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Sequentially pointwise continuous linear functionals

by

A. Hayes (Lafayette, Ind.)

1. Introduction. If L is a linear space of real-valued functions
on & non-empty set X and ¢ is a linear functional on I which is continuous
with respect to pointwise convergence on X of nets in I, then it is an
immediate consequence of the theory of duality in linear spaces that
there are points #,,...,#; in X and real numbers 1, ..., 4 such that

(®) o) = > auf (w1)

i=1

for all f in L. If, however, we ask under what conditions every linear
functional on L which is continuous with respect to pointwise convergence
on X of sequences in L (sequentiolly or op-continuous) is of this form
then the problem is much more complicated. For example, Mréwka [5]
constructs a positive op-continuous linear functional on a linear space
of continnous real-valued functions on the unit interval, [0, 1], of the
reals which is far from being of this form. On the other hand, he shows
[8] that if L is the linear space C(X) of all continnous real-valued functions
on a completely regular Hansdorff space X, then a necessary and sufficient
condition is that X be real-compact (i.e. complete with respect to the
weak uniformity induced by C(X)). In [4] and [5] he gives necessary
and sufficient conditions for certain algebras of real-valued functions
and linear lattices of bounded real-valued functions.

The present paper is chiefly concerned with the case where L is
& linear lattice. For such an L we prove, (a) that the non-trivial op-con-
tinuous linear lattice (1) functionals are, up to a positive multiple, in (1-1)
correspondence with the proper prime o-filters of zero sets on X (these
are precisely the o-filters of zero sets which are maximal proper filters
of zero sets) (Theorem 1); and (b) that for any op-continnous linear
functional, g, on L there is a unique class, S,, of non-trivial op - continuous

(*) Definitions are given below.
5*
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linear lattice functionals on L such that for every feL, y(f) = 0 for all
but a finite number of y in 8§, and @(f) = I {p(f): v <8} (Theorem 2).
These two results together give necessary and sufficient conditions when,
for example, all functions in L are bounded or when, given {f;}i-; CL,
there is always an feL which is zero only when every f; is zero; but it
is left undecided whether or not 8, can be infinite. In Section 3 necessary
and sufficient conditions are found when L belongs to a fairly wide class
of algebras, including those which contain f2(1+/*)* when they contain f
and those whose functions are all bounded.

Throughout the paper notations similar to [f = g] = {x e X: f(x)
>g¢(z)} will be understood. The zero set, Z(f), of feL is [f=0],
and if 3CL then Z(3) = {Z(f): fe3}). Lt={fel: [f>=0]= X} and
a linear functional, ¢, on L is called positive if @(f) >0 when feL*.
The class of all bounded functions in L is written L* and the empty
set is denoted by 0.

2. Linear lattices. In this section L is a linear lattice, so Z(IL)
is a lattice under set union and intersection. The usual apparatus of ideal
theory is therefore available, though we shall find it more convenient
to speak in terms of filters (i.e. dual ideals).

A filter is a subclass, F, of Z(L) such that if 3 is a finite subclass
of F with (3C Z eZ(L) then Z e F; it is a o-filter if “finite” can be
replaced by “countable” in this definition. A filter, F, is prime if Z (L\F
is closed under finite unions and is proper if § = Z(L).

A linear functional, ¢, on I is a lattice linear functional if o(f v g)

o(f) v ¢(g) for all f,geL.

THEOREM 1. The following statements are equivalent for any F C Z(L);

1. F ds a proper prime o-filter,

2. There is a non-trivial op-continuous lattice linear functional, ¢,
on L such that F = {Z(f): o(f) = 0},

3. F is a o-filter and a mdximal proper filter.

Proof. We show that 1=>2=3=1.

1=2. Take e e L+ such that Z(e) ¢ F. For any feL, let 4d;= {r: 7 is
a rational with [f >re] e F}. If r is a rational not in 4, then [f < re]leF;
if 7 is a rational less than a member of 4, then r ¢ 4;. Thus, 4; is bounded

above, otherwise (1) [f>> ne]l ~ (X\Z(e)) #@; and 4, is non-empty,
n=1

otherwise ﬁ [f <nel ~(XZ\Z(e) = D. So a=supd, is a real number
n=1

and [f=ae]l = {f=rel: re A} ~({[f <re]: v is a rational not in A}
is in ¥. Clearly « is the only real number for which this holds; we may
therefore denote it by F(ffe). If {fi}i=: is any countable subset of L, then
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(ﬂffi F(fife)el) ~ (X2 Z(e) F(-e)

is & op-continuous lattice linear funetional with F( (e/e) = 1. By our con-
struction F (fle) = 0 if and only if Z(f)=[f= 0¢] e F.

253, Tt gl =0, and Z(f)2 () Z(f0),

# @; from which it follows that F

t=1,2,.., then |f| A

A (né‘ Ifil),7'Ifl; whenee @([f]) =0, Z(f)eF and F is a o-filter. Since

we have in fact proved that ¢(f)= 0 if and only if Z(f) ¢ F, F is proper.
Now suppose Z(g) e 5 and consider the filter &; generated by F u {Z(g)}.

For any felL, [o(f)g=0(@)f1~Z(g)CZ(f), so Z(f)eF,. Thus F is
a maximal proper filter.
3=1. The standard type of argument proves that F is prime.

If § is any proper prime o-filter and Z(e)¢ F, then we shall write
F(-Je) for the op-continuous lattice linear functional with F for
the filter of zero sets of the functions with zero value and for which the
value at e is 1.

The following two lemmas are needed to simplify the proof of the
main vesult (Theorem 2); the first one is, of course, true for more general
systems.

Leaa 1. Any filler T ds the intersection of the minimal prime filters
containing it.

Proof. It Z ¢ Z(L)\F we show that there is a minimal prime fil-
ter § containing ¥ but not containing Z. In fact, let .6 be a maximal
filter containing & but not containing Z. Then 6 is prime and we

can take ¥ to be a minimal prime filter containing & and contained
in .

LeMMA 2. If F, and &, are two fillers neither of which is contained
in the other then there are fy,fye Lt with fiA fy = 0, Z(f,) e FA\TF, and
Z(f,) € F\TF,.

Proof. If g, g, e L+ with Z(g,) eF,\F, and Z (g,) e F\F, we take
f1=(91 g2)* and fy = (4,—¢,)". Then Z(f;)D Z(g), s0 Z(f;) e F,, and

Z(f) ~Z(g,) © Z(gy), 80 Z(;f1 )e F,. Similarly Z(f,) e F\Fs-

We can now prove

TeEOREM 2. If ¢ is @ op-continuous linear functional on L, then there
18, on L, a unique lineally independent class 8, of lattice linear jmwtwnals,
or the negatives of laitice linear functionals, suoh that for each f € L, y(f) =
for oll but a finite number of v in 8, and

o) = D w(): pes,}.

Furthermore every v e 8, is op-continuous.
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Proof. 1. It is easily seen that if fe L+, the set {p(g): |g] <f} is
bounded; so that ([2], pp. 35-36) we can define a positive linear functional
lgl on L by:

felt,

feL.

gl (f) = sup{g(9): g1 <T}s
lel(f) = lel (7)) —1el(f)

Clearly

M <lglfl), 7FeLl.

Furthermore, |¢| is op-continuous. For if {fi}im1 C L and f;—0 then
ifi{ 0. Now choose {gifrer C L with |gs| <fi and lp|(/fil) < @(gs) -1/
Then ¢:—0 and so lp|(|fi|)—0; whenee |g|(f:) 0.
2. Following Mréwka [3], we define:
Ny = {f < I*: lgl(f) = 0},
30 i a o-filter and if Z(f) €3, then @l (If]) = 0.
=] 1!‘
If {fi}iz1 C Np and Z(f)D () Z(fs), then Iﬂ/\n(%fi)/‘[ﬂ; so |l (Ift) =0
i=1 1=
and Z(f)e 3,. '
3. Let P, be the class of minimal prime filters containing 3,.
For each T,¢P, there is a Z e Z(L) such that {TePy: Z ¢ T} = {Ty}.
For if not, there is a #, ¢ B, such that if Z ¢ Z(L)\T,, then {TeP,:
Z €9} is infinite. Pick T, eP,\J, and choose f, ¢, with /1 A g1 ='0,
Z(f)) €99, and Z(g) e T \T,. Since Z(e;)¢F, there is F,¢%P, with
Z(g,) ¢ 9,. Choose Iy, ky e L with by Ak, = 0, Z (k) e T\T, and Z (k) e T\To.
Put fy =g, A by, o=t Ak Then 0<HALSHiAGAR =0, Z(f)eTs,
Z(f,)é9, and Z(g,)¢9F,. Continuing in this way we construct a sequence

f1y 2y .. of funetions in L+ such that fiAf; =0 when i%j and ¢(f))>0
for all i (since each T in P, contains 3,). But this gives the contradiction,

o(fifp(fo) =1 while fi/(fs) 0.
4. Each § %P, is a proper o-filter and so a mawimal proper filter.

g .
If ZieTyePp, i=1,2,.., and [ Z:C Z e Z(L), then, picking
=1

31;7 = Z(-Z\Tvp) .

Zye Z(L) such that {TeP,: Zy¢ 9} = {F}, we find that Zw Z,0 N (Zyo 7).

=1

Now Ziu Zy e 3, for all 45 80 Z u Zye 3,C T, and, J, being prime, Z € J,.

5. For each Z e Z(L) the set {T ¢ B,: Z e T} is finite.

For if this is not so for Z, e Z(L), then the class F = {Z ¢ Z(L):
{3 €P,: Z¢ T} is finite} is a filter containing 3, but not containing Z,.
Let A be a maximal filter containing 3, but not containing Z,. Then
J is prime, so it contains an element, T say, of PB,. Now § is a maximal
proper filter and 4G is proper, so A = F; but this is impossible by 3.
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6. For each T P, pick ey eLizm‘ﬁz Z(eg) in cvery element of P, but
g and with @eg) =1. If §, = {T(-Jeg): T eB,}, then, for any felL,
w(f) = 0 for all but a finite nwmber of ye8, and

¢(f) = Z{p(f): yes,}.

For let PB,; = {I eP,: Z(f) e $}. This is finite, and ‘I‘(f/e) = 0 when

J € P,.s- Now N
Z(f—Z{(flee: T «Pps)) €3y

since it is in every element of ¥3,. Therefore

o(f)—ZF (fleg): TP =0,
that is,
P(f) = Z{p(): pes,).

7. Proof of uniqueness. Suppose §, is a lineally independent
class of lattice linear functionals or negatives of lattice linear functionals
such that, for each f e L, f has zero value for all but a finite subelass of
S and o(f) = Z{'(f): v’ €8;}. If yye§, is not a non-zero multiple of
any ye8, we could find e e L with yyle) =1, p'(e).= 0 for v eSS \{wi}
and with p(e) =0 for all pe§,. But this gives the contradiction,
1=2{'(e): v €8} =qle) = T{y(e): pe8,} = 0. Therefore y; = Ay, for
some y, € 8, and some i = 0. A similar sort of argument now shows that
A=1.

It is tempting to try to show that 8, must be finite. So far I have
not succeeded in doing this, nor do I have an example showing that it
need not be finite. However, the following corollaries give a number of
useful conditions guaranteeing that 8, is finite:

COROLLARY 1. If for every countable 3C Z(L) there is a Z e Z(L)
with Z C (M3 (in particular if L contains o function which is nowhere zero),
then 8, is findte.

Proof. If {F;}7L; are distinct elements of P, pick Z;e Z(L)\5;,
i=1,2,.., and ZC( Z.

i=1

Then Z is in no ¢, contradicting Part 3
of the proof.

CoroLLARY 2. If Z(L) is closed under countable unions, then S, is
findte.

Proof. If {F;);—, are distinct elements of P, then for each ¢ pick
ere L* such that {FePB,: Z(e)¢ T} = {F} and for each n=1,2,..
choose a finite sequence {fin}ici CL* With fin A fim =0, © % §, fin < e

oo

and [fin = €] Ty, Put Xy = () [fyn = &]. Pick gs e I+ with Z(gs) = Z;

= O~Z(fi’")' Now Zi~X;CZ(e)) so Zye Ty and |pl(gs) # 0. From this
we get the contradiction: ||(g:/|pl(gs)) =1 while (g:/lpl(g:)) —O0.
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Let us say that {X, L} is o-bounded under decomposition {X;};2, if
=2

{X:}i2, is an increasing sequence of subsets of X with |J X; = X and
=1

each f e L is bounded on every X;. (Any linear lattice of continuous real-
valued functions on a o-compact space (e.g. R") is o-bounded.) For such
a system let I” be the class of all limits of sequences of functions from I
which eonverge uniformly on each X;. It is easily proved that {X,L"}
s ¢-bounded under decomposition, {Xi}i=;, that L™ = I’ and that any
op-continuous linear functional, ¢, on L extends uniquely to a op-con-
tinuous linear functional, ¢°, on I”. The preceding remarks are, of course,
applicable to any linear space.
We can now state:

COROLLARY 3. If {X, L} is o-bounded under decomposition {X}ie, then
8§, is. finite.

Proof. ¢ extends to ¢” on I°. If {f;}i2; CL” and for any ¢ =1, 2, ...
and any ¢ eL” we let [gl: = sup {lg(x)|: ® <X}, then f =v,_Z:(th\(2i”f“1)’1) eL

and Z(f) = (" Z(fs), so {X,L°} satisfies the conditions of Corollary 1.
i=1

Therefore 8, is finite and, by uniqueness, §, is finite.

Let B(L), the Baire class generated by L, be the smallest class of
real-valued functions on X which contains I and is closed under pointwise
econvergence of sequences. B(L) is a linear lattice. We have:

LevmA 2. Any op-continuous lattice linear funmctional on L can be
uniquely extended to a op-continuous lattice linear functional, pB, on B(L).

Proof. Define 3, = {Z(f): feL and ¢(f) = 0} and take ¢ e L+ with
@(e) = 1. For any real number 1, let B; = {f: f is a real-valued function X
with [f = A¢] containing the intersection of a countable number of sets
from 3,}. Put B = [ J{Bs: 1 real}. Then B is a linear lattice containing
L and closed under pointwise convergence of sequences. Further, if we
define ¢(f) = A for all f e B,, then this is a proper definition and ¢ is
a op-continuous lattice linear functional on B with ¢p = @|B(L) as
required.

The following corollary to Theorem 2 is now immiediate:

CoROLLARY 4. If L, is a linear lattice with L,C LC B(L,) and if
84z, @8 findte, then 8, is finite.

To combine the two theorems just proved let us say that a prime
proper (maximal proper) o-filter ¥ is determined by e X it F = {Z e Z(L):
@ € Z}. Let the systém {X, L} be called real-compact if every prime proper
o-filter is determined by a point in X. The justification for this defi-
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nition is that when L is C(X) for a completely regular Hausdorff space
X it is often taken as the definition of real-compactness for X. We have

THEOREM 3. If {X, L} is real-compact and ¢ is a op -continuous linear
functional on L, then there are points {X:}ier in X and real numbers {Ajser
such that for any feL, f(ms) =0 for all but a finite number of ¢ eI and

e(f) = Zlif(wi)-
i€l
If {X, L} is not real-compact, then there is a non-trivial op - continuous
lattice linear functional which is not of this form.
Corollaries analogous to those of Theorem 2 are immediately obvious.

8. Algebras. In this section L is an algebra of real-valued functions.

Results are obtained by using the techniques of the proof of the
Stone Weierstrass Theorem ([1], p. 35) to reduce the problem, where
possible, to one in linear lattices.

A linear functional, @, on L is called multiplicative if ¢(fg) = o(f)@(g)
for all f, geL.

A stationary set for f e L is a set of the form [f = o] for some real
number a. A complete class of stationary sets is one that contains one
seti for each f € L; it has the countable intersection property if the intersection
of any countable subelass is non-empty.

Lruma 4. Let L be a Unear lattice besides being an algebra. Then
a non-trivial functional, @, on L is a p-continuous positive multiplicative
linear functional on L if and only if {{[f = @(f)]: f e L} is a complete class
of stationary sets with the countable intersection property.

Proof. (i) 4f. The proof of this is immediate.

(ii) only if. Suppose ﬁ [fi = p(f)] = @. Then if g ¢ L* with ¢(g) > 0
i=1

"

we have g A n ) [fig—e(fi)g2g. Whence @(g) = 0, contrary to hy-
i=1

pothesis.

COROLLARY 1. Ewery op-continuous positive multiplicative linear func-
tional, ¢, on L is uniquely emtendable to a op-continwous positive multi-
plicative linear functional, pg, on B(L).

Proof. If ¢ = 0 the result is trivial. If not, then the class of all real-
valued functions which are constant on some countable intersection
of sets of the form [f = ¢(f)] contains B(L). If f ¢ B(L) is always equal
to 1 on such a set define pp(f) = A. Uniqueness is immediate.

COROLLARY 2. Every op-continuous positive multiplicative linear func-

tional, ¢, on L is of the form f-~f(x) for some x e X if and only if every


GUEST


4 A. Hayes

complete class of stationary sels with the countable intersection property
has @ non-empty intersection.

LeMMA 5. If L is a linear lattice and an algebra, then every non-trivial
op - continuous positive lattice linear functional, @, on L is a positive multiple
of a multiplicative linear functional.

Proof. If ee Lt with ¢(e) =1, then @(e?) > 0, since Z(e) = Z(e).
Let p(f) = ¢l(e2)g(f) for all feL. If f, g e L, then there is an z ¢ X\Z(e)
with

¢(f):¢(62)¢(f)=T-—(4)=f(m)= p(g)=g(@) and y(fg) = (fg)(x).

So p(fg) = p(Hw(g).

We now have

THEOREM 4. If L is o-bounded under decomposition {Xi}ie. and ¢ is
a op-continuous linear functional on L, then there are non-trivial ap-con-
tinuous positive multiplicative lnear functionals @y, ...,pn on L and real

3
numbers Ay ..., dn such that ¢ = > Api.
i=1

Proof. I’ is a o-bounded algebra under decomposition {X;}:. and
I =I°. For any feL’ and any X; there is a polynomial, P;(f), in f
such that Py(0) = 0 and |P«(f)—|fl]: <1/, so I’ is a linear lattice. Now ¢
extends to a op-continuous linear functional ¢ on L. The result now

- follows from Theorem 2 and Lemma 5.

CorOLLARY. If L is an algebra with a o-bounded subalgebra L, such
that B(Ly) DL (e.g. if B(L*)D L), then the conclusion still holds.

Proof. This follows from the Theorem and Corollary 2 to Lemma 4.
Among the algebraic conditions on I which guarantee B(L*)DL
we might mention:

(i) 71 +7) e I+ when f e L+,

(i) 72/(L+f2) e L+ for all fe L.

From Theorem 4, its corollary and Lemma 4, Corollary 2 we
have

THEOREM 5. If L is as in Theorem 4 (or its corollary), then a necessary
and sufficient condition that every op-continuous linear functional, @, on L
be of form (P) 4s that every complete class of stationary sets with countable
intersection property have nom-empty intersection.

Note added in proof. Results closely related to those of this
paper have been obtained, under stronger hypotheses, by J. R. Isbell
and E. 8. Thomas Jr.,, Proc. Amer. Math. Soc. 14 (1963). pp. 644—647,
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