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The independence of the axiom of choice
from the Boolean prime ideal theorem *

by
J. D. Halpern (Pasadena, Calif)

Consider the following statements:

AC. For every set S of non-empty sets there is a functton F such that
F(z)ex for every x e S.

B. There is a function, F, on the class of non-empty sets with the property
that F(x) e  for every .

PI. Ewvery Boolean algebra has a prime ideal.

EPI. There is a funciion F on the class of Boolean algebras such that
F(z) is a prime ideal in x for every x ().

R. There is a non-finite set S of reflewive sets such that every non-empty
class Y has an element x with the property » ~nY C 8 (a reflewive set is
a set x satisfying the equation z = {x}).

Let @ be the set theory whose axioms are A, B, C, of Gédel [1], suit-
ably modified so that G is a theory with standard formalization in the
sense of Tarski [16] whose only non-logical constant is e. Thus G has
only one kind of variable; the one place predicates Cls and M are eli-
minated as follows: Cls # is replaced by z = # and M (z) is replaced by
Hylz eyl

Our theorems are as follows:

THEOREM 1. If G is consistent, EPI -AC is not provable in G+ {R}.

Since BPI—PI in @, we easily obtain

THEOREM 2. If G is consistent, PI->AC is not provable in G+ {R};
i.e. AC is independent of PI in G4-{R}.

* The material in this paper is a revision of a part of the author’s doctoral
dissertation, submitted in the spring of 1962 at the University of California, Berkeley.
Theorem 1 in a slightly different form was announced in the Notices of the Amer.
Math. Soc., Abstract 61T-151. The work was supported, in part, by grant 19286 of
the National Science Foundation.

(*) Prof. Tarski has remarked that PI is equivalent to the following: For every
set § whose elements are Boolean algebras there is a function f with domain 8 such that
{(B) is a prime ideal in B. Thus EPI is a universal version of PI in the same sense
that F is the universal version of AC.
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By the vesult of Gddel [1], if G is consistent, G+ {B} is consistent.
By the result of Specker [11], if G + {E} is consistent, G+ {#, R} is con-
sistent. Thus it suffices to prove theorem 1 by finding an interpretation of
G+ {R} in G+ {H#, R}. For a discussion of the notion of interpretability,
see Tarski [16], p. 20£f. The interpretation that we use is the model W+
of Mostowski [6] except for technical changes which have no bearing on
the proofs but which allow us to state theorems about G -+ {R} instead
of theorems about his system &. Mostowski’s model is an interpretation
for a set theory which allows urelements, while our interpretation is for
a pure set theory; reflexive sets assume the role of urelements. The prop-
erties in which we are interested are mot affected by this difference.
The proofs that the ordering principle and ~4.C hold in W+ suffice as
proofs that the ordering principle and ~AC hold in our interpretation.
Similarly the proof of EPI in our interpretation suffices as a proof that
EPI holds in W+. Furthermore, since the ordering principle is a con-
sequence of PI (and hence of EPI) in both set theories the result of this
paper is just a strengthening of Mostowski’s result.

PI is equivalent in @ to many other interesting theorems in mathe-
maties. In particular it is equivalent to the Stone representation theorem
for Boolean algebras (see [12]): the prime ideal theorem for commutative
rings with unit (see [10]), the completeness theorem for 1st-order languages
(see [2]) and the Tychonoff theorem for T,-spaces (see [9]). For other
equivalences and consequences, see [2], [4], [9], [13], [14], [15]. In [3]
Kelley poses the problem of proving AC from the Tychonoff theorem
for T,-spaces. Our result gives a negative answer to this question for
the theory G- {R}.

I would like to express my appreciation to Professors Azriel Lévy
and Dana Scott. The results mentioned here were obtained while I was
working under the direction of Professor Lévy and I am deeply indebted
to him for many suggestions. Professor Scott supervised the writing of
my thesis, from which this paper is extracted. His comments were heeded,
with the result that the presentation was much improved. I am also
indebted to him for information concerning Ramsey’s theorem at a crucial
point in the research. A formulation of the unnumbered theorem in § 4
in terms of automorphism groups of Boolean algebras which leave a prime
ideal invariant, and an application of this formulation to logic are also
due to Professor Dana Scott. These will be included in a subsequent
paper.

§ 1. Preliminaries. We assume the definition of eardinal number
a8 given in Gdédel [1]. ¥ will denote the set of finite cardinal numbers.
{X| will denote the cardinal number of X, for any set X. For any class X
and any set ¥, X7 denotes the class of all functions on ¥ into X. V denotes
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the universal class. If n e N and m < V", we say that m is an n-lermed
sequence and often denote m(é) by ms. If f is a function, Domf and Rngf
denote respectively its domain and range. f| ¥ denotes the restriction of f
to the class Y. A funetion which is a 1-1 mapping of its domain onto
its domain is said to be a permutation.

For any class X, the union of X, denoted {JX, is the class of all
elements belonging to some member of X; the intersection of X, denoted
(X, is the class of all elements belonging to every member of .X; the
closure of X, denoted CX, is the smallest class including X as a subclass
and closed in the sense that if ZeOX and Y ¢Z then ¥ eCX. PX is
the power set of X.

A Boolean algebra B is a 2-termed sequence whose first term B, is
a set and whose second term B, is a partial ordering on B, which satisfies
the requirements of a complemented distributive lattice. We will usually
write <p for B;. If X C B;, we denote by lubX and glb X respectively,
the least upper bound of X and the greatest lower bound of X. If X is
finite, Tub X and glb X exist since B is a lattice. We denote the minimal
clement of B by 0p and the maximal element by 1p. As part of the de-
finition we assume that |Bg| > 2, which is equivalent to saying that 0z,
1z exist and 0z 5% 1. We denote the complement of b e B, by —b. An
ideal T in B is a subset of B, satisfying the following three conditions:

(1) Opel,

2)yrelAy<pr—>yel,

B)wrelnyel »lub{m,y}el.

A prime ideal is a maximal proper ideal or eguivalently an ideal
with the additional property

(4) el « —wél.

§ 2. The interpretation W. Our development is informal bub
could be formalized in the theory G-+ {R, E}. Let R be the recursively
defined ordinal function as follows:

R(0) is a denumerable set of reflexive elements,

R(a) = U{P(R(B)): B < a for a> 0.

Let U = |J{R(a)| « is an ordinal}.

We say that ¢ is an aufomorphism of U if it is a permutation of U
preserving the e-relation, i.e. z ey if and only if ¢(z) e @(y). If @ is any
permutation of R(0), ¢ induces a unique automorphism ¢* of U. In the
sequel we will confuse ¢ with ¢*. Since for any two permutations ¢, ¢
of R(0)
and

(g7)* = (¢*)* (pp)* = g*y*

and ¢*(z) = g(x) for z € R(0), this confusion should not cause any difficulty.
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Let r be an ordering of type #» (type of the rationals under <) of
the set R(0) and let & be the group of all r-preserving permutations
of R(0). Let the variable ¢ range over finite subsets of R(0). Let Gle]
={pel: ple) =¢}. XCU is sald to be e-symmetric if Rng(p|X) = X
for every ¢ e @[¢] and e is said to be a support of X. X is said to be finitely
symmetric if it is e-symmetric for some e.

Let W(.X) be the predicate which asserts that X is finitely symmetric
and every element of CX is finitely symmetric. We will sometimes write
X is a W-class for W(X) and X is a W-set for W(X) A HY[W(Y) A X e Y]
and we will denote the relativization of a formula @ to the predicate W
by ¢". The proofs in [6] may be adapted to show that the relativizations
of the axioms of G to the predicate W and (NAO)W are theorems of
G+ {R, B}. Also it is a simple matter to show that R” is a theorem of
G+ {R, F}. It remains to show that EPIV is a theorem of G+{R, B}
We may think of W as defining a model in the sense of Godel [1], p. 1.
Employing his definition of absoluteness one easily shows that the
e-relation is absolute, that ordered pair, union of a class, intersection of
@ dlass are absolute operations, and that the notions of finite class and
set are absolute. Thus X ¢ " ¥ if and only if W(X)and W(Y) and X ¢ ¥;
Z is the ordered pair of X and Y in the W-sense if and only if Z is the
ordered pair of X and ¥ and W(X) and W(Y); X is a finite class
in the W-sense if and only if X is finite and W(X); X is a W-set if
and only if W(X) A HY[X ¢ Y]. With this in mind one easily verifies
that BEPI under the indicated interpretation becomes the following
statement:

There is a function F which is.a W-class and whose domain, is the class
of all 'W-Boolean algebras (Boolean algebras which are W-sets) such that
F(B) is a prime ideal in B for every B.

§ 3. A combinatorial lemma. In this section we prove 2 lemma
in the theory @ whichis a corollary of a generalization of Ramsey’s theoren,
due to R. Rado. The proof given here is due to D. Scott. In preparation
we introduce some additional terminology and notation.

A partition of a set A into k-parts (k- partition of A) is a set of
cardinality & whose elements are pairwise disjoint and whose union is 4.
To every partition of 4 there corresponds an equivalence relation on A,
namely, that equivalence relation whose equivalence classes are the
elements of the partition. Similarly, to every equivalence relation on 4
there is a corresponding partition. If n e V. , meN" and A4 is an n-termed
sequence of disjoint sets, we denote by [A]™ the set of all ¥ CURng4d
such that |¥ ~ 44 = m; for i en. For any ke, k + 0, and any set X
we use [X]'c to denote the set whose elements are subsets of X with eardinal
number k. Thus [X]¥ = [0, X511 in terms of the more general
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notation. Since N" ~ N = 0 for all n ¢ N such that n 0, there should
be no confusion.

For convenience, we state Ramsey’s theorem (see [8]): For any
k,1,peXN there is a ¢ N such that if [X|> ¢, then any partition of
X7 into at most % parts has the property that one of the parts include
[ YT for some subset ¥ of X of cardinality p.

The'following lemma is contained in the corollary to Theorem 3
in Rado [7]. We will refer to it as Rado’s corollary.

LeMMA. For all triples w, m, p such that ne N, me N", p < N, there
is & q e N such that for all n-termed sequences A of disjoint sets, if |4 = ¢
jor iemn, and A is a 2-partition of [AT", then there is an n-termed sequence
Y such that ¥;C A; and (Y4 = p for ien, and [ Y] is included in one
part of A.

Proof. We prove by induction on =, that for all m ¢ N" and p e N,
the desired conclusion is obtained.

% = 0: The conclusion is vacuously satisfied.

# = 1: This is just Ramsey’s theorem for & =2 and I = m,.

n=j+1 and j>=>1: Let m e N'** and p e N. Then m|j e N'.

By the induction hypothesis, we obtain a number ¢ which satisfies
the lemma for the triple j, m|j, p. Let %k be the number of different
2-partitions of [Q]™, where @ is any j-termed sequence of disjoint sets
of cardinality ¢g. Let r be a number which satisfies Ramsey’s theorem for
the triple %, m;, p. Let A be any j-+1-termed sequence of disjoint sets

such that

|[4d;l=¢q for <ej and |4jl>=7r.
Let A be any partition of [A]". For elements x, y e [4,]™, let © =, y
be the relation

Ve[z e [A|fIY >ave=ay v,

where =, is the equivalence relation corresponding to . Because of
the disjoint condition on Rng4d, we see that if

we[A; T and ze[Alf]™, then suzel[d”

and hence, z vz =42 v 2. Thus =, is rveflexive. =, is easily seen to B;s
The corresponding partition, 4;, is seen to have at most % parts (the
nomber of 2-partitions of [4]jT™). By our choice of |Ay|, we obtain
X C A;ysuch that | X| = p and [X]™ is included in one part. Since the proof
is easily completed if [X]™ is empty, we assume otherwise. Let ¥, be some
element of [X]™. For z, z e [A|jT™ let

B=p 3 LU Yy =428 Y-
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As in the case of =;, we verify that =, is an equivalence relation
on [4]j7™. The corresponding partition 4, is seen to be a 2-partition.
By the choice of ¢, we obtain a j-termed sequence ¥ such that ¥;C 4,,
and |¥s| = p for i € §, and [ YT is in one part of 4,. Thus [¥u {5, g0}
is one part of 4, and from the choice of X this part is the same if we
replace ¥, by any ye[X]™. Let Z =[Y v {{j, XD}]™. Then Z is one
part of A, Z; C Ay, and |Zy| =p for ¢ ej+1. Thus Z satisfies the conclusion
of the lemma for the sequence 4 and partition 4. We have shown that
for 4, and m with domain j+1 if |44 = ¢ for i ef and |44 > 7, then
any 2-partition A has the required property, but then certainly the same
holds if | 44| > max(q, 7) for ¢ € j +1. Thus the induction step is completed
and hence the proof.

§ 4. Proof of EPI". The following lemmas are needed for the proof
of EPI”. Let A, B, € be subsets of R(0); we say that A divides B and C
equally if A~B = A4~ C and for every open interval I determined in
R(0) by two points of 4 and the ordering r, |B ~ I| = |C ~ I.

LemyA 1. If B, C are finite subsets of R(0) and A is a subset of R(0)
which divides B and C equally, then there is ¢ ¢ G such that ¢ leaves A
pointwise fized and ¢(B) = (.

Proof. This is an immediate consequence of the homogeneity of
the rationals.

The following two lemmas state easily vevified facts about Boolean
algebras.

Lewnaa 2. Let H be a group of automorphisms of a Boolean algebra B,
and I, an ideal closed under H. Let b e B. If J 4s the smallest ideal closed
under H which includes I and {b} and if 1g < J, then there is a finite subset
8 C H such that glb{p(—b): ¢ e 8} el.

Leyma 8. If B is a Boolean algebra, X is a finite subset of B,
and P is the set of all functions f on X such that f{z) e {w, —x}, then
ub{glb {f(#): 2 € X}: f e P} = 1p.

THEOREM. If B is a Boolean algebra and o W-set, and ¢ is a support
of B then there is a prime ideal I of B which is e-symametrie.

Since B is e-symmetric, {p| B: ¢ e Ge]} is a group of automorphisms
of B. The theorem asserts that there is a prime ideal of B invariant under
this group. The proof is based on the fact that questions concerning the

relation between G[e] and B can be reduced to questions concerning
Ge] and the supports of elements of B.

Proof. Let

Z ={J: J is an ideal in B A 1ged A J is e-symmetrie}.
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It is easily verified that Z is a non-empty, partially ordered set
under inclusion in which chains have upper bounds, namely their union.
Thus by Zorn’s form of AC (?) we obtain an ideal I of B such that I is
maximal in Z. Suppose I is not prime. Then there exists b ¢ B such that
béTI and —b ¢ I. By Lemma 2 we obtain finite sets 8, 7' C G{e] such that

glb{p(—d): peS}el elb{p(b): pe Thel.

Let |e| = 1. Then ¢ determines 141 open intervals on R(0) relative
to the ordering r; denote these intervals by K, ..., Ki1,. Let g be any
support of b and let m be the I-+1-termed sequence such that

and

mg = ]Kir\g], L€Z+1
Then
(1)
Let

n = max {|8], |T]},

pe@e] Aiel+1 =|p(g) n K| = mq.

k=max{mg: tel-+1}, p=mn-k.

Let ¢ be a number satisfying Rado’s corollary for the triple -1,
m, p. Since r iy dense, we may take subsets 4;C K; such that |44 = ¢
for i el+1. Let 4 be the sequence so defined. Let

H={<a,n): Hplpe@lelnob)=zrp(g)—e=anacdA™]}.

H is a function since g is a support of b. From Lemma 1 it follows
that DomH = 4™ and a fortiori since [A]™ is finite, RngH is finite.
Let f be any function on Rng H such that j(#) = @ or f(#) = —a for each
z ¢ Rng H. To show that 1z € I we need only show that glb{f(#): 2 ¢ RugH}
eI and then apply lemma 3. To this end let

4 = {a: f{H(a)) = H(a)}, 4= {a: J(H(a)) = —H(a)};
{d;, 4,} constitutes a 2-partition of [A]™. Thus by Rado’s corollary
we get a funetion Y on 141 such that

Y;:C4; and [Ty=p for iel+1

and [Y]" C 4, or [¥]" C d,.

Case 1. [¥]"( A;. From (1) it follows that [K;n J{p(g): ge T3
< mq-|T]. Since | ¥l = p = my-|T}, we have by lemma 1, the existence
of a ped[e] such that »(Up(g): ¢ e THCeu | URngY. Thus up(g)
Cev | JRngY and hence

volg) " K C Yoy del4l, geT.

() Prof. Scott has remarked that appeal to Zorn’s lemma here can be replaced
by an appeal to PI.
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From (1) it follows that
pp(g)—ee[YT" for opeT.

Since wp € Gle] and [Y]"C 4,, it follows that ye(b) e RngH and
flwp(®) = wp(b) for p e I. Thus

glb{f(z): z « RogH} <pglb{yp(d): ¢ I} =yglb{p(b): ¢ e T}.
AY
Since p e G[e], glb{p(b): p e T} e I, and I is e-symmetric, we conclude
glb{f(z): v e RogH}el.
Case 2. [¥]™C 4,. Proceeding as in Case 1 with T replaced by S,
we obtain the existence of y ¢ G[e] such that

pp()—ee[X]" for g¢ed.
As in Case 1, we infer that ypg(b) e RngH and

How(®) = —pp(d) for g@ed.
Thus

glb{f(x): & ¢ RngH} <p glb{—ypp(b): p e 8} = pglb{p(~b): pef}.
Since glb {p(—b): g € 8} ¢ I, it follows as in Case 1 that
glb{f(x): xe RngH}eI.

Thus glb{f(#): # « RngH} for any function f on RngH such that
f(z) e {&, —a}. Since RngH is finite and I is an ideal, it follows from
Lemma 3 that 1z €I which is a contradiction. Hence I is prime, g.e.d.

LevMya 4. The intersection of all supports of a W-class X is itself
a support of X; we denote it by ex.

Proof. This is a direct consequence of the homogeneity of the
ordering r and the definition of e-symmetric. The proof is carried out
in detail in Mostowski [6].

Levwma 5. If X is a W-class, p € @, and ¢(X) = X then ¢(ex) = ex.

Prooi. Suppose ¢(X) =X and ¢(ex) # 6x. Since ex is finite and
¢ is a permutation of R(0), it follows that ex { ¢(ex). But ¢(ex) is a support
of X; for suppose v ¢ Gp(ex)], then yp—'(ex) = ex and hence pp~1(X) = X.
But ¢{X)= X and hence yp(X)= X. Thus g(ex) is a support of X,
contradicting the definition of ex.

Levwva 6. If X is ¢-symmelric for some finite set e and every element
of X is a W-set then W(X).

The proof is immediate from the definition of W.
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Proof of EPI”. For every W-Boolean algebra B, let
[B] = {Y: Hg ¢ Glp(B) = Y1} .

[B] is a set since the rank of every element of [B] is the same as B.
Algo every element of B is easily seen to be a W-Boolean algebra. Distinet
[B]’s are disjoint since & is a group. Let F* denote the function whose
existence is asserted by axiom FE. For every W-Boolean algebra B, let
I(B) = {I: I is a prime ideal of B and ep is a support of I}. From the
theorem it follows that I(B) is non-empty. Let

K = {F*[B]): B is a W-Boolean algebra}

and let Fy = {(B,J): B <K A F*I(B)} =J}.

Let = {X: UYHp[Y e F, A p e G A ¢(Y) = X}. F is easily seen to
be a class of ordered pairs <(Z,V> such that Z is a W-Boolean algebra
and V is a prime ideal of Z. ez is a support of ¥, and hence V is a W-set
by Lemma 6. F has the empty set as a support and thus is a W-class
by Lemma 6. F is a function because of Lemma 5 and the disjointedness
of the [B]’s. The domain of ¥ is easily seen to be the class of W-Boolean
algebras. Thus F' satisfies the desired conditions.
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Sequentially pointwise continuous linear functionals

by

A. Hayes (Lafayette, Ind.)

1. Introduction. If L is a linear space of real-valued functions
on & non-empty set X and ¢ is a linear functional on I which is continuous
with respect to pointwise convergence on X of nets in I, then it is an
immediate consequence of the theory of duality in linear spaces that
there are points #,,...,#; in X and real numbers 1, ..., 4 such that

(®) o) = > auf (w1)

i=1

for all f in L. If, however, we ask under what conditions every linear
functional on L which is continuous with respect to pointwise convergence
on X of sequences in L (sequentiolly or op-continuous) is of this form
then the problem is much more complicated. For example, Mréwka [5]
constructs a positive op-continuous linear functional on a linear space
of continnous real-valued functions on the unit interval, [0, 1], of the
reals which is far from being of this form. On the other hand, he shows
[8] that if L is the linear space C(X) of all continnous real-valued functions
on a completely regular Hansdorff space X, then a necessary and sufficient
condition is that X be real-compact (i.e. complete with respect to the
weak uniformity induced by C(X)). In [4] and [5] he gives necessary
and sufficient conditions for certain algebras of real-valued functions
and linear lattices of bounded real-valued functions.

The present paper is chiefly concerned with the case where L is
& linear lattice. For such an L we prove, (a) that the non-trivial op-con-
tinuous linear lattice (1) functionals are, up to a positive multiple, in (1-1)
correspondence with the proper prime o-filters of zero sets on X (these
are precisely the o-filters of zero sets which are maximal proper filters
of zero sets) (Theorem 1); and (b) that for any op-continnous linear
functional, g, on L there is a unique class, S,, of non-trivial op - continuous

(*) Definitions are given below.
5*
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