Remarks on o,-additive spaces
by
Wang Shu-tang (Sian, China)

§ 1. Preliminary notions. According to Sikorski [9], the set X
is called an w,-additive (1)_sp<we if there is defined (for every subset X)
a closure operation X X satisfying the following axioms:

. Y X = 3 X, for every a-sequence of sets {&:), a < oy

0<i<a 0<t<a
II. X = X for every finite subset X;
Ir. X = X.

If 4 =0, the axiomatic system I-III coincides with the closure
axiomatic system of Kuratowski, but for x> 0 it is stronger than that
system. Similar spaces were also considered by Paroviecenko [8], Cohen,
Goffman [1], [2], and others. A regular w,-additive space, for p> 0,
must be 0-dimensional.

Let A be an ordered group (%), and if there exists a decreasing
positive w,-sequence {e}, &< w, and ¢ e 4, satisfying the condition
that for every positive element ¢e¢.A there exists an ordinal & < w,
such that s < ¢ for every £> & (£ < w,), then we say that 4 is of
character w,.

Suppose X is a set and with every given pair of points p, ge X, there
is associated an element g(p,q) e A, where A is an ordered group of
character w,, such that

a) e(p,p) =0;

b) o(p, q) = o(g, p) > 0 for p £ g;

¢) e(p, 9) < olp;7)+elrs @)-

Then p is called an e, metric on X, and X is called an w,-metric
space.

(*) w, denotes a regular initial ordinal number.

?) I.e. an ordered set in which with every a,b ¢ A there is associated an element
¢ceA called the sum of @ and b: ¢ = a-+b and such that: 1° a+ (b+e¢) = (a+b)+¢;
2° a+¢ < b+, if and only if a < b; 3° for every a,b ¢4 there exists an element c e 4
such that a+c¢ = b. The symbol 0 denotes the element satisfying a-0 = a. An ele-
ment @ is positive it a > 0 (see footnote (**) of [9], p. 128).
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For an cu,‘ metric space X, we can introduce the natural topology
by setting (?) X = F[p; o(p, X) = 0], where X is an arbitrary subset
of X and Q(p, X) = 0 means that for every positive ¢ e 4 there exists
a peX such that o(p,p’)<e And, then, the sets [[p; o(p, p) < &,
where p,e X is arbitrarily given and ¢ is an arbitrary positive element
of 4, form a basis of the open sets of X. It can be proved that such spaces
are w,-additive. For this purpose it is only necessary to prove that the
intersection of every a-sequence (a << w,) of open sets {G¢} is open.
Let p, be an arbitrary point of Ie] G¢; then for each G there exists a

positive element s,]EeA such that ne < w,, and if o(p, py) < &y, then
p e Gs. Let & be an ordinal which is greater than every ne and 50 < 0
then for g(p, po) < &, We have pe H G¢, whenee p, is an interior point

of ” (G:; this proves that ”G: is an open set.

'I‘he w,-metric spaces We1e considered by Hausdorff [3], Cohen and
Goffman [2], Sikorski [9], and others. As Sikorski had pointed out in [9],
many topological theorems about separable metric spaces can be generalized
to the present case, but some singularities concerning compactness and
completeness may occur.

In the above, if 4 is the set of all real numbers and b) is replaced by

b) e(p, q) = (g, p);
then o is called a pseudo-metric on X. Let us call an almost-metric space
each set X with a family P = {g:} of pseudo-metrics and satisfying

d) If for every gse P pgep, q) = 0, then p =gq.

Moreover, we can assume that, tor P, the following statement holds:

e) For every g, 05, € P there exist g.eP such that gz, y)

> max {0,,(2, ¥); 0a(2, ¥)}-

If the power of P is equal to m, X is called an m-almost metric space.
One can introduce the topology for X by setting

X = [[Ep; eslw, X) = 01,

oge P

where X C X, i.e. the family of sets EIp; 0w, po) < @], where p,eX,
d> 0, p: P, is a basis for this topology.

The m-almost-metric spaces were introduced and investigated by
Mréwka [5-7]. In fact, such spaces are equivalent in the sense of uniform
and topological structure to the Hausdorff uniform spaces (for the ter-
minology of Hausdorff uniform spaces, see [4], p. 180) with the basis of

(*) The symbol F'[p;p(p)] denotes the set of points p ¢ ¥ which satisfies the
condition ¢, i.e. the proposition ¢(p) is true.
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power m, i.e. a uniformity has a basis of the power m if and only if
it is generated by a family of psendo-metrics of power m.

For brevity, in the following sections, the topological space X is
said to be a (U)w-space if its topology can be derived from a uniformity
with a basis of power m, where m is supposed to be the smallest possible;
the topological space X is said to be w,-metrisable, if it is possible to
define an w,-metric ¢ such that the topology induced by ¢ agrees with
the original topology of X. By the basis of X we always mean the open
hasis.

In the following two theorems, given by Mréwka, the original “X is
an in-almost-metrisable space” is replaced by “X is a (U)wm-space’.

THEOREM M;. A normal space X is a (U)n-space if and only if it
has an m-basis (i.e. this basis is formed by the union of at most m locally
finite systems). '

THEOREM M,. A completely regular space X is a (U)n-space if and
only if there c.m'st a basis {U} and a femily {fu} of continuwous functions
such that 0 < fu(p) <1; fulp) =1 for peU and the sets F [p; fulp) > 0]
can be divided 7)110 @ famﬂl/ of locally finite (discrete) systems of power
at most m.

The present paper is divided into the following four parts. In § 2
necessary and sufficient conditions for a (U)n,-space to be w, additive
are obtained.

In § 3, we study the relationship between (U)m-spaces and o,-
metrisable spaces.

In § 4, some necessary and sufficient conditions for an o, additive
space to be o, metrisable are obtained. The well-known Nagata-Smirnov
metrisation theorem is contained in one of our theorems. Finally, some
remarks on compactness and bicompactness are also made in § 5.

§ 2. The necessary and sufficient conditions for a (U)m-
space to be w,~additive. We now prove

PROPOSITION 1. If X is an w,-additive space, then, unless X is discrete
or u =0 (while every topological space is wy-additive), its topology canmnot
be derived from a wniformily with the basis of power <w,.

Proof. Let X be given as above. For our purpose it is only necessary
to prove that its topology cannot be derived by a family of pseudo-
metrics (in the sense of § 1) of power <x,. Suppose it is not the case,
i.e. its topology can be derived by a family of pseudo-metrics P = {g¢}
of power <x,. Let p, be an arbitrarily given point of X. Then, it
u> 0, by

Ep; edp, pa) = 01 = ﬁE[p; eg(p,po)<%],

n=1
8%
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we know that the set F[p; o:(p, po) = 0] is open, and by

nE[Pr

QEEP

ee(p, o) = 0] = {po}

we know that the set {p,} is open, and hence, if x> 0, ¥ must be discrete,
which contradicts the hypothesis of our proposition.

Thus, a (U)n-space is w,-additive (for u > 0) only when m > s, (4.
It is natural to ask under what conditicns the (U)x-space ¥ would be
o,-additive, where m = N,.

Since every topological space (and hence every uniform space) is
wy-additive, in the rest of this section x4 > 0 is assumed.

Let X be a set and P = {p:} a family of pseudo-metrics on X.
Including in P the functions des, max {gs,, ..., gz,} (where d is an arbitrary
positive rational nuwmber, n a natural number and gg, p: ¢ P) we get
a new family P*, which is called the completion of P; for P* we have
a), b’), e), d), e) and the following:

f) For every positive rational d and g e P*, do: e P*.

DrrInTION 1. Let X, P be given as above. If, for every subfamily
P CP, P’ < m and every point p, e X, there exist p; ¢ P and a neigh-
bourhood F(po) of p, such that gglp, q) = o0,(p, ¢) holds for o,e P’ and
2,4 eV(p,), then we say that P is an m-locally direct family.

THEOREM 1. For a (U)m-space X lo be w, additive (where u> 0),
it is mecessary and sufficient that m =8, and its topology can be derived
from a untformity which is generated by a family of pseudo-metrics P = {p%}
such that the completion P* is an N,-locally dirvect family.

Proof. Sufficiency. Let {@¢}, £<a (¢« < »,) be an a-sequence
of open sets, p, an arbitrary point of ]g G:. Then there exist a positive

number d (by e) one can assume d=1) and a subfamily {an} C P* guch that
E; e (p,p) <11 C G for

By the s,-locally directness of P¥, there exist g, e P* and a neigh-
bourhood V(p,) such that g, > o, (0 < &< a) holds in V(p,). Then

V(po) El[p; enp, po) <11 C Vipo)- [[Elip, o1, (25 Po) < 1]

0<é<a.

0<<é<a
po 1 i Gf l i GEw
I<é<a 0<5<a

this proves that p, is an interior point of [] G, whence [] @, is an open set.
¢ ¢

(% Throughout the rest of the paper, topological spaces always mean non-
discrete topological spaces.

icm°
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Necessity. Let the uniformity of the (U)m-space X be generated
by a family P of pseudo-metrics; P* is the completion of P. For an ar-
bitrarily given P’ C P* and if P’ < s,, let p, be an arbitrary point of X.
Then the set

Vipo) = ]YE[P, on (P, o) = 0] = f[ nE[ps 9n5<p,po)<;1;]

n=1 gngsP’

is an open set containing p,, ie. V(p,) is a neighbourhood of p,
satisfying the condition that for every pair p,geV(p,) and every
o, € P* we have o,(p,q)> g,,g(p,q) = 0. Therefore P* iy an s,-locally
direct family.

DEeFINITION 2. Let X, P be given as in def. 1; if for every sub-
family P’ C P with P’ < m and every point p, ¢ X, there exists a neigh-
bourhood V(p,) of p, such that or, (p,q)= 0 for on, eP’ and p,qeV(py),
then we say that P is an m- Tocally y zero family.

A more convenient test to see if a (U)m-space X is w,-additive is the
following

THEOREM 2. For a (U)n-space X to be o, additive, il is necessary
and sufficient that m = s, and its topology can be derived from a uniformity
which is generated by an s,-locally zero family of pseudo-metrics.

Proof. Sufficiency. We observe that the completion P* is also
an §,-locally zero family; the sufficient part is a corollary of Theorem 1.

Necessity. The proof is completely the same as the proof of the
necessary part of Theorem 1.

§ 3. The relationship between o,metrisable spaces and
(U)m=spaces. We now prove

PROPOSITION 2. If X is an w,-metrisable space and § is an open covering
of X, then there exists an s, discrete rvefinement § of § (i.e. §' is the union
of 8, families of discrete open sets, § is a covering of X and for every U «F’
there is & V e such that UCV ). Moreover, for u> 0 we can require that
&' be formed by sels both open and closed.

Proof. The first part is essentially the same as in the case of
1 = 0. Order the elements of § by the relation <. For each U e{ let (%)

= Elp; olp, X—U) > &J; then, o(Us, X—Uss1) > s:—2p42. We put
Ui= U;—Z{Vi1; Ve and V < U}; since one of the relations U<V
and V< U must hold, therefore if U, V are distinct elements of §, we’
have o(Ui, Vi) > es—egra. Choose two elements &''<<&’ of 4 such that
2¢' = ¢ +¢& < gg—&s4a (to verify this possibility is easy), and define

(*) The meaning of 4 and & has been given in § 1.
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Ut =Elp; elp, U< &1, VE=Flp;olp, Vi <el,
r=FEpielp, U< e'], VE=FElp;elp,VH<s"].

Then UY (and V¥) is open and UF* (V§*) is closed, Uf*C UL If
>0, then there exists an open-closed set [9]~ ﬁg such that Uf C TIE C U
In the following we prove that the family {U}} (or {U,}, if u > 0), where
§<w, and U e, is required.

Firstly, the sets Uf (or Uy, if 4> 0) for fixed & are discrete. To prove
this, let U %V, U,V eF and p e UL, ¢ « V¥ be arbitrarily given; then
we have g(p, Us) <& and o(q, Vi) < &. From o(UL, Vi) < ee—eppy it
follows that o(p, ) > (ee—g5+1) —2¢’ > 0, i.e. p # ¢. Therefore UtVi=0.
Secondly, let p ¢ X be an arbitrary point and let U be the first member
of § to which p belongs. Then surely p ¢ U* for some £, that is pelUt
(for 4> 0, pe T;). Finally, it is evident that U C U (and U:C U for
4> 0). Hence the family {U%}, or {T%) if # >0, is the required family.

THEOREM 3. Fvery w,meirisable space X is a (U)Ru-space.

Proof. By proposition 2, Theorem 3 follows from Theorem M,
immediately. (By theorem (viii) of [9], X is a normal space).

It will be observed that Theorem 3 can be proved in a direct way.

THEOREM 4. Every w,-additive (U)y,-space is w,-metrisadle.

Proof. Let X be an w,-additive (U)y,-space. Then its topology can
be derived from a family P = {g;} of psendo-metrics of POWer K,.

If 4 =0, then P = {g,}. Put

o(p, @) = _2
n=1

then o is a metric on X, whence X is w,-metrisable. We now prove
the case of u#> 0 as follows. Let 4 be the set of all w,~sequences of
real numbers. For every pair of elements a,be A, where

|

7 indl, en(p, 4)} 5

(5]

= {y, Gy e, B, ...},
b= {b, byy ey bg, by

§ < @y, if there exists & < o, such that a; = by for & < & but ag, < be,,
then we say that. @ is smaller than b, a < b. The sum and the difference
are defined by a+b = {a,+b,, ..., g+ be, )
It is not difficult to verify that 4 is an ordered group of character
©g to see this we only take e = {aj, af, ..., af, ...}, where af =0 for
7 < & and. af) =1for n=¢ (< o).
It P={p}, &< w,, we put

e(p,q) = {ou2, @y oees 0D, q)y -}
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X is now an w,-metric space, and we have to prove that its topology T2
agrees with the original topology T". For brevity, by T* (or T?y—open,
we always mean a set which is open with respect to the topology 1 (or 72);
the same applies to “T" (or T2)—closed”.

(I) The set [ [p; 0(p; po) < &] is T'—open for ee A, where p, e ¥
is arbitrarily given.

Tn fact, if &= {ay, ay, ..., @, ...} then (I) follows from the equations

Et; e, p)<el= D[] Ep; eslp,p0) = asl-E [g; o0, po) < ],

(l<17<mu 0=<é<y

and

]

I

Ep; eelp, 20)

=]E[E[P; 0D Do) > ag—%] . E[p; (D, Do) < a-{-;l;].

n=1

(IT) The sets F[p; o (9, po) < a,] are T%-open, where pye X, a, is
a positive real number 5 < w, and g, ¢ P.
From

E; edpr 20 <ad= D[] Elp; osp,p0) = ac- E 193 0, 20) < 0]

{aghgay OE<n

it is evident that (II) follows from
(II') For every n < w, and an arbitrary u-sequence {ag}, £ <7,
the sets

(=[] Etp; es(p, po) = al- E [p; 0sfp o) < 1]

0cé<y
and
= [ Ew; e, 20) = ad- Ep; o, 7o) > a5]
0§y
are both 7%-open and I%-closed sets.
We prove it by the following two steps: -
(a) The sets [ [p; ap, po) < ao] and [ [p; aifp, 2o) > a5] ave both
T2-open-closed sets.

1 &
In fact, let & ——Jaa—;, Gy yoney a@,...}, where &< w,, and ay, ..., Gg, -

\

are fixed as » varies; then

E 123 eop, po) < a0) = O, EIps 0(p,p0) < €],

n=1
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- which implies the T2-openness of the set [ [p; o D5 Do) < Gp). (Similarly,
the T2 openness of E [p; 0o(ps Po) > @] can be proved.) To prove that
they are T2 closed it suffices to take the complements, for example

Ep; o, po) < @] = }V_‘QE [p; 00Dy Do) > Gg— %] .

(b) By the principle of transfinite induction, assume that (IT') holds
for all ordinals & < a, to prove the case of « (¢ < w,).

(i) If o is an isolated ordinal, let £ = {4}, where & < o, and
af = a; for £+ a and a” = a, —%; then
Ep; elp, p) < 6™

D[] Et; op,20) = a1 Ep; oalp, po) < .

0‘/11<m 0=é<y

Subtracting from the above set the following 72-closed set (hy-
pothesis of (b))

A
V H E[py 952’7290) = a'(m] E[p; 2y P,Po) < a(n)]
osn<a 0<E<y
one obtains the following 72-open set:

2 H E[P, 0Py o) = a‘E )] E[P; 91;1’7170) < a,m],

a£ﬂ<mu 0<é<ny
its union with respect to 7, Gat1y ..., g, ... (& << o,), is the T2-open set
(4).. In a similar way one can prove that (4), is T2-open.

By taking the complements we can prove that the sets (4), and
(d)s are T2-closed, e.g. from

HE[Z’: odp, Do) = az]- E[ﬁ: 04D po) = a,]

0<é<ny

=” ]E{f” 0P, o) >“=‘,;j] E[P; 9;(p,po)<a5+51-i}~

'E[P§ 0P Po) > an—%];
and

~ (D= Elp; oslp, po) > asi -

0=<t<a

+ Z Etp; edp, 0 <ael+ [ Ep; 0sp,2.) = a1 Elp; 0up, p0) > 2],

0<t<a 0<t<a

one can prove that (4), is T°-closed.

w,,-additive spaces 109

(i) If @ is a limit ordinal, then from the following equation

IYEEP’ 0s(p, Do) = ag]- E[pa 04Dy Do) < @]

0=E<y

—][ I]E[p7 2Py Po) = ag]- E[P, 24P 5 Po) <anT::;]

0=CE<y

and by the hypethesis of (b), we know that, for each 5 < a, the set

[ Ews esp,p0) = a1 Ep3 0, 20) < @]

VE<y
is a T*-open set. By intersecting the above sets with respect to n<a
we obtain the following 72-open set:

I Etw; odp, po) = as].
0E<a
The intersection of the above set with the 72-open set E [p; o(p, po)
< &™), where &™ assumes the same meaning as in (i), is the following
1% open set:

E H Ep; o9, po) = a1 [p; 04, po) < a5

an<w, O<E<n

by making a union of the above sets with respect to n, @41, ..., the
T-open set (4), is obtained. In a similar way one can prove that (4), is
T open. .

The proof that (d4), and (4), are T2 closed sets is completely the
same as in case (i), whence it is omitted here.

From Theorems 3 and 4 we have

THEOREM 5. o, metrisable spaces end o,-odditive (U, spaces are
identical, in particular wy-metrisable spaces and ordinary metrisable spaces
are tdentical.

§ 4. w,~metrisation theorems (°). We prove

THEOREM 6. For a regular o, additive space to be o, metrisable, it is
necessary and sufficient that there exist an x,-basis.

Let us recall that the family § of open sets is called an .\,L basis of
the topological space if ¥ is a basis and § can be written as D s

U<u o,

where §, ave locally finite systems of open sets.

(%) Let us observe that in our metrisation theorems the notion of ordered alge-
braic field (see [9], p. 129) W, is not used.
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Proof of Theorem 6. As the necessary part has been contained
in the proof of proposition 2, we need to prove the sufficient part only.

From Theorems 5 and M, we need only to prove that X is a normal
space (this is an improvement of theorem (vii) of [9]).

In fact, let #; and F, be disjointed closed sets; since X is regular,
for every pail of points p e Fy, ¢ <F, there exist neighbourhoods U, € Fem
and U, € s such that U, Fy =0 and U, -Fy = 9. Let UL = 3 U,

tr=n
and UY = gn Uy (p e F; and g e F,); then T =, ;)%__,‘ U, and U9 = )Z' U,
o= =y @)=n
since §, is a locally finite family.
Put
Ur=09- D0, Ur=0P- >0
s 72
n<& n<§
rr= Y ur, Ue= > ur
0<5<wu 0€§<mu

The sets U* and U** are disjointed open sets containing ¥, and F,
respectively. Thus X is normal. Therefore, theorem 6 is proved.

CororLArY 1 (R. Sikorski [9]). If X is an w,-additive normal space
with a basis of power s,, then X is o, metrisable.

CoroLLARY 2 (Nagata-Smirnov). For a regular space to be metrisable,
it is necessary and sufficient that there ewist an s,-basis.

THEOREM 7. For u >0, for an w,-additive space to be w,-metrisable
it is necessary and sufficient that there ewist an s,-basis consisting of sets
both open and closed.

Proof. Necessity. It is contained in the proof of proposition 2.

Sufficiency (7). Let § be an s,-basis of ¥ and let F= 3 F:

. . I<E<w
where e are locally finite (discrete) systems consisting of open-closed
sets (Proposition 2). For U eF, define

1 for
0 for

] - I pel,
fotp) =} ool
The family P = {max(g, ..., g;,)} of functions,

0slpy @) = D Ifulp)~fula)l,

UeBy;

makes X as x,-almost metric space its topology is the same as the
original. In fact, the g; are continuous functions by the local finiteness
of Fe. Conversely, for an arbitrarily given open set G and Po € G, one

() The proof given here is not based on Theorem M,.

icm
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can find U e§; (for some &) such that p,eU C G, whence gi(py, X—U)=1
and therefore E[p; 0P, o) <1]C U C G. Thus, X is an w,-additive
(U)g,-space, and theorem 7 follows from Th. 4 (or Th. 5) immediately.

From theorem 7 we can derive some results which are closely related

to Theorem M,.

COROLLARY 1. For u> 0, for an w,- additive space X to be w,-metrisable
it is necessary and sufficient that there exist a collection of families of con-
tinuwous functions P = {P¢} and Py = {fi}, where & < w,, such that the
families of sets F [p; fip) > 0] for fived & are locally finite (discrete)
systems, and the family of sels F[p; fip) > 1] (where £ < o, and fi e Ps)
is a basis of X.

Proof. Necessity. It suffices to put in theorem 7

2 for
0 for

pel,

pe T for every U e,
5 ?

folp) = { &< wy-
Sufficiency. The families of sets [ [p; f5(p) > 1], for fixed &, are

locally finite systems, consisting of sets both open and closed:

\’ 1
Etps i) > 1= D E|ws fin) > 147
n=1
COROLLARY 2. For an w,-additive sjpace to be w,-metrisable, it is
necessary and sufficient that there ewist a family of functions {fu} which are
continuous and 0 < fy(p) <1 and that the family. of sels Ep; fulp) > 0]
form an s,-basis of X.
Proof. Sufficiency. Completely the same as the proof of the
sufficient part of theorem 7.
Necessity. The case x> 0 is contained in theorem 7. Let u =0,
and let § be an xg-basis of X, § = > §n, where F, arve locally finite
1

n=

(discrete) systems. For U ey we pub
folp) = elp; X=U),

where o is the metric function of X. Then {Jy} fulfils the requirement
of Cor. 2.

§ 5. Compactness and bicompactness. The terminology of com-
pactness and bicompactness has been given by Sikorski [9]. We say that
the topological space X has the s,-Lindelof property, if from every cover-
ing of X one can select a subcovering of power <.

PrOPOSITION 3. If X is a regular o, additive space which has the
w,- Lindelof property, then X is mormal.
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Proof. It is completely the same as in the case of u = 0, which i
classical and well known ([4], p. 113), whence omitted.

The above proposition had been given by Parovicenko in [8].

THEOREM 8. If X is an w, metric space and is compact (in the sense
of [9]), then X has a basis of power <s,., whence is bicompact (in the sense
of [9)).

Proof. By Th. 3, X is a (U)g,-space. Since X is compact, every
subset X' of power =x, has in X a contact point of order >2 (p, being
a contact point of X of order >2 means that for every neighbourhood
V(po) of p, the set X-V(p,) contains abt least two points of X, [10]), then
from Theorem of [10],} X has a basis of power <x,. Then Th. 8 follows
from Lemma 2 of [10] immediately.

Recalling Cor. 1 of Th. 6, we have the following

THEEOREM 9. For a Hausdorff w,-additive compact (in the sense of [9n
space to be w,-metrisable, it is necessary and sufficient that it have a basis
of power <.

Proof. Sufficiency. Follows from Th. 6 immediately.

Necessity. Follows from Th. 8 immediately.

The case u=0 of this theorem is the well-know second met-
risation theorem of P. Urysohn.

The author cordially thanks for the criticism and corrections made
the reviewier.
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On lattice-ordered groups

by

B. Banaschewski (Hamilton, Ontario)

Introduction. We shall be concerned with a lattice-ordered
group @, written additively though not necessarily abelian, with the
set P of its positive (i.e. » > 0) elements, and with homomorphisms,
epimorphisms, etc. from G to other such groups (mainly totally ordered
ones and their products) which are always understood to be non-trivial,
and lattice-ordered group homomorphisms, i.e. meet and join as well
as sum preserving. If K C G is an l-ideal in G then G/K denotes the
quotient group as lattice ordered group, i.e. with the partial ordering
defined by the image of P under the natural mapping ¢—G/K, and
we recall that for lattice-ordered groups and their homomorphisms the
First Isomorphism Theorem holds, i.e. if f: GG is an epimorphism
and f = ¢ o h its factorization into the natural mapping A: G —G/Ker(f)
and the induced mapping ¢g: G/Ker(f) G  then 7 is an epimorphism
and ¢ an isomorphism (*). Our main object is to study the epimorphisms
from G to totally ordered groups 7', to obtain characterizing conditions
for the existence of “sufficiently many” of these and hence of embeddings
of @ into products of such 7, and to congider particular types of such
embeddings. Some of our results can be regarded as an extension of those
of Ribenboim [6] who restricted himself to the abelian case. The possibility
of this extension is suggested by Lorenzen’s theorem on regular lattice
ordered groups [5] for which a proof is given in the present setting.
The methods used here differ from the approach in [5] or in [6], the latter
since we are able to dispense with Jaffard’s notion of filet [4] in the proof
of Proposition 3.

Particular subsets of P which will be of interest in the following are:

(i) the filters in P: the non-void subsets F C P with # Ay e F for
any x,y «F and x ¢ F for any >y where y ¢F;

(ii) the prime filters (3 in P: the proper filters ¢ in P for which
®+yeQ, » and y in P, implies <@ or ¥ €Q;

(*) Terminology as in [2] unless stated otherwise.

(*) We use the term “prime” with respect to the group operation here rather
than the lattice operation of forming the join. However, a prime filter in this sense
is also prime with respect to join since z+y >z Vy.
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