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Refinement properties for relational structures
by

C. C. Chang (Los Angeles, Calif.), B. Jénsson (Minneapolis, Min.),
A. Tarski* (Berkeley, Calif.)

1. Introduction. By a relational strueture or, more Driefly,
a structure, we shall here mean a system U = {4, R, /.r consisting of
a non-empty set 4 and a family of finitary relations R;, indexed by
a set 7. (The precise meaning of most terms used in this introduction
will be explained later.) The restriction to finitary relations is not essential.
In case each of the relations R; is a function, i.e., an operation (for in-
stance, each ternary relation is a binary operation), we refer to U as an
algebraic structure or, simply, as an algebra. One of the most important
notions in the general theory of relational structures is that of direct,
or cardinal, product, a familiar concept from modern algebra. The oper-
ation of direet multiplication when applied to two similar structures B
and €, or to a family of similar structures B; indexed by a set I, yields
a new similar structure

BxEC, or PirBe,

respectively. This operation is applied for two purposes. On the one hand
we can use it to construet complicated structures with preseribed prop-
erties from given ones. On the other hand we can use it to study prop-
erties of a complicated structure U by representing it isomorphically
as a direct preduct of simpler structures B;, symbolically
U = Pz‘EI B .

This formula is said to give a direct decomposition of U info factors B;.

In this paper we shall discuss the notion of cardinal produet primarily
from the second point of view. (*) In this connection the notion of a (di-

* This paper was prepared for publication while the anthors were engaged in
research projects supported by TU.S. National Science Foundation grants number
(-14006, G-17957 and G-14092.

(%) Most of the results in this paper were first stated without proofs in Chang [2]
and in Jénsson and Tarski [7] and [9]. A detailed presentation of some of Chang’s con-
tributions can be found in his doctoral dissertation, Cardinal and ordinal factorization
of relation types, which was prepared under the guidance of Tarski and submitted to
the University of California, Berkeley, 1955.
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rectly) indecomposable structure is especially relevant. A structure
W = {4, R)ter is said to be indecomposable if it has more than one
element and if in every direct decomposition of 9 into two factors,
A = B xE, one of the factors B and € consists of just one element. (It
none of the relations E; is empty, then this implies that the other factor
is isomorphic to 2.) One is particularly interested in knowing whether
or not a given structure U can be represented as a direct product of inde-
composable structures, and whether this representation is unique up to
isomorphism. More precisely, we ask whether or not % has the following
two properties:

(B) There exist indecomposable structures B, associated with the
elements ¢ of some set I, such that

(1) Uz PierBi .
(0U) If (1) holds, and if also
(2) Q[%PJ'SJQ:%

where all the structures B; with { ¢ I and ¢ with j €dJ are indecomposable,
then there exists a one-to-one map ¢ of I onto J such that B; =~ G
for all ¢eI. To illustrate the importance of these properties, consider
a class K of structures satisfying the following conditions: (i) together
with any structure 9 it contains all isomerphic images of A; (ii) together
with any structures B, it contains their direct product, and conversely;
(iif) every structure % in K has the properties (E) and (U). Under these
conditions, using familiar arguments we can solve a series of fundamental
problems concerning structures in the class K. TFor instance, we can
show that, for any structures %, 8, € in K, (iv) the formula A xA ~~
=~ BxB implies A== B, and (v) the formula AX B xE =~ A implies
AXB = AxC 2~ () On the other hand, a solution (either positive
or negative) of the same problems for classes X some of whose members
fail to satisfy either (B) or (U) frequently presents considerable diffi-
culty. (3)

Obviously every finite structure has the property (E), and for
algebras it is easy to formulate various chain conditions that imply the
property (E). Apart from such finiteness conditions, no general and
useful eriteria are known that permit us to show for comprehensitve
classes K of structures that the property (E) applies to each member
of K. Of course, if (E) fails, then (U) is trivially satisfied, but is of no

(*) Under the assumptions (i)-(iii) the algebra of isomorphism types of structures
in X under direct multiplication is isomorphic to a direct power of the algebra of cardinal
numbers under addition. Compare analogous remarks in Tarski [10], pp. 250 f.

(*) See Chang [3], where further bibliographical references are given.
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interest. This is perhaps the main reason why the property (U) is frequently
replaced in discussion by another property that implies (U) and that
is of considerable interest in its application to arbitvary structures in-
dependent of whether or not they are decomposable into indecomposable
factors. We have in mind the following refinement property:

(R) If (1) and (2) ave any decompositions of % (not necessarily into
indecomposable factors), then there are structures ®;; such that

Bp =2 PiesOpy €y = PierDiy

for all pel and ged.

Obviously every relational struneture with the property (R) also has
the property (U). The converse is not true, since there exist structures
that satisfy neither (E) nor (R), and for such a structure (U) is trivially
satisfied. It is more interesting to observe that apparently it is not even
the case that () and (U) jointly imply (R). We use the word “apparently”
because the only known counter-example makes use of the following
very special case of the Generalized Continuum Hypothesis: There exists
an infinite cardinal s such that for every cardinal » the condition 2™ = 2"
implies that m = n. Assuming that m has this property, let % be a Boolean
group of order 2™. Then

and

A= PierBs

where the ovder of T is m and, for each ¢ I, B; is a 2-element group. The
groups B; are indecemposable, and from our assumption concerning m
it follows that this representation of % as a direct product of indecom-
posable structures is unique up to isomorphism. On the other hand,

W= BxXA

where B is a countable Boolean group. For any system of 2-element
groups Gy, j eJ, the direct produet

Py‘eJ (gf

is either finite or non-denumerable, and is therefore not isomorphic to B.
From this it follows that the two representations of % do not have iso-
morphic refinements.

It is an essential feature of the above example that, although the
structure 9 has the property (E), the divect factor B of U does not have
this property. This can be seen from the following theorem, whose proof
is quite easy.

For every structure W, the conditions (o) and (B) are equivalent:

(«) A has the properties (R) and (E).

(B) A has the property (U), and every dirvect factor of A has the prop-
erty (B).
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It is well known that in case 9 is an algebra each of the factors B,
in the decomposition (1) can be replaced by an algebra of the special
form A/F; where F; is a congruence relation over . Conversely, for suitable
systems of congruence relations #;, i ¢ I, we obtain a decomposition of 91,

(3) Uoe Prer WH . (4)

Thus (3) represents so to speak a standard decomposition of 9. In the
preﬁent paper we extend the notion of a standard decomposition to
arbitrary relational structures. More generally, we obtain standard de-
compositions for a quotient structure /E,

WE = Pies W/F;,

and this gives rise to the concept of a direct product

w=[]r, '
el
of a system of equivalence relations over A.

Concentrating on standard decompositions we obtain stronger forms
of the pl‘(}p.erties (U) and (R). Thus U is said to have the strict unique
flecomposmon property if there exists, apart from the order of the factors
Justhone standard decomposition (3) such that all the quotients ’JI/Fi
are indecomposable. U is said to have the striet refinement property if
for any two standard decompositions

U=PicrUF, and =P, A/ Gy
there exist equivalence relations H,, yielding standard decompositions
W/Fy 22 Pjeg UHy;, A6y Pisl WH;,

for‘ all pel and geJ. It is obvious that this implies that 2 has the
refinement property.

7 It W'lll be shown- t.hat the strict refinement property is equivalent
to c.ertaan commutativity and distributivity conditions involving the
relations F; anlej. By somewhat relaxing these conditions we arrive
at the so-called intermediate refinement property, which together with

some mild additim.la-l conditions also implies the refinement property (R).
These two properties, the strict Tefinement property and the intermediate

. (O] ?‘;}r fshe case of ] fi.nit‘e setf I, necessary and sufficient conditions on the con-
gr Atnce ;1(: a.tlctns ¥, are given in Birkhoff [1], p. 87. (As has been observed by several
writers, there is a minor inaccuracy in the formulation of these conditions: It must be
assumed that each F, commutes with the intersection Fy for every non-empty

ieJ

subset J of I, not just that 7 i j
B » ; commutes with F, for all § ¢ I. tensi infini
index sets ean be found in Hashimoto [6], p. 916. Fab) o extoniion to/Tosinie
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refinement property, are the main topics of this paper. The notation and
terminology is described in Section 2, and Section 3 contains some pre-
liminary results on direct products of equivalence relations. In Sections 4
and 5 we present our principal results on the striet refinement property,
and Section 6 contains parallel results for the intermediate refinement
property. Sections 7 and 8 contain applications to various classes of
structures. The results given there include as special cases a number of
known results concerning the refinement property, for instance for lattice
ordered structures and for centerless algebras. (For a survey of such
results and for bibliographical references, see [3].)

2. Terminology and notation. In addition to more standard
set-theoretic notation that needs no explanation, we write P;ez A4 for
the Cartesian product of the sets 4; with ¢ e I, and T4 for the set of all
fonctions on I into 4. Identifying each natural number » with the set
0,1, ...,n—1} of all natural numbers % < n, we write in particular "4
for the set of all n-termed sequences @ = {&y, &y, ..., Tp—1» Whose terms
belong to A. By an n-ary relation we mean a set of n-termed sequences.
By the field of an n-ary relation F' we mean the set of all elements that
are terms of sequences that belong to F. An n-ary relation F is said to
be reflexive if <u, %, ..., u> ¢ ¥ whenever « belongs to the field of F.
If F is a binary relation we usually write 2Fy for <z, 4> < F. If F and ¢
are binary relations, then by their relative product, F|@, we mean the
get of all ordered pairs (w, y) such that Fz@y for some element 2, and
by the converse of F', 17‘, we mean the set of all ordered pairs (=, y> such
that yFu. A binary relation F' is said to be symmetrie if F =F, anti-
symmetric if the eonditions #Fy and yFa jointly imply that @ =y, and
transitive it F|F C F. By an equivalence relation we mean a binary relation
that is symmetric and transitive. An equivalence relation whose field ~
is A is called an equivalence relation over A. Among the equivalence
relations over A are the identity relation, ids, consisting of all ordered
pairs (@, #> with # ¢ A, and the universal relation, 24, congisting of all
ordered pairs <(@,y> with #,y < 4.

Ve shall have occasions to use various elementary facts from the
caleulus of binary relations, such as the associativity and monotonicity
of the operation |, and the modular laws: For any binary relations F, G
and H,

FIHCH imples (FI§)~nHCF|(G~H),

HFCH imples Hn(FF)C(H~NF.
We shall also make use of the fact that it F and & are equivalence relations

over the same set 4, then the conditions F|G¢C G|F and F|& = GIF are
equivalent, and are necessary and sufficient for F|G to be an equivalence
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relation over 4. We further recall that if & family + of equivalence re-
lations over a set 4 is closed under the operations | and ~ (which, according
to the last remark, implies that F|G = GIF for all F, @« #), then +# iy
a modular lattice under these operations.

A function whose values are positive integers is called g simila.rity
type. Given a similarity type ¢ with domain T, by a g-structure we mean
a system A = {4, B)er such that 4 is a non-empty set and R,Coy
for ¢t e I'. In working with isomorphisms f between o-structures and with
other maps of one g-structure into another one, or into itself, we often
have to consider the image under f of a finite sequence o = (@, @y, ..., a,_;).
For notational simplicity we take advantage of the fact that the image
of z under f is simply the composition of the functions f and #, — in symbols
& = fow = <f(@y), (#1), e, F(@uy)>. Thus the definition of isomorphism
can be formulated as follows: We say that f is an isomorphism of the
o-structure A = (A, Bdier onto the g-structure B = (B, Sdter, — in
symbols f: Ao B, — if and only if 7 is a one-to-one map of 4 onto B
and, for all te T and »¢*4, the conditions = eR; and fore 8 are
equivalent.

Three methods for constructing new o-structures from given oneg
will be needed: substructures, direct products, and quotient structures.
It W= <4, Rijrer is a o-structure and B is 4 non-empty subset of 4,
then by the restriction of % to B — in symbols A (B) — we mean the
o-structure (B, By ~ By, p. Tf with each clement i of a non-empty
set I there is associated a g-structure s = (A4, Ritdeq, then by their
direct product — in symbols P;, W — we mean the o-structure
B = (B, 8ier such that B — Picr A and, for each te T, 8; is the set
of all ¢®B such that (my(i), By8) vy Byp1(8)) € Ris for all e 1.

Before discussing the concept of a quotient structure we introduce
& useful notational convention. Suppose that ¥ is a binary relation and 4
is the field of B. If # € 4, then by #/E we mean the set of all elements
Y e A such that 2 By. If X is a subset of 4, then by X/E we mean the
family of all sets 4/ associated with elements @ of X. There is a natural
way of extending this notation to various members of the hierarchy
built up from 4. Thus, if # is a function on a set T into 4, then by f/E
we mean the function ¢ on I into A/E such that g(1) = (i) JE for all i e I.

Observe in particular that if z is an n-termed sequence whose terms
belong to 4, then

ofH = /B, |8, ey Cpa[ B

Is an m-termed sequence whose terms beongp to 4/E. If R is an n-ary
relation whose field is contained in 4, then by R/E we mean the n-ary
relation consisting of all n-termed sequences o/F agsociated with n-termed
Sequences x that belong to R. Finally, it % = (4, Rdier is a e-structure,

©
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then by the quotient structure of A mod B —in symbols /B — we
mean the g-structure <A/F, By/E).r. N

Tt should be noted that in what follows we c-ou]d re:qtrlct O}JIselves
to considering quotient structuves A/E for cert{am ﬁpeclal eql_nvale:nce
relations B, the so-called factor relations of o defined in th.e next Se(}tl()jll.
In case U is an algebra it turns out that ‘the factor relations of A form
a subset of the set of all congruence relations over %A, and therefore the
corresponding quotient structures are themselves algebras.

8. Factor relations. Throughout this paper we assume that o
is a similarity type with domain T, and that A = <4, Rier is a 9-.jtruc~
tlu'e with the property that each of the relations R; is non-empty. Struc-
tures that do not satisfy this condition obviously do not h.ave t}le re-
finement property; this follows from the observation that if U is iso-
morphie to a direct product of p-structures Bi = (Bi, Sy sirer, then R,
is empty if and only if one of the relations S;; is empty. o )

We Dbegin this section by describing the process for assgqmtlng with
any decomposition of a quotient A/F a standard deeorpposlmon of Q.[/E.
This leads to the definitions of a direct product of equlvalenc.e rel_a.thns
over A and of a factor relation. These concepts are characterized intrin-
sically, and some elementary properties are listed. -

TaEoREM 3.1. Suppose f: U/H == Pic1B: where F is an equivalence
relation over A, I is a non-empty set, and for each © e I, By is a o-structure.
For iel let ‘

Fi={<w,yo e,y cd and (f(2/B), = (f(y/D);} -
Then
(i) B={Iiliel}. -
(il) For each eI, gz AF; o2 By where gulwlFi) = ([(@/B)), for all
zed. -
(ili) % WE o Pres W where (b{m/B)), = o/ for all we A and i el.
Proof. For iel let Bi = {Bi, Sither, and let
C=0,Up=PierBi, D=D,Viter = PierUF;.

Clearly B is contained in each of the equivalence relations ;lf‘i; Onﬂthe
other hand if, for all 4 eI, #Fiy and hence (f(m!E))i= (f (i B));, 1@{1
f(#/B) = {(y/B), and since f is one-to-one this implies that #/F = y/F or,
uivalently, # Ey. Thus (i) holds. ) .
“ For e;é]’I 'Ee%' the fact that B C F; implies that the function f{lh 13on
A|Fyinto B; can be so defined that gia/Fy) = (f (a/ B)), for all m’e AT ave‘(ﬁ
iy one-to-one follows easily from the definition of Fi. th'thelni;)re, g:}hét
b e By there exists ¢e ¢ such that ¢; = b, and choosing e (;SO o
f{/B) = ¢ we infer that gi(o/E) = b. Thus g; maps 4/F; onto Bi. Cons
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finally an element # ¢ 7' and a sequence X e "(”(A/Fi). If X ¢ Ry/Fy, then
X = g/F; for some s ¢R;, hence a/F ¢ RyH, fo (%/E) e Uy, s0 that the
sequence
(1) Jie X = <(f(mn/E))i7 (f(wl/E))zy ey (f (tre(l)--~1/E))f>
belongs to S;:. Conversely, if g;0 X ¢ 8¢, and if we choose €4 50
that X' = »/F, then (1) holds. For j e I with j 54 i choose %' ¢ 88, let ut
be the sequenee ¢; o X, and let ¢ be the member of °?¢ such that exl(f) =
for all jeI and % < g(t). Then ¢ €U, so that ¢ =fo (y/E) for some
yeRi. It follows that y/FieRy/Fi, bub (f(y/B)), = exld) = uf — g Xy)
= (f(ax/B));, and thevefore y/F; = 2/F; = X. Consequently X € R,/F,.
Thus each g¢; is an isomorphism.

The isomorphisms g; in (if) give rise to an isomorphism &' of & onto D
such that, for all ¢ce ¢ and i eI, (h'(0), = i (cs). To prove (iii) we need
only verify that, for all we 4,

(1 f el B)); = 97(( (@/B)),) = g7 (gu(w/F) = /B .

Durmvrrion 3.2. (i) Suppose that I is a non-empty set and, for each
iel, Fy is an equivalence relation over A. Let B — M {Filiel}. We say
that B dis the direct product of the relations Fy — in symbols

B=[]7,

i€l

if bt U/H o2 Py U/F; where (h(m/E))i =a/F; for all z e A and i 1.

(i) We lot
[]7i=24.

i€o

(iil) If G and H are equivalence relations over A, then we let

¢xH=[]z
€2

where Fy = G and Fy = H — provided this product exists.

DeFINITION 3.3. (i) Suppose that E is an equivalence relation over 4.
By a factor velation of B over U we mean an equivalence relation F over A
such that B = F X ' for some equivalence relation B over A. We let FR(U,E)
be the set of all factor relations of B over .

(ii) By a factor relation of A we mean a Jactor relation of idy over 9.
We let FR(Y) = FR(Y, id.).

TEEOREM 3.4. Suppose that I is a non-empty set, Fy is an equivalence
relation over A for each tel, and B = ") {Fy| 1 eI}, Then

B=[]n

iel

icm°®
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if and only if the following conditions hold:
(i) For each x e TA there emists we A such that z;Fiu for all iel.

() For all teT and we™A, if o|/FicRJF; jor all iel, then
2/E € R/ B.

Proof. Let D = <D, Viyter = PierU[F, and let h be ﬂ}e funection
on A/B into D such that (h(w/E))i = g/F; for all z e A a'nd el

Suppose that B is the directl product of the relations ¥;. Then,
by 3.2 (i), h: UE = D. Given z ¢4, let X be the member of D such
that X; = w;/F; for all i e I. Then there exists u ¢ {1 such that X = h(u/E),
and hence for cvery tel, u/F;= (h (u/E))i = X; = m[F;, v Fyu. Under
the hypothesis of (ii) the sequence X = ho (@ E) bel.ongs to V; because
(Xo(4)y Xa(t)y oy Xg(,)_l(;» :): x/Fi e BBy for all 4el. Consequently
/B € RyE. Thus (i) and (ii) are necessary. .
i Eﬁfﬁgfose that( gi) and (ii) hold. From th'e definitio'u of ¥ it re?,dﬂy
follows that % is a one-to-one map of A[E into D. .leen X e.D, there
exists # ¢ L4 such that X; = ay/F; for all ¢ eI, By (i) there exists u e 4
such that, for each ielI, ®:Fiu, an% hence X; = u/F;. Consequently

= . h maps A/F onto D. .
g _(;Lo(:éfi)er ,]sﬁl}lrst el z?nd ,/X cAIE). Tt Xe R%/E, then there exists
@ ¢ R, such that X = 2/, hence «/F; e By/Fy forall i e I , and consequently
TooX = hiz/B) ¢ V;. Conversely, if ho X eV;, and if we choose z eA'
so that X = a/H, then for each éeI we have (a/Fi)x = (h(2s/E)), for
E=0,1,..,0(t)—1, and therefore a;/Fi‘e Ry F;. .Oonsequent]'y,‘by‘ f(11.),
X = 2/F ¢ Ry/E. This shows that & NF an isomorphism, and E is therefore
irect product of the relations F. . .

e %‘l: Gnolv?v list some simple properties of the operation of divect multi-
plication of equivalence relations over A. The letiters ‘E, F, @ and' H,
with or without subscripts, are assumed to denote qulvalence relahor:s
over A, and whenever a statement asserts thab tvfro direct produfzt; aie
equal, this is to be understood to include the asscrtion that both products
exist provided one of them does.

COROLLARY 3.5. (i) If 1{; Py exists and J CI, then 1{ l Py emists.
(i) If J is the wnion of pairwise disjoint sets Jy with ©eI, then
[1Il Fy=1] 7;.
ieIjed; jes ] .
({il) If ¢ is a one-to-one map of J onto I, then JJ Fy _j]]J (i) +
W) If I~d =0, then [[Fix [[Fi= [] Fs.
iel i€

ieIudJ
) T Fog=]] ITF4;s.
ieljeJ jeJiel
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(vi) Ij B=[][ Py =[] G, and if el Gy for all iel, then I; — Ieo
iel iel
for all iel. ‘ ‘ -
(vil) If [I F; ewists, then ([] T R)= ] F,.
teJUK ieJ i€ K ieJNK

Proof. Under the hypothesis of (i), if we"A, we can find ye’d
that agrees with @ on J, and by 3.4 (i) there exists % ¢ A such that v, Fu
for all 1eI and hence :F;u for all ied. Let B — M {F:]ieI} and
B = {Fi|ieJ}. Consider any teT, and choose yeR, If ze a0y,
then by 3.4 (i) there exists u %4 such that @[Fy = u/F; for all ieJ
and y/F; = u/F; for alli e I —J. If o/F; ¢ Ry/F; for all i e J, then u/F; ¢ R,[F;
for all i eI, hence «/E ¢« R)/E by 3.4 (ii). Since E C F’, this implies that
the sequence #/B' = u/E’ belongs to Ry/B’. Thus (i) holds.

We first prove (ii) under the hypothesis that the divect product

1 B=[]r
exists, whenee it follows by (i) that the direct products

(2) ¢=][[7

jeJs

exist for all i e I. If o sIA, then by 8.4 (i) there exists u ¢ A such thab
& F'yu whenever ¢ « I and j e.J;, and hence @; Gyu for all § ¢ I. Furthermore,
ifte T and & «*“4 are such that /64 e RBy/G; for all 4 ¢ I, then #/F; e Ry/F;
for all j eJ, and it follows by 8.4 (ii) that /B e By/E. Consequently

(3) B=[]e.

el

Assume now that the products (2) and (3) exist. If we” 4, we apply 3.4
(i) twice to infer, first that there exists y €14 such that 23 Fyy; whenever
iel and jeJy, and second that there exists u e A such that y:Gu for
all ¢ e I. Since @; C F; whenever 4 « I and j ed1, we see by the transitivity
of the relations F; that a;F;u for all j eJ. Furthermore, if te T and
2¢™4 are such that #/F; € RfF; for all jeJ, then we apply 3.4 (i)
twice to infer that /@ ¢ R,/@: for all i €I, and hence that «/E ¢ R/E.
Thus (1) holds.

The statement (iii) is obvious, and (iv) and (v) are immediate con-
sequences of (ii). Under the hypothesis of (vi), if p eI and #G,y, then
by 3.4 (i) we can choose % ¢ A so that @Fpu and yFyu whenever p i e I.
Then y Gyu for all € ¢ I, and we infer successively that yEu, yFpu, 2Fpy.
Thus Fp, = G,.

Finally, if the hypothesis of (vii) is satisfied, then the three dirvect
products involved in the conclusion exist by (i). It «F;y forall i e J A K,
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then by 3.4 (i) we may choose « ¢ 4 such that zF;4 for all i ¢ J and yFu
for all 4 e K—J. It follows that yFiu for all i ¢ K, and therefore

w(nlﬁ) % and u(ilezFi)y.

Thus “
[Lrec([])|(]] ).
ieJNK e €K

The opposite inclusion is obvious.

COROLLARY 3.6. (i) X G = G xF.

(i) Fx(GxHy=(Fx@)xH.

Proof: by 3.5 (iii), (ii).

CorOLLARY 8.7. F' x G emists if and only if F|G =24 and, for all
teT and v P4, the conditions #|F € ByF and x/G e RQ jointly imply
that /(F ~ @) e Ry/(F ~ G).

Proof: by 3.4 and 3.2 (iii).

CorOLLARY 3.8. (i) If F ¢ FR(N, E), then FR(Y, F) CFR(U, B).

(i) If E = -[!rFi’ then Fy e FR(U, E) for all 4 ¢ I.

Proof: by 3.6 (i) and 3.5 (iv).

4. Refinement properties. After giving a precise definition of
the term “refinement property” which has already been employed in-
formally, we introduce and investigate the stronger concept of the striet
refinement property. The principal result of this section, Theorem 4.5,
gives several necessary and sufficient conditions in order for 9 to have
this latter property.

DEFINITION 4.1. We say that U has the refinement property if and
only if, given any o-structures B; and C; associated with all the elements i of
a set I and § of a set J, the conditions

U PierBi  and U Pres §;

jointly imply that there exist o-structures Dy,; associated with all the elements 1
of I and j of J such that, for all p eI and qed,

52533 o Png Dp,j and (sq = Pz‘el Di,q .

DEFINITION 4.2. Given an equivalence rdation E over A, we say that
(U, B) has the strict refinement property if and only if, for any equivalence
relations Fy and Gy over A, associated with all the elements § of a set I and §
of a set J, the conditions
wmi B=[]e

B=][]F
i€l jeJ
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joimtly imply that there ewist equivalence relations Hyy associated with all
the elements i of I and § of J, such that for all p eI and qed,

Fp=[[Hoy and G =[[H,.
jeJ iel

Using Theorem 3.1 we obtain:

CorOLLARY 4.3. If E is an equivalence relation over A, and if (U, B)
has the strict refinement property, then W/E has the refinement property.

It is not difficult to show that whether or not (U, #) has the strict
refinement property depends only on the isomorphism type of the g-struc-
ture A/E. However, we shall not give a direct proof of this fact, since
it will be obtained later, in Corollary 4.6, as an immediate consequence
of the main theorem of this section.

Lewa 4.4. Suppose that E is an equivalence relation over A and,
jor all i eI and j edJ, Fi, G; and H;; are equivalence relations over A. If

g=[]r=]]6&
iel jed

and if, for all pel and g ed,

Po=[|Hp and G =[[H,,
jeJ i€l
then Hi,.’/' =F¢1Gj = GjIFi fOT all iel and j ed.

Proof. Consider elements p eI and g eJ and let P be the set of
all ordered pairs {p, > with j ¢J and @ the set of all ordered pairs <4, ¢
with 4 eI. Then P~ Q = {{p, ¢>} and using 3.5 (i)-(iii) to show that the
direct product

Hi,j
(.yePLQ

exists, we infer by 3.5 (vii) that

anlgq =( H E#J)H ” Hi.j) = n Hy =Hyg-
iireP ,HeQ

GisePoQ
THEOREM 4.5. If E is an equivalence relation over A, then the following
conditions are equivalent:

(i) (W, B) has the strict refinement property.

(ii) For all F,F',@,G' «<FR(A, E), if E=FXF = @Gx G, then
there exist Hy, Hy, H,, Hy e FR(U, E) such that F = Hyx H,, ¥’ = H, X Hs,
G =H,xH, and @ = H, X Hy.

(ili) FR(Y, B) is o Boolean algebra under the operations | and ~.
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(iv) For all F,F', G e FR(U, B), if B =F XF', then F|G = Q|F and
(F|G) n F' CG.

(v) For dl ¥, F',G ¢« FR(U, B),if E =F X B, then (F\GIF) nF' CG. °

(vi) For all F,¥',d < FR(YU, B), if B =FXF, then GCF|(F ~ @)
C(F' ~G)F. -

Proof. Clearly (i) implies (ii). Conversely, assume that (ii) holds
and suppose !
B = H F; = H Gj .
i€l jeJ

For pel and g ed, if we let

then by 3.5 (iv)
B=F,xF, = @Gx Ga s

and it follows by 4.4 that
Gy = (Fplly) x (Fyp| Gy) .
Consequently, and by 3.5 (v),

B = [ [ ((Fy16) x (Fyl6)

qgedJ
=[] @16 <] [ Fole .
geJ qeJ

Since in this last product the first factor contains F, and the second
factor contains F,, we see by 3.5 (vi) that

Fp=[[ @6 .
qeJ
Sinee this holds for every p eI and, similarly,
Gy = [ [ (7,16
pel

for all ¢ eJ, we conclude that (i) is satisfied.
We next show that the last three statements are equivalent. With
F, 7’ and @ as given there, if (iv) holds, then
(F' ~ GF D (F ~ (FG) AF)F = ((F]G) ~F)|F
= (F|@) ~ (F'|F) = F|G = G|F.
Consequent}y (F" ~ G)|F = G|F D G. Recalling that the relative product
of two equivalence relations over A is an equivalence relation over A
18*
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if and only if they commute, we infer further that (F' ~ G |F = F|(F ~G).
Thus (vi) holds.
If (vi) holds, then

PG =F(F ~ @)= (F ~&)|F=_GF,
(FIGF) "nF' = (F@) A F' = {(FI(F ~ G)) ~F
=(FAFNF ~A~H=FGCG,
yielding the conclusion of (v). Finally, if (v) holds, then
F|G D F|((FIGF) n F') = (FIF') ~ (F|GF) = F|GIF 2 GIF ,
5o that F|@ = GIF, and
(FI A" C(FIGF)NnF' C G,

proving (iv). The three statements are therefore equivalent.

Tt (i) holds, and if ', ¥ and G are as in (iv), then it follows from 4.4
that FIG = GF and & = (F|6) ~ (F'|¢) D (F|G) ~ F'. Hence (iv) holds.
Conversely, suppose (iv) is satisfied. If B =FXF' = @ x &, then

(FI®) ~ (FIE&) = F|(¢ ~ (FI¢) = F,
(F16) |(F16) D GG =4 .

Furthermore, if t ¢ T and @ «*@4 are such that z/(F|@) ¢ Re/(F|G) and
#/(P|@) e By (F|G’), then there exist ¥, 2 ¢ B; such that #/(F|G) = y/(F|@)
and a/(F|G") = #{(F\6'). We can then find u ¢*”4 such that y/& = u/¢
and /@ = u/G'. Thus u/G e BJ6 and «/G’ e R)/G’, whence it follows
that w/E ¢« R,/E or, in other words, that u/E = v/E for some v ¢ R;. Con-
sequently «/(F|G) = v/(F|G) and /(F|@) = v/(F|G'), hence «[F = v/F
e Ry/F. We have thus proved that F = (F|@) » (F]G'). This shows that (ii)
holds.

Since (iii) obviously implies (iv), it only remains to show that (ii)
implies (iii). Assuming (i), we infer by 4.4 that F|G = GIF e FR(U, F)
tor all F, G e FR(Y, B), and that if B =TF «F =0« @, then Fn @
= (F|G) ~ (FI|G) ~ (F'|@). Since T is the direct product of the four factor
relations (F|@), (F|@), (F'|G) and (F'|¢"), it follows that the divect product
of the first three of these relations exists and is equal to F ~ &, and hence
that ¥ ~ G is a factor relation of B. Thus FR(YU, E) is closed under the
operations | and ~, and is therefore a complemented modular lattice
under these operations. To prove that this lattice is distributive, and
hence a Boolean algebra, it sufficies to show that if F, F’ and @G are any
members of the lattice, and if B =F xF', then ¢ = (Fr G)|(F' ~ ).
Since (ii) implies (iv) and hence also (vi), we have GCF|(G~E"), and
the desired equation therefore follows by the modular law.
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The proof of the theorem is now complete.

COROLLARY 4.6. Suppose that E is an equivalence velation over A.
Then (3, E) has the strict refinement property if and only if W/E has the
sirict refinement property.

Proof. The correspondence F-»F = F/E is an isomorphism of the
lattice £ of all those equivalence relations over A that contain F onto
the lattice £ of all equivalence relations over A[/E. It is eagy to verify
that this correspondence maps FR(U, E) onto FR(A/E) and that, for
all 7, ¢ in £, the conditions F|¢ = G|F and F|G = G|F are equivalent.
Consequently, FR(, E) is a Boolean algebra under the operations |
and ~ if and only if FR(A/E) is a Boolean algebra under these operations.
From this the corollary readily follows by 4.5.

5. Decomposition functions. The notion of a decomposition
function will serve roughly the same vole as the projections associated
with a direct decomposition of an algebra with a zero element. We could
associate a system of decomposition functions with any representation
of id, as a dircet product of factor relations, but it is simpler to consider
only direct products of two factors, and because of Theorem 4.5 this
tmms out to be sufficient.

DrriNITION 5.1. By a decomposition function over U we mean a func-
tion f on A dnto A wilh the following properties:

(i) For all we 4, f(z,x) = 2.

(ll) For all &, ?/iZ€A: f(f(m,ll%z) =f(m,z) = f(oa,f(y,z))-

(ili) For all 1eT and x,y,2 WA, if m,yeRy and 2 = (0w, Yr)
whenever k< o(t), then 2 e Ry.

We lot. DF () be the set of all decomposition Junctions over A.

If f is a function on *A into A, then we let 7 be the function on *A into 4
such that (4w, y) = fly, ®) for all =,y ¢ 4, and for each u e A we let fu
be the junction on A into A such that fu() = f(a,u) for all zeA.

COROLLARY 5.2. Suppose that F,F ¢ FR(Y) and idy =F xF', and
Tet f be the nunique function on 2A into A such that, for all z,yeA,

(1) aFf(z,y) end flz,NF'y.
Then { « DF(N) and, for any element w e 4,

(i) o= {{x,y|a,y e A and fu(®) = [ul¥)},
(iii) =,y |2, yed and Fw) = falu)} -

Conversely, if | e DF(N) and w e A, and if F and F' are defined by (ii)
and (iii), respectively, then idy = F x F’ and (i) holds.

Proof. Under the hypothesis of the first part, f obviously satisfies
the first condition of 5.1. Also, for any ,y,ze4d, zFf(x,y) and
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flz, ) Ff{f(z,y),2), hence =Ff(f(z,¥),2). Furthermore, replacing #
and y by f(z,y) and 2 in (i) we find that f(f(», y), 2)F 2. Since f(z,2)
is the unique element » such that 2Fv and vF’ z, We infer that the first
equality in 5.1 (ii) holds. The second equality is proved similarly.

Finally, if @, y, ¢ satisfy the conditions of 5.1 (iii), then 2/(F = o/F
e ByF and 2/F' = y[F' ¢ Ry/F', and since F ~ F' = id,, we infer by 3.7
that 2 ¢ R;. Thus f e DF(Y).

For any elements 2, y, w ¢ A we bave zFf, (@) and yFf,(y). Hence if
fu(®) = fuly), then @ Fy. Conversely, if s Fy, then by (i) fu(o)Ffu.(y). Bub
ful@)F'u and fu(y)F'u, hence fu(@)F'fu(y), and since FAF' =idy,,
we infer that fu(#) = fu(y). Thus (ii) holds, and (iii) can be proved
similarly.

Now suppose f e DF'(UA) and % ¢ 4, and let F and F' be defined by (ii)
and (iii). Then # and F are equivalence relations over A. It follows
from 5.1 (ii) that (i) holds for all #,y ¢ 4, and hence that F|F' = 24.
Furthermore, if #Fy and xF’y, then

@ =f(f(@,0), flu, ) =F{fly,w), flu, ) =y .

Hence F ~F' = id,. Finally, if t ¢ T and # ¢ *Y4 are such that z/F ¢ RyfF
and z/[F' e Ry/F’, then there exist x,y ¢R; such that 2/F = «/F and
s[F' = y/F'. Then for each k < o(t) we have xxF2 and zpF'yr, hence
2 = f(wr, yx). According to 5.1 (iii) this implies that z e R;. We have
thus shown that idy = F x F’.

DerFINITION 5.3. If ids = F X F', then by the decomposition function
associated with F and F' we mean the unique member | of DF(N) such that,
for oll 2,y e A, oFf(zx,y) and f(z,y)F'y.

CoROLLARY 5.4. If idy = F x ', and if f is the decomposition function
associated with F and F’, then f* is the decomposition function associated
with B and F.

Levma 5.5. If fe DF(A) and x,y,w,v,we A, then the following
statements hold:

() fulu) =u.
(1-1) foful@) = faolx).
(i ufv(m) fdu (v).

(1v) ful®) = @ if and only if Pulz) = u.
(v) ful®) = foly) implies that ful®) = fu(y)-
(vi) fu(®) = fuly) of and only if fo(®) = foly)
(vil) ful®) = fuly) and ["u(®@) = f*u(y) if and only if =y
Proof. The first statement is just another form of 5.1 (i),
from 5.1 (i) we infer that fofu(®) = f(f(e, ),

and
U) =f(@,v) = fol#) and

e ®
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j,,f”w)_f(u fw )) = f(u, v) ) = 1%(v). Hence (i) and (iii) hold. By (iii)
and (i), if ful®) = w, then f%,(x) = f wfu() = u. Conversely, it f%(z) = u,
then by 5.1 ( ) ), ful@) = @, w) = [z, [u(@)) = (0, (4, 2)) = } (@, ) = o.
This proves (1v)

Using (ii) we see that the condition f.(z)
—-fwfu _f’wf‘v ?I
case (vi). Finally, if fu(@) = fu(y) and f%(
o =f,0) ={(f (@, u), f(u, ) = f{ful®)

= y. Consequently (vii) is also satisfied.

= f,(y) implies that f.(x)
= fu(y). Thus (v) holds, and hence so does the special

= {%(y), then by 5.1 (i), (ii),
f (@) = £ (ful), %) = 1(y, 9)

THEOREM 5.6. The following conditions are equivalent:

(i) A has the strict refinement property.

(ii) For all f,9 ¢ DE(N) and u e A, fugy = Gufu-

(iii) Given any f,g ¢ DF(A) and mo,ml,wa,%szi, there exisis 1 e A
such that fugu(®s) = Gufulw) and FPuguls) = gufulzs) for £=0,1,2,3.

Proof. Assume (i). Given f,ge¢DF(N) and ue.d, there exist
F,F,G,& «¢FR(A) such that idy = F xF' = G x @, and such that f
is the decomposition function associated with F and F', and g is the de-
composition function associated with & and @'. By 4.5 we have

(FIGIF) ~F'C G and [@E)~AF'CHE.
For any & € 4,
ful@) FoGgu(@) Flugul®) and  ful@e)F'uF fugu(®) ,

and therefore fu(z)Gfugu(z)

fugul®) Fgu(z) G 4

or, equivalently, gufu(®) = gufugu(®). Also,

and  fugu(®)F u,

so that fugu(z)G u or, equivalently, gufugu ) = fugu(®). Consequently,
fugu(®) = gufu(®), as was to be shown. . ‘

Clearly (ii) implies (iii). Finally assume (iii). To prove (i) it suffices
according to 4.5 to prove that if

idy =FxF' =Gx@&,

then
(1) GCF|(FAn@C(F A@F.
Tet § and g be the decomposition functions associated with F and 7'
and with G and @, respectively. Suppose z@Qy, and let 2= f(z, y).

Choosing u € 4 so that

fugu gufu(’LU) and fdugu(w) = g,,,fdu('w) for W=1=a,Y,%,
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observe that gu(®) = gu(¥), ful®) = fu(2) and fdu(y) = fdu(z). Hence

fugu(y) = fugu(®) = gufu(®) = guful(?) = Jugu(?) ,
Iugu¥) = 0u1"u(¥) = guf®u(2) = fugul2)

whence it follows that gu(y) =gu(2) or, equivalently, 2Gy. Thus
#F2(F' ~ G)y. We therefore see that the first inclusion in (1) holds.

Now suppose (F|(F’ ~ @)y, and let 2 =f(x,y) and « = fly, ).
Since ¢ is the unique member of A such that #FzF'y, we must have 2¢ .
Choosing » ¢ 4 so that

fogolw0) = gofolw)  and  fog(w) = gofow) for w=ua,y,e,u,

observe that fu(2) = fo(@), %(5) = F"s(¥), fol®) = ful), T%(u) = %(z) and
§o(2) = go(y). Consequently,

Fogolw) = gofo{u) = gofol(y) = fogoly) = foge(2)
= gofu(2) = guofo(®) = fogu(e) ,
Fogow) = go"ule) = go%(2) = foul) ,
whence it follows that g,(u) = gu(#) or, equivalently, #Gw. We thus have

(¥~ G)uFy. This establishes the second inclusion in (1), and the proot
of the theorem is complete.

6. The intermediate refinement property. We shall now
introduce and study a property that is weaker than the strict refinement
property but still implies, together with some mild additional con-
ditions, that the given relational structure has the (ordinary) refinement
property.

DEFINITION 6.1. Given an element u e A, we say thai (U, u) has the
intermediate refinement property if and only if the following conditions are
satisfied:

(i) For ali ¥, G e FR(N), w/(F|G) = u/(GiF).

(i) For all F,F', & ¢ FR(Y), if idy = F < F', then

44/((F|G) A (F'E) = i@ .
We say that A has the intermediate refinement property if and only if (i)
and (ii) Rold for some u e A.

It easily follows from 4.5 that 9 has the strict refinement property

if and only if (%, #) has the intermediate refinement property for every
ued.
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THEOREM 6.2. For any u e A the following conditions are equivalent:
(i) (U, ) has the intermediate refinement property.

(ii) For all ¥, F', G ¢ FR(N), if idy =F x ', then u/(F|G) = u/(G|F)
and uf((F|@) ~ F') C /G-

(it) For all F,¥', G ¢ FR(N), if idy=F «F', then u/((F|G|F) ~F")
C u/@. .

(iv) For all F, T, G e FR(N), if idq =T x I, then w/G Cu/(PIF’ ~ @)
Cuf{(F" ~ @)|F).

Proof. The conditions (ii)-(iv) of the present theorem are obviously
weaker forms of the conditions (iv)-(vi) of Theorem 4.5, and the proof
given there of the equivalence of the latter three conditions can be imitated
here to prove that (ii), (iii) and (iv) are equivalent.

If (i) holds, then under the hypothesis of (ii) we have

w/(F|@&) ~ F) C ul((F|6) ~ (F')6) = u/6,

and (i) therefore is satisfied. Conversely, suppose that (ii) holds, and
let F, F' and G be as before. If » eu/((F]G) ~ (F’]G)), then there exist
y,% € A such that uFyGx and uF'zG». Hence uFy Gz and «F’z, whence
it follows by (ii) that wG2. Since 2@, this implies that %Gz Thus
wf(FI@) ~ (F'|@)) = u/G, and (i) holds.

LemMA 6.3. Suppose we A, and suppose that (U, u) has the inter-
mediate refinement property. If G e FR(N) and Fy;e FR(A) for all iel,

and if
idy = [ [P,

then e
wl@G = ) {w/(F|@)| 1eI}.

Proof. There exist G’ e FR(UA) such that idy = ¢ x ¢, and conse-
quently for each ¢ eI, :

wW[Fy = w/(Fel6) ~ w/(Fi| &) .

If @ euf(Fy|G) for all i eI, then we can find elements y; ¢ 4 such that
Gy Fix. Furthermore, there exists 2 e A such that 4G’ 2G@». For each
t e I we have u Gy FixGz and @'z, whence if follows by 6.2 that uF;z.
Since this holds for all eI, we infer that #= w. Thus uG@x or, in
other words, = e u/G.

Lemwa 6.4. If we A is idempotent, and if F,F’ « FR(A) are such
that idq =T < F”, then W(w/F) = A/F".

Proof. For each & ¢ u/F let f(z) = «/F". For each y ¢ 4 there exists
# e A such that uFxF'y, and hence # € u/F and f(x) = y/F'. Thus f maps
w/F onto A[F'. If &,y e u/F and f(s) = f(y), then 2Fy and zF'y, and
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hence # = y. Therefore f is one-to-one. Finally, assuming that t e T and
» € /), we have z/F = 2/F where z = <{u, 4, ..., u), and since # ¢ R,
by hypothesis, this implies that «/F ¢ By/F. It therefore follows by 3.7
that the conditions » e RB; and 2/F’ ¢ R/F’ are equivalent. This shows
that f is an isomorphism.

LEMMA 6.5. Suppose u e A, G c FR(N), Fi e FR(A) for each + € I, and
idg =[] 7.
i€l
If w]@G = N {u/(GF)] ¢ € I}, and if for each i e I we lot Hy be the restriciion
of Fy to the set B = u/@, then in the substructure B = (B, Sier = A(B)

of A we have
ity = [ [ H:.
tel

Proof. It is clear that each H; is an equivalence relation over B,
and that their intersection is the identity relation over B. For each s « 'B
there exists v ¢ A such that x:Fyv for all 4 e I. Thus v belongs to all the
sets u/(G|F;) and hence, by hypothesis, v ¢ B and @, Hv for all ¢ e I. Now
suppose te T and « ¢*®B, and assume that «/H;e Sy/H; for all iel.
Then it is easy to verify that «/F; « R;/F; for all ¢ e I, whence it follows
that « ¢ R; and, consequently, #¢S;. The conclusion now follows by
Theorem 3.4.

THREOREM 6.6. If there ewists an idempotent element u e A such that
(A, u) has the intermediate refinement property, then A has the refinement
property.

Proof. If

A ~PierB; and A~P;sy,

then by 3.1 and 3.2 there exist Fy, Gy e FR(Y), associated with all the
elements ¢ e I and § ¢J, such that

ids=[[7e, iu=]]e,
iel jeJ

and such that B, WF; for all i e I and €; == A/Gy for all j ¢ J. For each
pel and qed, let

Fp= HFi and gq= HG;,
p#iel g#jed

and leb Gy, and Fy, be the restriction of @, to u|F, and the restriction
of Fy to u/G,, respectively. Then, by 6.4,

By 2 W(u/Fp) and Cp = Aw/Gy) ,

©
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and therefore, by 6.5 and 3.2,
By o2 Pies W(u/Fp) |Gy and  Cg oz Picr W (u/G)Fiy

Furthermore, letting

Fog= [] Fig and  @o= [] @,

priel gEies
we again use 6.4 to infer that
W/ Fp)|Grpg 22 W/ Gpg)  and  A(u]T)|Frpg = A(wFpy) .

Consequently
%p o~ Pig] %(%/gp,i) and, (Zq = Pie! ‘)I(u/E,q) .

The proof will therefore be complete if we show that, for all p ¢ I and
qed, 4|Gpg = u/Fpq. But, in fact, the condition # ¢ u/@,, is equivalent
to each of the following statements:

zeu/@y; whenever ¢#jed,
zeu/F, and w eu/G; whenever ¢#jed,
xeu/F; and ® eu/G; whenever p F#iel and g#jed.

By symmetry, the condition zewu/Fp, is also equivalent to this Iast
statement, and we therefore conclude that u/Gpq = u/Fpq.

TeEEOREM 6.7. Suppose ue A. Then (U, u) has the intermediate 7e-
finement property if and only if, for all f, g « DF (W) and © € A, fugu(a) = u
implies that gufu(s) = u.

Proof. Assuming that this implication holds, we shall show that
the condition 6.2 (iv) is satisfied. This is equivalent to the assertions
that, for all F,F', @, @ ¢ FR(A) with idy=F xF' = @x G, and for
all ze A,

1 @z implies that wF|(F' ~ @)z,
(2) uF | (' ~ G)o implies that w(F' ~ Q)| Fx.

Let f and ¢ be the decomposition functions associated with the relations ¥
and ' and with @ and @, respectively. Assuming that uGw, let 2 = f(u, #).
Then 4F2F' 5. Furthermore gu(e) = %, hence f%gu{w) = u, and therefore
guf®u(®) = w or, in other words, gu(s) = 4. Thus gu(2) = gu(®), Whence it
follows that 2Gx. Consequently wFz(F' ~ @)@, and (1) is seen to hold.

Assuming now that u¥F [(F' ~ @)a, let 2 = f(u,») and v = f(z, v).
Then «F2F” z and 2 G 2. Since gufulz) = gufuf u(®) = 4, We have fugu(z) = u.
But gu(2) = gu(#), so that this implies that fugu(®) = u and, consequently,
9u(®) = guful®) = u. Thus uGov, and we conclude that «(F' ~ G)vFz.
This proves (2).
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Conversely, suppose that (9, ) has the intermediate refinement
property. Let the decomposition funetions f and ¢ be associated with the
factor relations F and I, and ¢ and @, respectively. For 2 ¢ A the fol-
lowing conditions are equivalent:

fugulw) =u, gu®)Fu, w(F -G )gu(e)Gn, o e u/((F ~ @)16).
Similarly gufu(®) = v if and only if weu/((GmF’)iF). To prove that
fugu(@) = u implies gufu(®) =u it therefore suffices to show that
wf((F ~ G)6) C uf((¢ ~F')|F).

By 6.2 (iii) we have

ul((& ~ F")|F) D /(((FIG|F) ~ F')|F)
and it follows by the modular law that

uf((€ ~ F)|F) D uf(FIGIF) ~ (F|F)) = uf(F|GF)
Dul(FI6) 2 (T ~ @)]6) .

7. Structures with a binary relation. The sufficient con-
ditions that have been obtained so far for the existence of common re-
finements are not in such a form as to be easy to verify for specific strue-
tures. For such applications the criteria should be expressed in terms
of the relations R, or in terms of some other relations § obtained from
these by means of some definite constructions. In general, if a new struc-
ture ' is constructed by adjoining to A an n-ary relation S, then FR(A)
2FR(W) and DF(A') D DF(A). In order for equalities to hold in these
two formulas it is necessary and sufficient that the following condition
be satistied: For all f ¢ DF () and @,y,2¢"A, if o,y < § and if 25 — f(@r, yx)
for k=0,1,...,m—1, then #e 8. If § is defined in terms of the relations R,
by means of a first order formula a, conditions can be formulated in
terms of the logical structure of a that will insure that S has this property.
Actually we shall describe the admissible constructions in purely mathe-
matical terms, and for this purpose some additional notation is needed.

By the juxtaposition of an m-termed sequence # and an n-termed
sequence y —in symbols #7y — we mean the {m +mn)-termed sequence
oy Buy oy Bonmty Yoy Yoy ooy Yna. If §; and S, are two relations, then we
let 8,78, be the relation consisting of all sequences of the form 2”7y with
wel and ye8,. If u> 1, and if § is an m-ary relation whose field is
contained in 4, then we let P(§) and @ (8) be the (n—1)-ary relations

such that, for all 4. ™4,
2 e P(8) if and only if 47¢y> ¢ § for some yed,

2 eQ(8) if and only if #(y> €8 for all yeA.
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If 4, § and » ave natural numbers with ¢ <j < n, then we let I;;,, be
the set of all © ¢ "4 such that o; = »;. Finally, if § in an n-ary relation,
and if ¢ is a permutation of the set n={0,1,..,n—1}, then we
let Sp be the n-ary relation consisting of all sequences of the form
Bop = {By)) Do)y -3 Tpin—1)> With @ e 8.

DeFINITION 7.1. By A(N) we mean the intersection of all families F
of relations whose field s contained in A having the following properties:

(i) RieF for all tel, "A T jor all positive integers n, IjjmeF
whenever ©,§,n are natural numbers with 4 < j < n.

(ii) For any n-ary relation 8 with n>1, if SeF then P(8) ¢ F and
Q(8) e F and Sy ¢ F whenever p is o permutation of n.

(iii) For any 81,8, ¢ F, 8, 8,¢F and if 8; and 8, are velations of
the same rank, then Sy~ 8y e F.

COROLLARY 7.2. Suppose SC"4 and 8eA(N). For all fe DF ()
and ©,y,2, "4, if ®,yeS and if zx = g, yx) for k=0,1,..,n—1,
then ze 8.

Proof. It is a simple matter to check that the class ¥ of all relations §
with the above property satisties the conditions 7.1 (i)-(iii), whence it
follows that 4 () C F. .

For the formulation and proof of the next theorem, which is the
principal result in this section, some additional terminology is needed.
Suppose that § is a binary relation. An element u in the field of § Is said
to be antisymmetrie with respect to § if, for every element x, the con-
ditions «Sz and xSw jointly imply that 2 =u. A finite sequence
%= {Zgy By -, #np 18 said to S-conneet two elements & and y if © =z
and ¥ = & and, for each ¢ <, either 2;82;, or 2;4,182. We say that @
and y are (S, n)-comnected if there exists an (m-1)-termed sequence
that S-connects # and y, and we say that # and y are S-connected if they
are (8, n)-connected for some natural number . Finally, we say that
the relation § is connected if any two members of the field of § are
S-connected.

THEOREM 7.3. Suppose e A. If there ewists a reflewive and connecled
binary rvelation § e A(N) such that the field of 8 is A and w is anti-
symmetric with respect o 8, then (U, w) has the intermediate refinement
property.

Prootf. Although § is not assumed to be a partially ordering relation,
it is suggestive to write @ < 7 or, equivalently, y > @ for #8y. Let = De
the smallest equivalence relation over A such that the conditions o < ¥
and y < o jointly imply that # =y, and observe that  =u implies that
@ = u. For v e 4 let ¢(v) be the set of all elements z ¢ 4 with the property
that fuge(®) = gufu(z) for all f, g e DF(N).
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We shall prove by induction on the pesitive integer n that the fol-
lowing statement holds for all z,v e A:

® ’ If @ and v are (8, n)-connected, then z e C(v).

Once this has been established the theorem readily follows. In fact, since
it iy assumed that 8 is connected and that the field of 8 is 4, (1) implies
that O(v) =4 for all ved, and hence in particular ¢(u) = 4. Con-
sequently, if f,geDF(U), and if we 4 is such that fugu(e) = u, then
Jufu(@) = u, and therefore g,fu(#) = u. From this the conclusion follows
by 6.7.

Observe that, for all f e DF(Y) and @,y,2,2,y",ve 4, the follow-
ing statements hold:

@) Ife<a’ and y<y', then f(z,y) <f@,y').
@) If <y, then folo) < foly)-
(4) If <z and y <z, then f(z,v) < =.
(8) If e=a" and y =y, then f(z,y) =f(@,y").
(6) If fol@) < foly) and f'o(@) < f'uly), then o < y.
(M If fola) =fuly) and (@) =1"s(y), then o =y.

In fact, (2) is simply a translation of 7.2 into the present notation,
(3) follows from (2) and the fact that v < v, and (4) is obtained from (2)
by recalling that f (2, 2) = 2. Of course the dual of (4), obtained by writing >
for <, also holds. If =" and y=y’, then there exist Toy T1y eoey Ty
S0y 81y ey Sn € A such that @ =7y, & =1rp,y =5, and ¥’ = 8,, and such
that 7 <71 and 7y <y for $=0,1,..,m—1, and 85 < 841 and
§j+1 <8 for §=10,1,..,n—1. Since y <y, we infer by (2) that flre,y)
§f(r.i+1, ¥) and f(rip,y) <f(r,y) for ¢ =0,1,..,n—1, and from this
it follows that f(z,y)=f(z’,y). Similarly f&',y)=f',y), and we
ﬁherefore.have f(@,y)=F(&',y’). This proves (5). Finally, (6) and (7)
are obtained from (2) and (5), respectively, by using the formula

H{fo(@), f*(@)) = @, and the corresponding formula with « replaced by y.
We next prove the following statement:

(8) If w,veClw) and if fo(@), gofolw) e C(w) for all f,g e DF(N), then
z e C(v).

By several applications of the hypothesis and of 5.5 (ii), (iii) we find that
Twgufoguo(®) = gulufogola) = Jufwgo(®) = fuguwgo(®) = fugulz) ,
Twugofol®) = fugufo(®) = gufufo(®) = Jufu(®) = fugu()

Fogufvgul@) = gul*ufogo(®) = guf®e(v) ,
Fugodofo(®) = Fugufol) = gul®s @) = gul®ulv) .
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Consequently
fwgufogo(®) = fwgugofo(®)
whence it follows by (7) that

Julogo(®) = gugof(z) .
A similar argument shows that

gdwfvg,,(m) = gdwgva(x) )
and we infer by a second application of (7) that 7,g.(%) = gofs(2). Since f
and ¢ are arbitrary members of DF (), we conclude that z  C(v).

We are now ready to begin the proof of (1). First assume that z
and v are (§,1)-connected; by symmetry we may assume v <a. Ap-
plying (2) and (3) several times and (4) once,.we obtain v = f(v, )
<H@,0) <f@, ), v<[fol) <, and thence v = gu() < gufol@) < go(@)
and also gofuo(®) < fol). Using the dual of (4) we infer that

Gofo(@) < Fgo(@), fo(@)) = fogole) .

Similarly fog.(®) < gofo(®), and therefore fy,gu(x) = gofo(). The state-
ment (1) therefore holds for » = 1.

Next suppose # > 1, and assume that (1) holds whenever « is replaced
by a smaller integer. SBuppose the sequence z = {2y, 2, ..., x> S-connects z
and v. Letting w = 2,_; we may assume that w < v. By the inductive
hypothesis and by the case already proved we have z, v ¢ C(w). It follows
from (8) that in order to prove (1) for the present case it suffices to show
that if f and ¢ are any members of DF (), then fo(x) and gofo(w) also
belong to C(w). We consider two cases.

Case 1. For some j<<n—1, 2 >2;41. So define the sequence
@ = 2y By vy Bn—yy that 2§ = fy(e) for ¢ <j and 2} = fu(e:) whenever
j <t<mn. From the fact that #; > 2., and v> w we infer by (2) that
% > %41, and it is therefore easily seen that 2 S-connects f.(z) and w.
Similarly, letting & = gofs(2:) for ¢<j and 2y = gufu(2)) whenever
j<i<n we find that the sequence 2’ = (&', 21, ..., #n1)> S-connects
gofo(®) and w. By the inductive hypothesis we therefore see that f.(z)
and gyf.(x) belong to C{w) in this case.

Case 2. 2; <24 for all j <n. In this case

Fol@) = fol#e) < foltn) < oo < folgn—a) = folw) 2w,
Fofol®) = goful2s) < gofoltr) < oo < Gofo(Bn1) = gofolw) = w,

and we may apply the dual of Case 1 twice, replacing v and # by w and
() in one case and by w and g,f«(w) in the other, to infer that f.(«) and
gvfs(2) belong to C(w).

The theorem now follows by induction.

and fdwgwfvgv(-’”) = fdwgw.‘]va(‘”) s
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CorOLLARY 7.4. Suppose thal there exists an anlisymametric, reflexive
and connected binary relation S e A(N) such that the field of Sis A. Then A
has the strict refinement property.

Proof. By 7.3 and the remark following 6.1.

It is known that in this last result we cannot omit the assumption
that 8 De connected. In fact, there exist finite structures 9 — {4, R
with a binary relation R that is reflexive and antisymmetric, and whose
field is 4, which do not have the unique factorization property. It is
still an open question whether for such structures the condition 9 w9
== B x B implies that W =~ B.

These structures do however have a unique decomposition property
of a different kind that can be obtained with the aid of 7.4. Given a system
of structures B; = (By, 8>, iel, of the type under consideration, if
the sets B; are pairwise disjoint, then we let

= B 8
‘ZSBi <iy' i’iLeJI v

iel

and call this new structure the cardinal sum of the structures B;. A strue-
ture A = {4, R is said to DLe additively indecomposable if it is nob
a cardinal sum of proper substructures. It is obvious that ¥ is additively
indecomposable if and only if S is connected. It is also easy to show
that %A is always the cardinal sum of additively indecomposable sub-
structures, and that this representation is unique except for the order
of the summands. From these observations together with 7.4 we obtain
the following result: )

Suppose A = (A, R} is a fin itestructure such that R is an antisym-
metrie, reflexive binary relation whose field is A. Then N has up to iso-
morphism a unique representation

—
x = -% i £i %i,j

where each of the structures Bij; = (Buij, Si;- is directly indecomposable

and all the relations Si; are connected.

Returning now to arbitrary o-structures %, if + is a binary operation
that belongs to A(;), then this operation can be used to define various
binary relations S in 4 (). If one of these relations satisfies the conditions
of 7.4, then we can of course infer that % has the strict refinement property.
This is illustrated in Corollary 7.5 below. It is also possible to derive
in this manner a number of results, both old and new, concerning algebras
with a zero element. However, these theorems are special cases of results
obtained in the next section by more direct methods, and will therefore
not be given here (cf. 8.3, 8.5 and 8.8)
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COROLLARY 7.5. Suppose that there exisis q binary operation - ip
(%) such. that :c—l— 2=z for all @ ¢ A, and such that for all z,y ¢ 4 one of
the following conditions holds:
(1) There exists z € A such that te=24+s=zandy+s—= 2ty =y.
(ii) There ewists z € A such that T+2=z24+2=2and Y+tz=z+y =z
" Then U has the strict refinement property.

Proof. Let § be the binary relation such that, for all », y, »8y it
and only if 2,y ¢4 and 24y = Y +o = . This relation is easily seen
to satisfy the conditions in 7.4, whence the conclusion follows.

8. Structures with a binary operation. A great deal is
known concerning refinement properties of algebraic structures with
a binary operation + and a zero element 0, such that 0+ =2 = 240
for all # € 4. In particular, it is known that the strict refinement property
holds whenever 0 is a strong zero element ([10], p. 277), and, more generally,
this is known to be the case whenever 9 is centerless ([8], p. 54), or zero
equivalent ([5], p. 308). In this section we shall generalize some of these
results in two directions. First, we do not agsume that all the relations R;
of the given system U = ¢4, RSy are operations, and instead of
assuming that the operation + is one of these relations we only require
it to be a member of A (). Secondly, and more significantly, we shall
show that the condition 0+# =2 =240 can be replaced by various
combinations of weaker assumptions. We begin by listing for convenient
reference the various properties that will be considered in this connection,
denoting the distinguished element by the letter 4 rather than by the
symbol 0:

(Zy) u+u=u.

(Zy) For all e d, u+2 =1y,

(Zs) For all m,yeA, w+(@+y) = (u+a)+y, a4+ (u+y) = (m+u) +y,
and & +(y +u) = (8 +y) +u.

) For all ,yed, if uto=u+ty, then z =y

5) Lor all we A, if uta= U-+u, then © = u.

(Ze) For all w,y e A, if ety =u-tu, then # =y = u.
LeMmA 8.1. Suppose that the binary operation + in A(W) and the

element u € A satisfy (Z,). Then for allf,g e DF(U) and @,y < 4 the following
conditions hold:

() ful®) +1% @) = v L.

() fuguf®u(@) +fugf (@) = u+u.
() fugufu(®@) + gufu(@) = [ugufulm) +Fugulw).
(v} Ful@) +1%uly) = F%uly) +Fulz).

Fundamenta Mathematicae, T, LV 19
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v) oty = y+a if and only if ful®)+y =y+ful®) and fula) +y

= y+/"ul®)
(v1 w+y=y+a; if and only if ful®@)+Tuly) = fuly)) +ful@) and

Ful@) +1uly) = uly) +1%(@)-
(Vﬁ) fugufdu(- +y= 'y'l‘fugufdu(“’)-
Proof. Applying 7.2 with -+ in place of the relation 8, we see that
for all @,y,2', 9 €4,

1) T, 9)+f@,y) =f@+2,y+7),
and hence in particular
(2) ful@) + fuly) = fusral®+Y) -
Using (1) together with 3.1 (i) we find that
Ful @)+ 1l®) = fla, ) +f(u, ) = f@+u, utao) = [(uto, uta) =u+ts,
proving (i). Using this together with (2), 5.1 (i) and 5.5 (iil) we compute
fugufdu(w +fu!]dufdu(97 :fu+u(gufd m)‘l'gdufdu(m))
= fusn +1%u(@)) = ful(w) +Hufulw) =utu.

Thus (ii) holds. Using (1), (2) and (i) together with 5.1 (i) and (Zz). we
further compute

fugul%(@) + gutula) = F{gul"w(@), u) +F{guful); guful@)

— (gl u() + utul@), wt gufal®)) = F(gusalPul) +ul@)) &+ gutula))

= F{gura(u ), 4+ guta(@) =7 (gu(w) +gul®); ©+ guful®))

= F{u+ gul@), guful@) +u) =1 (4, Juful@)) +1{gu(®), )

= fugufu(®) + Fugul(®) -

This proves (iii). From (1) we infer that

ful@) + Fuly) = fl@+u, v +Y),
(y) +ful@) = flu+z,y +u),

whenee (iv) follows by (Z,). If z+y=y+a, then by 5.1 (1) and (1),

ful@)+y = f@, w)+1(y, 9) = fl@+y, v+y) =Fy+o,y+v)
=f(y, y) +H{o, w) = y -+ ul@) )

icm°®

Refinement properties for relational structures 277

and, smulally, Fulm) +y = Y -+ ulm). Conversely, if ¥ commutes with
fu(#) and f%u(«), then we use the fact that, by 5.1 (i), (i),

= f{ful@), F'ul@) , ¥ =F(y,9),

together with (1) to infer that @ and y commute. Hence (v) holds. Next,
applying (v) twice we see that z and y commute with each other if and
only if each of the elements fu (), 1% 2) ccmmutes Wlth each of the elements

fuly), f ). Since, by (iv), fu(®) ccmmutes with f%( ) and f%(®) commutes
with fu(y) th]s yields (v1). Final]y, by (i), 1% (m) commutes with fu(y),
whence 11: folows by (v) that fuguf m) eommutes with fy(y). Since,

by (iv), fugul m) also commutes with 1%(y), we conclude with the aid
of (v) that fuguf w(@) commutes with .

Levuma 8.2. Suppose that the binary operation + in A(N) and the
element we A satisfy (Zo) and (Zs). Then (U, u) has the intermediate re-
finement property if and only if fugufdu(m) = for all f,qe¢DF () and
weAd.

Proof. By 6.7, (%, u) has the intermediate refinement property if
and only if, for all f,ge¢ DF() and z ¢ 4,

1) gufu(@) =u  implies fugu(a) = u.

Since gufuful®) = u, (1) implies that fuguf%(@) = 2. Conversely, suppose
that this last formula holds, and assume that gufu(®) = w. Together
with 81 (iff) this yields % +u% = %-+fugu(®), whence it follows by (Zs)
that fugu(s) = w. Thus (1) is satisfied.

THEOREM 8.3. Suppose that there exist a binary operation + in A()

and an idempotent element w ¢ A such that (Z,) and (Z,) hold. Then N has
the refinement property.

Proof. For all f,ge DF(U) and z e A we have
Fuguf*u() +fug’uf u(@) = v +u

by 8.1(ii), and hence fuguf%u(z) = u by (Z). Consequently (%, «#) has
the intermediate refinement property, and the conclusion follows by 6.6.

THEOREM 8.4. Suppose that the binary operation + in A(N) and the
element u ¢ A satisfy (Zy) and (Z,). Then U has the strict refinement property
if and only if (U, u) has the intermediate Tefinement property.

Proof. If (W, ) has the intermediate reﬁnement property, then
for all §, gsDF(QI) and z ¢ 4 we have fugu/%(®) = u by 8.2 and hence
fugu(®) = gufu(e) by 8.1 (iii) and (Z,). According to 5.6 this implies that 2%
has the strict refinement property. The implication in the other direction
holds for every relational system L.

19*
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COROLLARY 8.5. Suppose that there exist a binary operation - in 4(%)
and an element u € A such that (L), (Z,) and (Zs) hold. Then U has the strict
refinement property.

Proof. We see as in the proof of 8.3 that (Zy) and (Zg) imply that
(2, u) has the intermediate refinement property. Hence the conclusion
follows by 8.4.

This corollary is a generalization of the theorem that asserts that
every algebra with a strong zero element has the strict refinement property.
In order to obtain similar generalizations of the cciresponding theorems
for centerless algebras and for zero- equlvalent algebras we must in-
vestigate furthermore the maps fufpul®. We shall only consider here
a counterpart of the first of these theorems.

It has already been shown, in 8.1 (vi), that if 2 commutes with every
element of A, then each element of the form 2’ = fu gul ®.(2) also commutes
with all the members of 4. It will now be shown that similar statements
hold concerning the conditions (Z,) and (Z,), in the latter case under the
assumption that (Z,) and (Zs) are also satisied.

LEMiA 8.6. Suppose that the binary operation -+ in A(A) and the
element we A satisfy (Zs). If f, g« DF(A) and z e A, then the conditions
obtained from (Zs) by replacing w by /uguf 2) are satisfied.

Proof. We shall verify only the condition obtained from the 1ast

formula in (Zs). This condition asserts that the three elements #, ¥, fu guf
associate; i.e., that

(1) &+ [+ fugul"u(2)) = (@ +y) + fugulu(2)

The proof will be based on three statements which hold for all f e DF (%)
and z,y,2¢4d:
1. z,y,2 associate if and only if fu(®), fuly), fu(z) associate and
1*u(®@), 1%u(y), "u(2) associate.
II. ful®), fuly) and flulz) associate.
II1. If =,y and z associate, then @,y and fu.(z) associate.
First observe that (1) readily follows from these three statements.
In fact, since fufuguf®u(2) = fugulu(?) and f%fuguf®u(s) = u, and since
j"u(an), fdu(y) and u associate, we see by I that (1 ) reduces to showing that
), ful¥) , fufuf (2) associate. But fu(@), fu(y), [*u(2) associate by II, and
applying IIT twice we obtain the desired eonclusmn
Let v = w4+ (u 4+u) = (4 +u)+u, and observe that

Folo+ (¥ +2)) = ful@) + {fuly) +Ful)) 5
Fol(@+9) +2) = (fulm) +fuly)) -+ ful2) -
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From these formulas and the corresponding formulas with fv
by 1% the statement I follows by 5.5 (vii).
By easy calculations we obtain

replaced

Folful@) + (fuly) +1%u®))) = fule) + (fuly) ),
me+m?+md (fule +mM+«
1o{ful@) + (fuly) +1%u(2)) = 0+ (u+7%(2) ,
1o{(ful®) + 1) +1%u02)) = (u420) +1%(e)

and since the associative law holds whenever one of the three elements

involved is u, we again apply 5.5 (vii) and conclude that IT holds.
Finally we have

Fole +{y +7u(®)) = fulw ) +ful2))
Fol(@ +9) +Fule) = (fulu +n )4uz,
I (m—!— Y +1ul2)) = Ful) + (Fuly) +4)

(@ +9) +Ful2) = (FPul@) + 1) +2

whence III follows by I and 5.5 (vii).

Leya 8.7. Suppose that the binary operation -+ in A(N) and the
element w € A satisfy (Zs), (Zs) and (Z,). Then for all §, g € DF(%I) and s e A,
the condition obtained from (Z,) by replacing u by fy guf ) ¢8 also satisfied.

Proof. Assuming that

Fugul®u(z) @ = fuguf®ule) +y
we add fug%7%(x) on the left and use 8.6 and 8. 1 (ii) to obtain
-+ {u o) =u-+(ut+y).
Hence the conclusion follows by (Z,).

THEOREM 8.8. Suppose that the binary operation + in A(N) and the
element w ¢ A satisfy (Z,), (Z) and (Z,), and suppose there exist no elements
¢,Ced such that ¢ #u and ¢-+T = u+u, and such that the conditions
obtamed from (Z,), (Zs) and (Z,) by replacing w by ¢ are satisfied. Then A
has the strict refinement property.

Ploof For any f, g e DF(A) and z € 4, if 'we let ¢ = fygyf(2) and
& = fug"u/%(), then ¢ +7 = u +u by 8.1 (ii), and it follows from 8.1 (vii),
8.6 and 8.7 that the conditions obtained from (Z,), (Zs) and (Z,) by re-
placing « by ¢ are satisfied. Hence ¢ = «. According to 8.2 this implies
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that (U, u) has the intermediate refinement property, and we conclude
Dy 8.4 that 9 has the strict refinement property.

If % is an algebra with a zero element, then it is not hard to show
that the mapping E —0/E is a one-to-one ccrrespondence between FR(YN)
and the set of all factor subalgebras of 9, and that for any factor relations B
and F of ¥ the conditions ids = E xF and A = (0/B) x (0[F) are equiv-
alent. Consequently certain results concerning inner direet prcduets
of algebras can be refc rmulated in terms of factcr relations. As an example,
Thecrem 3 in Fell-Tarski [5] yields the following results: An algebra A
with a zero element has the strict refinement property if and only if, for all
B,F, G <FRQ), the condition ids=ExF =Ex@ implies that F = G.
It is not known whether the assumption that % has a zero element can
be replaced by weaker conditions, for instance by some combination of
the conditions (Z;)-(Zs).

In conclusion we should like to make the following remark. In this
paper we have obtained results concerning the refinement property by
investigating two stronger ccnditions, the strong refinement property
and the intermediate refinement property. In the case of algebras with
a zero element similar results have been obtained by studying so-called
exchange properties. (¥) There are of course cases where the refinement
property holds although the stronger conditions fail, and for the investi-
gation of such structures new methcds are needed. Just how much remains
to be done in this area is indicated by the fact that it is not known whether
every finite algebra <4, +> with a binary operation + that is com-
mutative and associative has the unigue factorization property.
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