, h*a)= hq(a) for”a_ll
a By, i.e., B* is a homomorphic extension of %, into B". S’m.ce B is
an ultrapower of the complete and atomic Boolean algebra B', it foﬂ?ws
from Theorem 3.1 that B’ is a retract of 8. Let u be a homomorp]'n.sm
of B into B’ which leaves B’ pointwise fixed. Then the cm_nposmon
B = u o I¥ is & homomorphism of B into B’ which is an extension of &.
This completes the proof of the theorem. -

The proof of the preceding theorem shows t}xa‘c- if the Boqlean ztl-
gebra B’ is complete but not necessarily atomic as in thc: case of Sikorski’s
extension theorem, then we can still prove the following theorem.

TuEOREM 4.2. Let B, be a subalgebra of B, and let hy be homom?rphism
of B, into a complete Boolean algebra B'. Then under the ass:u,mptwn that
ihe Boolean prime ideal theorem holds, we have that there ewists an ultra-
power B of B’ such that hy can be extended to a homomorphism of B
into B, .

We indicated in the preceding section that Sikorski’s extensw'n
thecrem implies, in particular, that every complete Boolean algebra is
a retract of its ultrapowers. Thus, in view of the preceding theorem, we
have the following theorem.

TuroreM 4.3. In X', Sikorski’s extension theorem is logically eq«tf«iv-
alent to the conjunction of the following two axioms: (i) the Boolean prime
ideal theorem and (i) every complete Boolean algebra is a relract of dis
ultrapowers.

We have not been able to determine whether (i)

and (ii) imply the
axiom- of choice. D
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Our method will enable us to prove still another equivalent form
of Sikorski’s theorem which we believe to be more interesting than the
preceding theorem.

THEOREM 4.4 In X', Sikorski’s extension theorem is logically equiv-
alent to the statement that every complete Boolean algebra is a retract of
its reduced powers.

Proof. We have only to show that the axiom that every complete
Boolean algebra is a retract of its reduced powers implies Sikorski’s
theorem. To this end, let B, be a subalgebra of B, and let &, be a homo-
morphism of B, into the complete Boolean algebra B'. Then with the
notation used in the proof of Theorem 4.1, we still have that {Da: a € B}
is & non-empty family of non-empty subsets of D which has the finite
intersection property since the Lemma quoted in the introduction holds
in X'. Hence, there exists a filter §f on D containing the family {D,: a ¢ B}.
Then in the same way as in the proof of Theorem 4.1 we can show
that hy can be extended to a homomorphism %* of B, into the re-
duced power B'P/F of B’. TUnder the hypothesis that B’ is a retract of
B2I%, Tet f be a homomorphism of B'P/F onto B’ which leaves B’ point-
wise fixed, then the homomorphism fe #* is an extension of hy to all
of B into B'.

Remark. We have mentioned earlier that Sikorski’s theorem implies
the following rather interesting result. Hvery complete Boolean algebra
is a retract of every Boolean algebra of which it is a subalgebra. Hence, the
preceding theorem implies that this immediate consequence of of Sikorski’s
theorem is in X' logically equivalent to Sikorski’s emtension theorem.

5. Sikorski’s theorem for non-complete spaces. Sikorski
showed (see D on p. 119 of [2]) that the condition that the Boolean al-
gebra B’ is complete in his theorem (see introduetion) is essential. It is
therefore of interest to see what remains of Sikorski’s theorem if we do
7ot assume that B’ is complete. In this section we shall give a few theorems
which deal with this question.

If the Boolean algebra B’ is not complete, then it follows from the
Boolean prime ideal theorem that B’ can be embedded into a com-
plete and atomic Boolean algebra, namely, the Boolean algebra of all
subsets of its Stone representation space. Thus we have the following
theorem.

TeroREM 5.1. If B, is a subalgebra of a Boolean algebra B and if Ry
ts a homomorphism of B, into & Boolean algebra B', then under the assumption
that the Boolean prime ideal theorem holds, we have that h, can be extended
to a homomorphism of B into the Boolean algebra of all subsets of the Stone
representation space of B'. :

17*
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If one recalls that every Boolean algebra c¢an be embedded into
a complete Bollean algebra, then Sikorski's theorem implies that if %,
is a homomorphism of a subalgebra B, of B into a Boolean algebra B’
then %, can be extended to a homomorphism of B into any of the com-
plete extensions of B'. If we do not assume that Sikorski's theorem holds,
then by observing that in 2” it can also be shown, by a method analogous
to Dedekind’s method of completion of the rationals by cuts, that every
Boolean algebra can be embedded into a complete Boolean algebra (see
foonote 1, p. 118 of [2]), the following result is evident.

TrEOREM 5.2. Let B, be a subalgebra of B, and let by be a homomorphism
of B, into a Boolean algebra B'. Then, under the assumption that the Boolean
prime ideal theorem holds, we have that for every complete extension B,
of B’ there exists an ulirapower B’ of B such that hy can be extended to
a@ homomorphism of B into B".

We conclude this section with the following theorem.

THEOREM B.3. Let B, be a subalgebra of B, and let hy be a homo-
morphism of B, into a Boolean algebra B'. Then, if B, is complele
exiension of B’, there exists a reduced power B' of B, such that hy can
be extended to a homomorphism of B into B”.

Proof. Since h, is a homomorphism of B, into B,, it follows from
the proof of Theorem 4.3 that k, can be extended to all of B into a reduced
power of B,.

Remark. Professor Ph. Dwinger kindly informed me that the fol-
lowing result, which is a consequence of Theorem 5.3, can be obtained
by methods contained in a joint paper of F. Yaqub and himself con-
cerning the theory of amalgamation of Boolean algebras:

Let B, be a subalgebra of B, and let hy be a homomorphism of B, into B'.
Then there exists o Boolean algebra B’ which contains B’ as a subalgebra
such that Ty can be estended to @ homomorphism of B into B’

Added in proof. Due to the recent developments in set theory, the author
was kindly informed by Professor Halpern that his result concerning the independence
of the axiom of choice from the prime ideal theorem for Boolean Algebras alse holds
in Godel’s set theory consisting of the axiom groups A, B and C and the axiom of
regularity D.
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