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pour chaque k> 0 est un polyndme de degré n au plus. Notre théoréeme 2
est dans un certain sens plus fort. Il permet de remplacer dans la formule
(35) le signe d’égalité par celui d’une inégalité faible (< ou >) pour tous
Jes % sauf un. (Dans ce travail on a demandé Dégalité (35) pour h =1,
cette condition n’est pas essentielle. Dans les théorémes 1 et 2 on
accroissement h =1 par un autre accroissement arbi-

mais
peut remplacer I’
traire h > 0.)
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On maximally resolvable spaces
by
J. G. Ceder (Santa Barbara, Calif.)

In [2] E. Hewitt posed the problem of determining the largest
number of disjoint, dense subsets possible in a topological space. As one
result in this direction, W. Sierpinski [8] has proved that a metric
space X each non-void open subset of which constains > m > x, points,
is the union of m disjoint sets each of which contains at least m points
of each non-void open set in X. It is the purpose of this note to gener-
alize Sierpiliski’s result in two ways, one way of which will enable us
to extend some of Hewitt’s results in [2] so as to determine the largest
possible number of disjoint, dense subsets in certain spaces, including
locally compact Hausdorff spaces and first countable spaces.

In the sequel, we will consider ordinals and cardinals as defined,
for example, in J. L. Kelley ([4], appendix), so that each ordinal is equal
to the set of its predecessors and a cardinal is an ordinal which is not
equipoellent with any smaller ordinal (1). The cardinal number of a set A
will be denoted by |4|. The symbols k, m, n will always denote specific
cardinals and the Greek letters a, 8, y, etc. will denote general ordinals.
A subset 4 of topological space is said to be m-dense if [A~TU|=m
for each non-void open subset U of X.

Our first generalization of Sierpiniski’s result is

TuroreEM 1. Let X be any topological space with an infinite base B
such that |B) < n < m. Then, if A is an m-dense subset of X, A is the
union of m disjoint, n-dense subsets of X.

Proof. We will fivst take the case when |B|=n and induct on
the cardinals m > n.

For n=m = |$|, let us well-order B so that B = {Bulacn. Since
|Ba~n Al =n for each a<mn, we can by a result of K. Kuratowski
{[5], Lemma 1) find a disjoint family {H,}ecn such that H,C B,~ A4
and |H, =n for each « <n. Since {n-n|=n, we can put each
H, =a\2{ H,; where |H, ;5| = n and the sets H,s are disjoint. For 0 <f<n

(*) For facts about ordinal and cardinal arithmetic we employ in the sequel the
reader is referred to Sierpidski [9].
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put Az = Hap and put 4y = (4d—J Ho) v (U Hap). Then it is easily
a<n a<n a<n

checked that {4.).<n gives the desired decomposition of A.

Now suppose that m is a cardinal > n. Since [A| =m, we can well-
order 4 by the cardinal m. Also, well-order % by n so that B = {B,:
0 < a<n}. Let I' be the intersection of all subsets C of m satisfying
the three properties: (i) 0 ¢ C; (ii) if @ € C, then a-+n ¢ C; (iii) the union
of any subset of € is m or is in C. Then clearly each a <m can be uni-
guely written as y-+£ where y el and & <mn. Since |I'| = m, we can
also find a one-to-one increasing function f from m onto I

By the “first n-points” of a subset C of the well-ordered set A4
(where {C] > n) we mean the smallest initial segment (relative to the
well-ordering of € that is induced by A) of ¢ having cardinality n.
Now begin by choosing 0, to consist of the first n-points of 4. Having
chosen O, for all e <f <m, consider 8. If fel" we let Cp consist
of the first n-points of A—|JC,. If p¢I, then B =y+& where

a<f
yel and 0 < & <n, and we let C; consist of the first n-points of the
set Dy = (4 ~ Bg)—J C.. Finally put 4, = {0 f(a) < < fla+1)

e<p
= f(a)+n} for each a < m.
Then {A.}ecm yields the desired decomposition of 4. Since |4 ~ By
=m and | Cdf < |n|-|f] < m, we have | Dy = m for each ¢ I'; hence
a<B

the choice of C; is possible. The disjointness and the n-density of the
sets A, are immediate. The fact that | ] 4, exhausts 4 follows from

a<m
the choice of Cp for el
For the case when |B| <n, we decompose m so that m = | I,

a<m
where || = n and the Mp’s are disjoint. From above we know that
A =1J) A, where 4, is |B|-dense. Now define A4, = U{de: Ee M)

a<m
Then 4 is the union of the m disjoint, n-dense sets 4., which completes
the proof of the theorem.

Of particular interest is the decomposition of an m-dense subset
of the plane. Here, the decomposants can be made to satisfy some inter-
esting geometrieal properties. For instance,

THEOREM 2. Any m-dense subset of the plane is the union of m dis-
joint, mutually homeomorphic, countably dense sets each of which has the
properties that no three of its points are collinear and that each wvertical
or. horizontal line infersects it at most once.

Proof. We follow the pattern of the proof of theorem 1. In the
case m =8, = ©» we have from theorem 1 that A4 = G Cx, where
k=1

the Ci's ave disjoint and w-dense. Now well-order 4 by the ordinal «*.

icm

©

On mazximally resolvable spaces 89

Let {B: 0 <k < w} be a countable basis for the plane. By induction
upon «? pick z, t0 be the first point in A. Having chosen @, for all
a < f < «? consider §, which can be uniquely expressed as w-n+k
where n,k < w. If k=0, let x5 be the first point in A—{m: a< g}

k-1
Tf % # 0, choose @ to be the first point in the seb (Bx ~ On) — | K (. npi) —
im0

— UL (@oentis Taornri): 0 <& < < E)} where K(z) = {v e E: z and v have
a common coordinate} and L(z,v) is the line passing through z and o,
where z # ©. Then put for each n < w Ap = {m: w- 2w << - (n+1)}
Then it can be shown without difficulty that {A.}n<. yields the desired
decomposition of A.

In the case m > §,, we simply repeat the corresponding argument
in the proof of theorem 1 with the modifications that n = &y; Cp is chosen
to consist of the first point in the set

k-1 o .
Ds— L_J’)K(ﬂ’f(a—:i)- UL (57041, Bro+s): 0 <4 <j <k}

whenever i = f(£)+k, k = 0; Op is chosen to consist of the first point
in 4 —J C, whenever 8 eI. The rest of the proof is as before. Finally,
a<p

the decomposants are mutually homeomorphic since any two countably
dense subsets of the plane are homeomorphic (Sierpinski [7]).

For a given topological space X, let us put A(X)=min{|U[: U is
a non-void open subset of X)}; x(X) = min{|B|: B is a base for X};
and yx(f) = min{|W}: W is a local base at p ¢ X}. We will say that
a space X is m-resolvable, where m is a cardinal >2, if X is the union
of m disjoint, dense subsets each of which intersects each non-void open
subset of X in at least m points. (Hewitt’s “resolvable” is our 2-resolv-
able without the last restriction). It is clear that X can not be m-resolv-
able for any m> 4(X). So we say that X is mawimally resolvable it X
either has isolated points or is A(X)-resolvable. Now we proceed to
obtain some sufficient conditions, all of which are generalizations of
Hewitt’s results on “resolvable” spaces, for a space to be maximally
resolvable. We begin by again generalizing Sierpinski’s result, this
time to

THROREM 3. If %, << x(X) <4 (X), then X is mawimally resolvable.

Proof. The case when A(X)= y(X) is identical to that in theo-
rem 1. For the case when yx(X)< 4(X), we construct the sets {Acacm,
m = A(X), as done in the proof of theorem 1. Here, however X may
not be equal to |J 4,, in which case we define X, = 4, for a#0

a<m
and X,= A,u (X— |J 4,). Then it is easily checked that {Xia<m

a<m

yields the desired resolution of X.
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Ounly in the case X is Hausdorff can we dispense with the require-
ment that 8, < x(X) in theorem 3 (as well as in Theorem 9), for then,
if z(X) were finite, X" would have the discrete topology and hence, be
maximally resolvable. To show that &, < x(X) is necessary in a non-
Hausdorff space, take a two point set with the indiscrete topology.
Next we show that a “locally m-resolvable” space is m-resolvable.

THEOREM 4. If each non-void open subset of X contains an m-re-
solvable subspace, then X itself is m-resolvable.

Proof. Let 4, be a subset of X which is m-resolvable. Let {C8ly<m
be its corresponding resolution. Now suppose we have chosen for each
a<f an m-resolvable set 4, with resolution {C%},<n. Consider Gp= X—
—(U 4.7, If G5+ 0, we select by hypothesis an A C G5 which is

a<p

m-resolvable. If G; =0, put 4,=@. Let 5, be the least ordinal § such

that @ =@. Then put "= | (% for each y < rm. Then it can be
a<fy
shown without difficulty that {0°u (X— \J ")} U {C": 0 <y < m)
y<m

gives the desired m-resolution of X.

THEOREM 5. If each point 2 ¢ X has an open neighborhood U (z) such
that %, < x(U(w)) <4 ( U(m)), then X is maximally resolvable.

Proof. By theorem 3 each U(w)is 4(U(x))-resolvable, hence 4(X)
resolvable. Since open subsets of m-resolvable spaces are obviously
m-resolvable, the hypothesis of theorem 4 is satisfied for m = 4(X)
Thns, X is maximally resolvable.

TemorEM 6 (Hewitt ([2], Th. 46)). Let X be a T,-space devoid of
isolated points and having the property that each non-void open subsel
of X contains @ non-void open subset H such that for each point p e H,
1x(p) < [H|. Then each non-void open subset of X contains a non-void
open subset G so that x(G) < A(G).

The next four theorems provide us with a large class of maximally
resolvable spaces.

THEOREM 7. Any locolly compact Hausdorff space is marimally re-
solvable.

Proof. It is well known that a locally compact Hausdortf space
devoid of isolated points satisfies the hypothesis of theovem 6 (cf. [1],
P- 67). Then apply theorems 3 and 4 where m = A(X) to complete proof.

TEHEOREM 8. Any T,-space in which each point has a local basis
linearly ordered by inclusion is maximally resolvable.

Proof. It is easily seen that the hypothesis of theorem 6 is fulfilled.
Then apply theorems 3 and 4.

In particular then, 1st countable Ty-spaces (including metrie spaces),
and linearly ordered sets equipped with the order-topology are max-
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imally resolvable. We are unable to prove that an arbitrary product of
maximally resolvable spaces is maximally resolvable, however we do have
TapoREM 9. For each ae A let X, be a mawimally resolvable space

with S < 2(Xa). Then, the product space ﬂg X, is mazimally resjolvable,
provided there does mot exist an infinite subset M C A for which |M|
< sup | Xa| and 4(X,) <|Xa| < g(Xe) for all aedl.

a€d

Proof. First we prove that a finite product of maximally resolv@le
spaces is maximally resolvable. By induction, we need only consider
:civo maximally resolvable spaces X and ¥ with resolutions Xy a < A(X)}
and {¥.: a< 4(Y)}, respectively. Then, since 4(X x ¥) = [4(X) -.A (X)),
:'Y %Yo a< X)), f< A(X)} will become a A(X xY) resolution for
XxY. ) B

Let us now put X = [] Xa, ko = | Xal, ma = 2(Xo) and m, = 4(X,)

aed . el
for each a e A. Now we décompose the index set 4 into four disjoint
sots: A, = {aed: ky=my}; Ay={ae A na<m)—4;; 4;={aeA:
;n < k 1< n); and 4, = {aed: me<n, < k). Since X is homeomor-
a a afy -+
4

phic to [] X; where X;= J1X, (i=1,2,3,4), we need only show
i= a€d
that eacil lXi is maximally resolvable. .
(1) For X;, put m = |4, and let {05 f<my) be'a rfza.~?esolut10n
for X,. Then the family {[] O, fa < m, and o< m} is disjointed and
has cardinality | [ m,. Moreover, each non-void open set intersects each

a<m N ) -

member of this family in > [[ m. points. Glea‘rlyn there exists a finite
a< _

- i [ ke = [T .
1 aF#ajg

a<m

subset {a, dgy -..r an} Of A, for which 4(Xy) :i[:

Hence, X, is maximally resolvable. .
(2) For X,, we have a finite subset {ay, +..y an} of A, for whic

A(X,) = ﬁ g % [ ka. Let #; consist of all finite subsets of A4 then
1

aFai

|#,) = |4,| unless A4, is finite in which case X, is already .tmgxizas,gz
resolvable. Then obviously x(X,) = > {a]gF ng: F € #&,). Then it is y
established that x(X) < é’ n, < ZA m, < 4(X,). Now we apply Theo-
acds a€dy
rem 3 to conclude that X, is maximally resolvable. 3
(3) For X,, put A; = {a e 4y su}) k. < |4g)} and dg= d3—d;. By

aedy .
= JT X. is maximally resolvable.
a€dg

. kg
Assuming |4;] = m is infinite, we Lave, since n. < 2%, that

21X < D[] 2% Fess) <|4l-2 =m-2" where

aeF

assumption, 4, is finite so that X,

y = sup k.-

aecds
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Also, sinee there exists a set {ay, ..., oy} for which Hl mg X [] k= A (Xy),
i= aFag

we can prove that ym =[] k, < A(X,). But the assumption that

aFag

sup k. < m implies that y <m and 3 (X;) < m- 2" < 9™ < 4 (X5). Henee,
A

a€
by ’theorem 3, X5 is maximally resolvable, as is X,.

(4) For X,, we have ag in (3) that ™ < 4(X,) where we can ag-
sume without loss of generality that |4,| = m is infinite. Then 2(X,)
<2{Hna:Fe.h}{Z{[lka:Feaé4}<].f(:4f<y:m-y. But sinee my < ym
for afleFm, we have ;(El;) < 4(X,) and thus, X, is maximally re-
solvable.

There do exist maximally resolvable spaces X for which s, < A (X)
< |&} < 2(X). For example, let Y be the linearly ordered space obtained
by inserting a copy of the rationals between each two consecutive or-
dinals <2%. Let X be the subspace ¥ u {P} of §(¥) (the Stone-Cech
compactification of ¥) where p ¢ §(¥)—Y. Then X will be maximally
resolvable with s = A(X) <2 =c= |X| <2°= z(X). Now as an
application of Theorem 9 we obtain

TeEOREM 10. A product space ]]AX,, is maximally resolvable if each

Q€

Xo 98 Hawsdorff and yx(p) <|X,| for each acd and peX,. (In
particular, if each X, is Hausdorff and is either locally compact or has
a local linearly-ordered base at each point.)
Proof. Let B={acd: 5 < | X} and ¢ =A—B. For aeB we
have for X = ]LXQ that 8, < x(X) < Z;xx(p) < |X||X| = |X| and upon
a€ pE

application of theorem 9 we have that X is maximally resolvable. If ( is

finite, then [] X, = Y has an isolated point and we are finished.
aeC

If ¢ i3 infinite then 47y =]] [ X, and x(Y) = |C] unless ¥ has an
aeC

isolated point. Therefore, unless ¥ has an isolated point s, < (¥}

=101<] L]XG] = A(X). Hence, Y is maximally resolvable, which finishes
ae€

the proof. The parenthetical statement is a consequence of theorems 7

and 8.

In particular, a product of real intervals is maximally resolvable.
Although open subsets of maximally resolvable spaces are obviously
maximally resolvable, arbitrary subsets may not be. For example,
Kat&tov [3] has shown that there exist normal, zero-dimensional spaces
of arbitrary infinite cardinality which are not 2-resolvable. In partic-
ular then, there exists a countable, normal space (hence, regular Lindelsf)
which is not 2-resolvable. Finally it should be mentioned that Padma-

vally [6] has constructed a connected Hausdorff space which is not
2-resolvable.
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