

Remarks on ω_{μ} -additive spaces

by

Wang Shu-tang (Sian, China)

§ 1. Preliminary notions. According to Sikorski [9], the set \mathfrak{X} is called an ω_{μ} -additive (1) space if there is defined (for every subset X) a closure operation $X \to \overline{X}$ satisfying the following axioms:

I.
$$\overline{\sum_{0\leqslant \xi < a} X_{\xi}} = \sum_{0\leqslant \xi < a} \overline{X}_{\xi}$$
, for every a-sequence of sets $\{X_{\xi}\}$, $a < \omega_{\mu}$;

II. $\overline{X} = X$ for every finite subset X;

III. $\overline{\overline{X}} = \overline{X}$.

If $\mu=0$, the axiomatic system I-III coincides with the closure axiomatic system of Kuratowski, but for $\mu>0$ it is stronger than that system. Similar spaces were also considered by Parovicenko [8], Cohen, Goffman [1], [2], and others. A regular ω_{μ} -additive space, for $\mu>0$, must be 0-dimensional.

Let A be an ordered group (2), and if there exists a decreasing positive ω_{μ} -sequence $\{\varepsilon_{\xi}\}$, $\xi < \omega_{\mu}$ and $\varepsilon_{\xi} \in A$, satisfying the condition that for every positive element $\varepsilon \in A$ there exists an ordinal $\xi_0 < \omega_{\mu}$ such that $\varepsilon_{\xi} < \varepsilon$ for every $\xi > \xi_0$ ($\xi < \omega_{\mu}$), then we say that A is of character ω_{μ} .

Suppose $\mathfrak X$ is a set and with every given pair of points $p,q \in \mathfrak X$, there is associated an element $\varrho(p,q) \in A$, where A is an ordered group of character ω_{μ} , such that

- a) $\rho(p, p) = 0;$
- b) $\varrho(p,q) = \varrho(q,p) > 0$ for $p \neq q$;
- c) $\varrho(p,q) \leqslant \varrho(p,r) + \varrho(r,q)$.

Then ϱ is called an ω_{μ} -metric on \mathfrak{X} , and \mathfrak{X} is called an ω_{μ} -metric space.

ω_μ denotes a regular initial ordinal number.

⁽²⁾ I.e. an ordered set in which with every $a, b \in A$ there is associated an element $c \in A$ called the sum of a and b: c = a + b and such that: $1^o \ a + (b + c) = (a + b) + c$; $2^o \ a + c \le b + c$, if and only if $a \le b$; 3^o for every $a, b \in A$ there exists an element $c \in A$ such that a + c = b. The symbol 0 denotes the element satisfying a + 0 = a. An element a is positive if a > 0 (see footnote (1) of [9], p. 128).

For an ω_{μ} -metric space \mathfrak{X} , we can introduce the natural topology by setting (3) $\overline{X} = E[p; \varrho(p, X) = 0]$, where X is an arbitrary subset of \mathfrak{X} and $\varrho(p, X) = 0$ means that for every positive $\varepsilon \in A$ there exists a $p \in X$ such that $\varrho(p, p') < \varepsilon$. And, then, the sets $E[p; \varrho(p, p_0) < \varepsilon]$, where $p_0 \in \mathfrak{X}$ is arbitrarily given and ε is an arbitrary positive element of A, form a basis of the open sets of \mathfrak{X} . It can be proved that such spaces are ω_{μ} -additive. For this purpose it is only necessary to prove that the intersection of every α -sequence $(\alpha < \omega_{\mu})$ of open sets $\{G_{\varepsilon}\}$ is open. Let p_0 be an arbitrary point of $\prod_{\varepsilon} G_{\varepsilon}$; then for each G_{ε} there exists a positive element $\varepsilon_{\eta_{\varepsilon}} \in A$ such that $\eta_{\varepsilon} < \omega_{\mu}$, and if $\varrho(p, p_0) < \varepsilon_{\eta_{\varepsilon}}$ then $p \in G_{\varepsilon}$. Let ε_0 be an ordinal which is greater than every η_{ε} and $\varepsilon_0 < \omega_{\mu}$; then for $\varrho(p, p_0) < \varepsilon_{\varepsilon_0}$ we have $p \in \prod_{\varepsilon} G_{\varepsilon}$, whence p_0 is an interior point of $\prod_{\varepsilon} G_{\varepsilon}$; this proves that $\prod_{\varepsilon} G_{\varepsilon}$ is an open set.

The ω_{μ} -metric spaces were considered by Hausdorff [3], Cohen and Goffman [2], Sikorski [9], and others. As Sikorski had pointed out in [9], many topological theorems about separable metric spaces can be generalized to the present case, but some singularities concerning compactness and completeness may occur.

In the above, if A is the set of all real numbers and b) is replaced by

$$\mathrm{b')}\ \varrho(p\,,\,q)=p\,(q\,,\,p),$$

then ϱ is called a *pseudo-metric* on $\mathfrak X$. Let us call an *almost-metric space* each set $\mathfrak X$ with a family $P=\{\varrho_{\tilde z}\}$ of pseudo-metrics and satisfying

d) If for every $\rho_{\varepsilon} \in P$ $\rho_{\varepsilon}(p,q) = 0$, then p = q.

Moreover, we can assume that, for P, the following statement holds:

e) For every ϱ_{ξ_1} , $\varrho_{\xi_2} \in P$ there exist $\varrho_{\xi} \in P$ such that $\varrho_{\xi}(x, y) \geqslant \max{\{\varrho_{\xi_1}(x, y); \varrho_{\xi_2}(x, y)\}}$.

If the power of P is equal to m, \mathfrak{X} is called an m-almost metric space. One can introduce the topology for \mathfrak{X} by setting

$$ar{X} = \prod_{arrho_{ar{arepsilon}}} E\left[p;\, arrho_{ar{arepsilon}}(p\,,\,X) = 0
ight],$$

where $X \subseteq \mathfrak{X}$, i.e. the family of sets $F[p; \varrho_{\xi}(p, p_0) < d]$, where $p_0 \in \mathfrak{X}$, d > 0, $\varrho_{\xi} \in P$, is a basis for this topology.

The m-almost-metric spaces were introduced and investigated by Mrówka [5-7]. In fact, such spaces are equivalent in the sense of uniform and topological structure to the Hausdorff uniform spaces (for the terminology of Hausdorff uniform spaces, see [4], p. 180) with the basis of

power m, i.e. a uniformity has a basis of the power m if and only if it is generated by a family of pseudo-metrics of power m.

For brevity, in the following sections, the topological space \mathfrak{X} is said to be a $(U)_m$ -space if its topology can be derived from a uniformity with a basis of power m, where m is supposed to be the smallest possible; the topological space \mathfrak{X} is said to be ω_{μ} -metrisable, if it is possible to define an ω_{μ} -metric ϱ such that the topology induced by ϱ agrees with the original topology of \mathfrak{X} . By the basis of \mathfrak{X} we always mean the open basis.

In the following two theorems, given by Mrówka, the original " \mathfrak{X} is an m-almost-metrisable space" is replaced by " \mathfrak{X} is a $(U)_m$ -space".

THEOREM M_1 . A normal space \mathfrak{X} is a $(U)_m$ -space if and only if it has an m-basis (i.e. this basis is formed by the union of at most m locally finite systems).

THEOREM M_2 . A completely regular space $\mathfrak X$ is a $(U)_m$ -space if and only if there exist a basis $\{U\}$ and a family $\{f_U\}$ of continuous functions such that $0 \leqslant f_U(p) \leqslant 1$; $f_U(p) \equiv 1$ for $p \in U$ and the sets $F_1(p) = 1$ can be divided into a family of locally finite (discrete) systems of power at most m.

The present paper is divided into the following four parts. In § 2 necessary and sufficient conditions for a $(U)_m$ -space to be ω_μ -additive are obtained.

In § 3, we study the relationship between $(U)_m$ -spaces and ω_μ -metrisable spaces.

In § 4, some necessary and sufficient conditions for an ω_{μ} -additive space to be ω_{μ} -metrisable are obtained. The well-known Nagata-Smirnov metrisation theorem is contained in one of our theorems. Finally, some remarks on compactness and bicompactness are also made in § 5.

§ 2. The necessary and sufficient conditions for a $(U)_m$ -space to be ω_{μ} -additive. We now prove

PROPOSITION 1. If $\mathfrak X$ is an ω_{μ} -additive space, then, unless $\mathfrak X$ is discrete or $\mu=0$ (while every topological space is ω_0 -additive), its topology cannot be derived from a uniformity with the basis of power $\langle \kappa_{\mu} \rangle$.

Proof. Let $\mathfrak X$ be given as above. For our purpose it is only necessary to prove that its topology cannot be derived by a family of pseudometrics (in the sense of § 1) of power $\langle \mathfrak x_\mu$. Suppose it is not the case, i.e. its topology can be derived by a family of pseudo-metrics $P = \{\varrho_\xi\}$ of power $\langle \mathfrak x_\mu$. Let p_0 be an arbitrarily given point of $\mathfrak X$. Then, if $\mu > 0$, by

$$E[p; \ \varrho_{\xi}(p, p_0) = 0] = \prod_{n=1}^{\infty} E\Big[p; \ \varrho_{\xi}(p, p_0) < \frac{1}{n}\Big],$$

⁽a) The symbol $E[p;\varphi(p)]$ denotes the set of points $p \in \mathfrak{X}$ which satisfies the condition φ , i.e. the proposition $\varphi(p)$ is true.

we know that the set $E\left[p;\,\varrho_{\varepsilon}(p\,,\,p_{\scriptscriptstyle 0})=0
ight]$ is open, and by

$$\prod_{\varrho_{\xi} \in P} E[p; \, \varrho_{\xi}(p, p_{0}) = 0] = \{p_{0}\}$$

we know that the set $\{p_0\}$ is open, and hence, if $\mu > 0$, $\mathfrak X$ must be discrete, which contradicts the hypothesis of our proposition.

Thus, a $(U)_m$ -space is ω_μ -additive (for $\mu > 0$) only when $m \geqslant \aleph_\mu$ (4). It is natural to ask under what conditions the $(U)_m$ -space $\mathfrak X$ would be ω_μ -additive, where $m \geqslant \aleph_\mu$.

Since every topological space (and hence every uniform space) is ω_0 -additive, in the rest of this section $\mu>0$ is assumed.

Let \mathfrak{X} be a set and $P = \{\varrho_{\xi}\}$ a family of pseudo-metrics on \mathfrak{X} . Including in P the functions $d\varrho_{\xi}$, $\max\{\varrho_{\xi_1}, \dots, \varrho_{\xi_n}\}$ (where d is an arbitrary positive rational number, n a natural number and $\varrho_{\xi_1}, \varrho_{\xi} \in P$) we get a new family P^* , which is called the *completion* of P; for P^* we have a), b'), c), d), e) and the following:

f) For every positive rational d and $\varrho_{\xi} \in P^*$, $d\varrho_{\xi} \in P^*$.

DEFINITION 1. Let \mathfrak{X} , P be given as above. If, for every subfamily $P' \subseteq P$, $\overline{P'} < m$ and every point $p_0 \in \mathfrak{X}$, there exist $\varrho_{\mathfrak{x}} \in P$ and a neighbourhood $V(p_0)$ of p_0 such that $\varrho_{\mathfrak{x}}(p,q) \geqslant \varrho_{\eta}(p,q)$ holds for $\varrho_{\eta} \in P'$ and $p,q \in V(p_0)$, then we say that P is an m-locally direct family.

THEOREM 1. For a $(U)_m$ -space $\mathfrak X$ to be ω_μ -additive (where $\mu>0$), it is necessary and sufficient that $m\geqslant \kappa_\mu$ and its topology can be derived from a uniformity which is generated by a family of pseudo-metrics $P=\{\varrho^\epsilon\}$ such that the completion P^* is an κ_μ -locally direct family.

Proof. Sufficiency. Let $\{G_{\xi}\}$, $\xi < \alpha$ $(a < \omega_{\mu})$ be an α -sequence of open sets, p_0 an arbitrary point of $\prod_{\xi} G_{\xi}$. Then there exist a positive number d (by e) one can assume d = 1) and a subfamily $\{\varrho_{\eta_{\xi}}\} \subseteq P^*$ such that

$$E[p; \varrho_{\eta_s}(p, p_0) < 1] \subseteq G_{\xi} \quad \text{for} \quad 0 \leqslant \xi < \alpha.$$

By the κ_{μ} -locally directness of P^* , there exist $\varrho_{\eta} \in P^*$ and a neighbourhood $V(p_0)$ such that $\varrho_{\eta} \geqslant \varrho_{\eta_{\varepsilon}}$ $(0 \leqslant \xi < \alpha)$ holds in $V(p_0)$. Then

$$egin{aligned} V(p_0) \cdot E\left[p; \; arrho_\eta(p\,,\,p_0) < 1
ight] &\subseteq V(p_0) \cdot \prod_{0 \leqslant \xi < a} E\left[p; \; arrho_{\eta_\xi}(p\,,\,p_0) < 1
ight] \\ &\subseteq V(p_0) \cdot \prod_{0 \leqslant \xi < a} G_\xi \subseteq \prod_{0 \leqslant \xi < a} G_\xi; \end{aligned}$$

this proves that p_0 is an interior point of $\prod_{\xi} G_{\xi}$, whence $\prod_{\xi} G_{\xi}$ is an open set.

Necessity. Let the uniformity of the $(U)_m$ -space $\mathfrak X$ be generated by a family P of pseudo-metrics; P^* is the completion of P. For an arbitrarily given $P' \subseteq P^*$ and if $\overline{P}' < \mathbf s_\mu$, let p_0 be an arbitrary point of $\mathfrak X$. Then the set

$$V(p_0) = \prod_{\varrho_{\eta_\xi} \in P'} E\left[p; \, \varrho_{\eta_\xi}(p, p_0) = 0\right] = \prod_{n=1}^{\infty} \prod_{\varrho_{\eta_\xi} \in P'} E\left[p; \, \varrho_{\eta_\xi}(p, p_0) < \frac{1}{n}\right]$$

is an open set containing p_0 , i.e. $V(p_0)$ is a neighbourhood of p_0 satisfying the condition that for every pair $p, q \in V(p_0)$ and every $\varrho_\eta \in P^*$ we have $\varrho_\eta(p,q) \geqslant \varrho_{\eta_\varrho}(p,q) = 0$. Therefore P^* is an κ_μ -locally direct family.

DEFINITION 2. Let \mathfrak{X} , P be given as in def. 1; if for every subfamily $P'\subseteq P$ with $\overline{P'}< m$ and every point $p_0\in \mathfrak{X}$, there exists a neighbourhood $V(p_0)$ of p_0 such that $\varrho_{\eta_\varepsilon}(p,q)\equiv 0$ for $\varrho_{\eta_\varepsilon}\in P'$ and $p,q\in V(p_0)$, then we say that P is an m-locally zero family.

A more convenient test to see if a $(U)_{m}$ -space $\mathfrak X$ is ω_{μ} -additive is the following

THEOREM 2. For a $(U)_m$ -space $\mathfrak X$ to be ω_μ -additive, it is necessary and sufficient that $m \geqslant \mathbf s_\mu$ and its topology can be derived from a uniformity which is generated by an $\mathbf s_\mu$ -locally zero family of pseudo-metrics.

Proof. Sufficiency. We observe that the completion P^* is also an κ_{a} -locally zero family; the sufficient part is a corollary of Theorem 1.

Necessity. The proof is completely the same as the proof of the necessary part of Theorem 1.

§ 3. The relationship between ω_{μ} -metrisable spaces and $(U)_m$ -spaces. We now prove

PROPOSITION 2. If $\mathfrak X$ is an ω_μ -metrisable space and $\mathfrak F$ is an open covering of $\mathfrak X$, then there exists an $\mathfrak s_\mu$ -discrete refinement $\mathfrak F'$ of $\mathfrak F$ (i.e. $\mathfrak F'$ is the union of $\mathfrak s_\mu$ families of discrete open sets, $\mathfrak F'$ is a covering of $\mathfrak X$ and for every $U \in \mathfrak F'$ there is a $V \in \mathfrak F$ such that $U \subseteq V$). Moreover, for $\mu > 0$ we can require that $\mathfrak F'$ be formed by sets both open and closed.

Proof. The first part is essentially the same as in the case of $\mu=0$. Order the elements of $\mathfrak F$ by the relation <. For each $U\in\mathfrak F$ let (5) $U_{\xi}=E\left[p;\,\varrho(p,\mathfrak X-U)>\varepsilon_{\xi}\right];$ then, $\varrho(U_{\xi},\mathfrak X-U_{\xi+1})>\varepsilon_{\xi}-\varepsilon_{\xi+1}.$ We put $U'_{\xi}=U_{\xi}-\varSigma\{V_{\xi+1};\,\,V\in\mathfrak F$ and $V< U\};$ since one of the relations U< V and V< U must hold, therefore if $U,\,V$ are distinct elements of $\mathfrak F$, we have $\varrho(U'_{\xi},\,V'_{\xi})>\varepsilon_{\xi}-\varepsilon_{\xi+1}.$ Choose two elements $\varepsilon''<\varepsilon'$ of A such that $2\varepsilon'=\varepsilon'+\varepsilon'<\varepsilon_{\xi}-\varepsilon_{\xi+1}$ (to verify this possibility is easy), and define

⁽⁴⁾ Throughout the rest of the paper, topological spaces always mean non-discrete topological spaces.

⁽⁵⁾ The meaning of A and ε_{ξ} has been given in § 1.

$$\begin{split} U_{\xi}^* &= E\left[p;\, \varrho(p\,,\,U_{\xi}^\prime) < \varepsilon^\prime\right], \quad V_{\xi}^* &= E\left[p;\, \varrho(p\,,\,V_{\xi}^\prime) < \varepsilon^\prime\right], \\ U_{\xi}^{**} &= E\left[p;\, \varrho(p\,,\,U_{\xi}^\prime) \leqslant \varepsilon^{\prime\prime}\right], \quad V_{\xi}^{**} &= E\left[p;\, \varrho(p\,,\,V_{\xi}^\prime) \leqslant \varepsilon^{\prime\prime}\right]. \end{split}$$

Then U_{ξ}^* (and V_{ξ}^*) is open and U_{ξ}^{**} (V_{ξ}^{**}) is closed, $U_{\xi}^{**} \subseteq U_{\xi}^*$. If $\mu > 0$, then there exists an open-closed set [9] \widetilde{U}_{ξ} such that $U_{\xi}^* \subseteq \widetilde{U}_{\xi} \subseteq U_{\xi}^{**}$. In the following we prove that the family $\{\widetilde{U}_{\xi}^*\}$ (or $\{U_{\xi}\}$, if $\mu > 0$), where $\xi < \omega_{\mu}$ and $U \in \mathfrak{F}$, is required.

Firstly, the sets U_{ξ}^{*} (or \widetilde{U}_{ξ} , if $\mu > 0$) for fixed ξ are discrete. To prove this, let $U \neq V$, U, $V \in \mathfrak{F}$ and $p \in U_{\xi}^{*}$, $q \in V_{\xi}^{*}$ be arbitrarily given; then we have $\varrho(p, U_{\xi}') < \varepsilon'$ and $\varrho(q, V_{\xi}') < \varepsilon'$. From $\varrho(U_{\xi}', V_{\xi}') < \varepsilon_{\xi} - \varepsilon_{\xi+1}$ it follows that $\varrho(p, q) > (\varepsilon_{\xi} - \varepsilon_{\xi+1}) - 2\varepsilon' > 0$, i.e. $p \neq q$. Therefore $U_{\xi}^{*} \cdot V_{\xi}^{*} = \emptyset$. Secondly, let $p \in \mathfrak{X}$ be an arbitrary point and let U be the first member of \mathfrak{F} to which p belongs. Then surely $p \in U_{\xi}^{*}$ for some ξ , that is $p \in U_{\xi}'$ (for $\mu > 0$, $p \in \widetilde{U}_{\xi}$). Finally, it is evident that $U_{\xi}^{*} \subseteq U$ (and $\widetilde{U}_{\xi} \subseteq U$ for $\mu > 0$). Hence the family $\{U_{\xi}^{*}\}$, or $\{\widetilde{U}_{\xi}^{*}\}$ if $\mu > 0$, is the required family.

Theorem 3. Every ω_{μ} -metrisable space $\mathfrak X$ is a $(U)_{\mathbf N_{\mu}}$ -space.

Proof. By proposition 2, Theorem 3 follows from Theorem M_1 immediately. (By theorem (viii) of [9], \mathfrak{X} is a normal space).

It will be observed that Theorem 3 can be proved in a direct way.

Theorem 4. Every ω_{μ} -additive (U)_{8 μ}-space is ω_{μ} -metrisable.

Proof. Let $\mathfrak X$ be an ω_{μ} -additive $(U)_{\aleph_{\mu}}$ -space. Then its topology can be derived from a family $P=\{\varrho_{\bar{\epsilon}}\}$ of pseudo-metrics of power \aleph_{μ} .

If $\mu = 0$, then $P = \{\varrho_n\}$. Put

$$arrho(p\,,\,q)=\sum_{n=1}^{\infty}rac{1}{2^{n}}\min\left\{ 1\,,\,arrho_{n}(p\,,\,q)
ight\} ;$$

then ϱ is a metric on \mathfrak{X} , whence \mathfrak{X} is ω_0 -metrisable. We now prove the case of $\mu > 0$ as follows. Let A be the set of all ω_{μ} -sequences of real numbers. For every pair of elements $a, b \in A$, where

$$a = \{a_0, a_1, ..., a_{\xi}, ...\},$$

 $b = \{b_0, b_1, ..., b_{\xi}, ...\},$

 $\xi < \omega_{\mu}$, if there exists $\xi_0 < \omega_{\mu}$ such that $a_{\xi} = b_{\xi}$ for $\xi < \xi_0$ but $a_{\xi_0} < b_{\xi_0}$, then we say that a is smaller than b, a < b. The sum and the difference are defined by $a \pm b = \{a_0 \pm b_0, \, \dots, \, a_{\xi} \pm b_{\xi}, \, \dots\}$.

It is not difficult to verify that A is an ordered group of character ω_{μ} : to see this we only take $\varepsilon_{\xi} = \{a_0^{\xi}, a_1^{\xi}, ..., a_{\eta}^{\xi}, ...\}$, where $a_{\eta}^{\xi} = 0$ for $\eta < \xi$ and $a_{\eta}^{\xi} = 1$ for $\eta \geqslant \xi$ $(\eta < \omega_{\mu})$.

If $P = \{\varrho_{\xi}\}, \ \xi < \omega_{\mu}$, we put

$$\varrho(p,q) = \{\varrho_0(p,q), ..., \varrho_{\xi}(p,q), ...\};$$

 \mathfrak{X} is now an ω_{μ} -metric space, and we have to prove that its topology T^2 agrees with the original topology T^1 . For brevity, by T^1 (or T^2)—open, we always mean a set which is open with respect to the topology T^1 (or T^2); the same applies to " T^1 (or T^2)—closed".

(I) The set $E\left[p;\,\varrho(p,\,p_0)<\varepsilon\right]$ is T^1 —open for $\varepsilon\in A$, where $p_0\in\mathfrak{X}$ is arbitrarily given.

In fact, if $\varepsilon = \{a_0, a_1, ..., a_{\xi}, ...\}$ then (I) follows from the equations

$$\begin{split} E\left[p;\,\varrho\left(p\,,\,p_{\scriptscriptstyle{0}}\right)<\varepsilon\right] = & \sum_{\scriptscriptstyle{0\leqslant\eta<\omega_{\mu}}} \prod_{\scriptscriptstyle{0\leqslant\xi<\eta}} E\left[p;\,\varrho_{\xi}(p\,,p_{\scriptscriptstyle{0}}) = a_{\xi}\right] \cdot E\left[q;\,\varrho_{\eta}(q\,,p_{\scriptscriptstyle{0}}) < a_{\eta}\right], \end{split}$$
 and

$$\begin{split} E\left[p;\,\varrho_{\xi}(p\,,\,p_{0}) &= a_{\xi}\right] \\ &= \prod_{n=1}^{\infty} E\left[p;\,\varrho_{\xi}(p\,,\,p_{0}) > a_{\xi} - \frac{1}{n}\right] \cdot E\left[p;\,\varrho_{\xi}(p\,,\,p_{0}) < a + \frac{1}{n}\right]. \end{split}$$

(II) The sets $E[p; \varrho(p, p_0) < a_\eta]$ are T^2 -open, where $p_0 \in \mathfrak{X}$, a_η is a positive real number $\eta < \omega_\mu$ and $\varrho_\eta \in P$.

From

$$E\left[p;\,\varrho_{\eta}(p\,,\,p_{0}) < a_{\eta}\right] = \sum_{\{a_{\xi}\}_{\xi < \eta}} \prod_{0 \leqslant \xi < \eta} E\left[p;\,\varrho_{\xi}(p\,,\,p_{0}) = a_{\xi}\right] \cdot E\left[p;\,\varrho_{\eta}(p\,,\,p_{0}) < a_{\eta}\right]$$

it is evident that (II) follows from

(II') For every $\eta < \omega_{\mu}$ and an arbitrary η -sequence $\{a_{\xi}\}, \ \xi < \eta$, the sets

$$(\Delta)_{\eta} = \prod_{0 \leqslant \xi \leqslant \eta} E[p; \, \varrho_{\xi}(p, p_0) = a_{\xi}] \cdot E[p; \, \varrho_{\eta}(p, p_0) < a_{\eta}]$$

and

$$(\varDelta)'_{\eta} = \prod_{0 \leqslant \xi < \eta} E\left[p; \ \varrho_{\xi}(p, p_{0}) = a_{\xi}\right] \cdot E\left[p; \ \varrho_{\eta}(p, p_{0}) > a_{\eta}\right]$$

are both T^2 -open and T^2 -closed sets.

We prove it by the following two steps:

(a) The sets $E[p; \varrho_0(p, p_0) < a_0]$ and $E[p; \varrho_0(p, p_0) > a_0]$ are both T^2 -open-closed sets.

In fact, let $\varepsilon^{(n)} = \left\{ a_0 - \frac{1}{n}, a_1, \dots, a_{\xi}, \dots \right\}$, where $\xi < \omega_{\mu}$, and $a_0, \dots, a_{\xi}, \dots$ are fixed as n varies; then

$$E\left[p;\,arrho_0(p\,,\,p_0) < a_0
ight] = \sum_{n=1}^{\infty} E\left[p;\,arrho(p\,,\,p_0) < arepsilon^{(n)}
ight],$$

which implies the T^2 -openness of the set $E[p; \varrho_0(p, p_0) < a_0]$. (Similarly, the T^2 -openness of $E[p; \varrho_0(p, p_0) > a_0]$ can be proved.) To prove that they are T^2 -closed it suffices to take the complements, for example

$$E[p; \varrho_0(p, p_0) < a_0] = \mathfrak{X} - \prod_{n=1}^{\infty} E[p; \varrho_0(p, p_0) > a_0 - \frac{1}{n}].$$

(b) By the principle of transfinite induction, assume that (II') holds for all ordinals $\xi < \alpha$, to prove the case of α ($\alpha < \omega_{\mu}$).

(i) If a is an isolated ordinal, let $\varepsilon^{(n)} = \{a_{\xi}^{(n)}\}$, where $\xi < \omega_{\mu}$ and $a_{\xi}^{(n)} = a_{\xi}$ for $\xi \neq a$ and $a_{\alpha}^{(n)} = a_{\alpha} - \frac{1}{n}$; then

$$\begin{split} E\left[p;\,\varrho(p\,,p_0)<\varepsilon^{(n)}\right] \\ =&\sum_{0\leqslant\eta<\omega_n}\prod_{0\leqslant\xi<\eta}E\left[p;\,\varrho_{\xi}(p\,,p_0)=a_{\xi}^{(n)}\right]\cdot E\left[p;\,\varrho_{\eta}(p\,,p_0)< a_{\eta}^{(n)}\right]. \end{split}$$

Subtracting from the above set the following T^2 -closed set (hypothesis of (b))

$$\sum_{0\leqslant \eta < \alpha} \prod_{0\leqslant \xi < \eta} E\left[p; \ \varrho_{\xi}(p\,,\,p_{\scriptscriptstyle 0}) = a_{\xi}^{\scriptscriptstyle (n)}\right] \cdot E\left[p; \ \varrho_{\eta}(p\,,\,p_{\scriptscriptstyle 0}) < a_{\eta}^{\scriptscriptstyle (n)}\right]$$

one obtains the following T^2 -open set:

$$\sum_{a\leqslant \eta < \omega_{\mu}} \prod_{0\leqslant \xi < \eta} E\left[p; \, \varrho_{\xi}(p\,,\,p_{0}) = a_{\xi}^{(\eta)}\right] \cdot E\left[p; \, \varrho_{\eta}(p\,,\,p_{0}) < a_{\eta}^{(\eta)}\right];$$

its union with respect to n, a_{a+1} , ..., a_{ξ} , ... $(\xi < \omega_{\mu})$, is the T^2 -open set $(\Delta)_a$. In a similar way one can prove that $(\Delta)'_a$ is T^2 -open.

By taking the complements we can prove that the sets $(\Delta)_a$ and $(\Delta)'_a$ are T^2 -closed, e.g. from

$$\begin{split} &\prod_{0\leqslant \xi<\eta} E\left[p;\; \varrho_{\xi}(p\,,\,p_{0})=a_{\xi}\right] \cdot E\left[p;\; \varrho_{\eta}(p\,,\,p_{0})\geqslant a_{\eta}\right] \\ &=\prod_{n=1}^{\infty}\; \prod_{0\leqslant \xi<\eta} E\left[p;\; \varrho_{\xi}(p\,,\,p_{0})>a_{\xi}-\frac{1}{n}\right] \cdot E\left[p;\; \varrho_{\xi}(p\,,\,p_{0})< a_{\xi}+\frac{1}{n}\right] \cdot \\ &\quad \cdot E\left[p;\; \varrho_{\eta}(p\,,\,p_{0})>a_{\eta}-\frac{1}{n}\right]; \end{split}$$

and

$$\begin{split} &\mathfrak{X} - (\varDelta)_a = \sum_{0 \leqslant \xi < a} E\left[p; \; \varrho_{\xi}(p \,,\, p_0) > a_{\xi}\right] \; \\ &+ \sum_{0 \leqslant \xi < a} E\left[p; \; \varrho_{\xi}(p \,,\, p_0) < a_{\xi}\right] + \prod_{0 \leqslant \xi < a} E\left[p; \; \varrho_{\xi}(p \,,\, p_0) = a_{\xi}\right] \cdot E\left[p; \; \varrho_{a}(p \,,\, p_0) \geqslant a_{a}\right], \end{split}$$

one can prove that $(\Delta)_a$ is T^2 -closed.

(ii) If α is a limit ordinal, then from the following equation

$$egin{aligned} & \prod_{0\leqslant \xi<\eta} E\left[p;\, arrho_{\xi}(p,\,p_0)=a_{\xi}
ight] \cdot E\left[p;\, arrho_{\eta}(p,\,p_0)\leqslant a_{\eta}
ight] \ & = \prod_{0\leqslant \xi<\eta} \prod_{0\leqslant \eta} E\left[p;\, arrho_{\xi}(p,\,p_0)=a_{\xi}
ight] \cdot E\left[p;\, arrho_{\eta}(p,\,p_0)< a_{\eta}+rac{1}{n}
ight], \end{aligned}$$

and by the hypothesis of (b), we know that, for each $\eta < a$, the set

$$\prod_{0\leqslant\xi<\eta} \mathop{E}\left[p;\;\varrho_{\xi}(p\,,\,p_{0})=a_{z}\right]\cdot\mathop{E}\left[p;\;\varrho_{\eta}(p\,,\,p_{0})\leqslant a_{\eta}\right]$$

is a T^2 -open set. By intersecting the above sets with respect to $\eta < \alpha$ we obtain the following T^2 -open set:

$$\prod_{0\leqslant \xi< a} E\left[p; \, \varrho_{\xi}(p, p_{0}) = a_{\xi}\right].$$

The intersection of the above set with the T^2 -open set $\overline{E}[p; \varrho(p, p_0) < \varepsilon^{(n)}]$, where $\varepsilon^{(n)}$ assumes the same meaning as in (i), is the following T^2 -open set:

$$\sum_{a\leqslant \eta < w_{\mu}} \prod_{0\leqslant \xi < n} E\left[p; \, \varrho_{\xi}(p\,,\,p_{0}) = a_{\varepsilon}^{(n)}\right] \cdot E\left[p; \, \varrho_{\eta}(p\,,\,p_{0}) < a_{\eta}^{(n)}\right];$$

by making a union of the above sets with respect to n, a_{a+1} , ..., the T^2 - open set $(\Delta)_a$ is obtained. In a similar way one can prove that $(\Delta)'_a$ is T^2 - open.

The proof that $(\Delta)_a$ and $(\Delta)'_a$ are T^2 -closed sets is completely the same as in case (i), whence it is omitted here.

From Theorems 3 and 4 we have

Theorem 5. ω_{μ} -metrisable spaces and ω_{μ} -additive $(U)_{\aleph_{\mu}}$ spaces are identical, in particular ω_0 -metrisable spaces and ordinary metrisable spaces are identical.

§ 4. ω_{μ} -metrisation theorems (6). We prove

THEOREM 6. For a regular ω_{μ} -additive space to be ω_{μ} -metrisable, it is necessary and sufficient that there exist an κ_{μ} -basis.

Let us recall that the family $\mathfrak F$ of open sets is called an \aleph_μ -basis of the topological space if $\mathfrak F$ is a basis and $\mathfrak F$ can be written as $\mathfrak F = \sum_{0\leqslant \alpha<\omega_\mu} \mathfrak F_\alpha$, where $\mathfrak F_a$ are locally finite systems of open sets.

⁽e) Let us observe that in our metrisation theorems the notion of ordered algebraic field (see [9], p. 129) W_{μ} is not used.

Proof of Theorem 6. As the necessary part has been contained in the proof of proposition 2, we need to prove the sufficient part only.

From Theorems 5 and M_1 , we need only to prove that \mathfrak{X} is a normal space (this is an improvement of theorem (vii) of [9]).

In fact, let F_1 and F_2 be disjointed closed sets; since $\mathfrak X$ is regular, for every pair of points $p \in F_1$, $q \in F_2$ there exist neighbourhoods $U_p \in \mathfrak F_{\xi(p)}$ and $U_q \in \mathfrak F_{\xi(q)}$ such that $\overline{U}_p \cdot F_2 = 0$ and $\overline{U}_q \cdot F_1 = 0$. Let $U_\eta^{(1)} = \sum_{\xi(p) = \eta} \overline{U}_p$ and $U_\eta^{(2)} = \sum_{\xi(q) = \eta} U_q$ ($p \in F_1$ and $q \in F_2$); then $\overline{U}_\eta^{(1)} = \sum_{\xi(p) = \eta} \overline{U}_p$ and $\overline{U}_\eta^{(2)} = \sum_{\xi(q) = \eta} \overline{U}_q$ since $\mathfrak F_\eta$ is a locally finite family.

Put

$$\begin{split} U_{\xi}^* &= U_{\xi}^{(1)} - \sum_{\eta < \xi} \overline{U}_{\eta}^{(2)}, \qquad U_{\xi}^{**} &= U_{\xi}^{(2)} - \sum_{\eta < \xi} \overline{U}_{\eta}^{(1)}, \\ U^* &= \sum_{0 \leqslant \xi < \omega_{\mu}} U_{\xi}^*, \qquad U^{**} &= \sum_{0 \leqslant \xi < \omega_{\mu}} U_{\xi}^{**}. \end{split}$$

The sets U^* and U^{**} are disjointed open sets containing F_1 and F_2 respectively. Thus $\mathfrak X$ is normal. Therefore, theorem 6 is proved.

Corollary 1 (R. Sikorski [9]). If $\mathfrak X$ is an ω_n -additive normal space with a basis of power $\mathbf s_\mu$, then $\mathfrak X$ is ω_n -metrisable.

COROLLARY 2 (Nagata-Smirnov). For a regular space to be metrisable, it is necessary and sufficient that there exist an s_0 -basis.

THEOREM 7. For $\mu>0$, for an ω_{μ} -additive space to be ω_{μ} -metrisable it is necessary and sufficient that there exist an κ_{μ} -basis consisting of sets both open and closed.

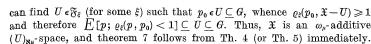
Proof. Necessity. It is contained in the proof of proposition 2. Sufficiency (7). Let \mathfrak{F} be an s_{μ} -basis of \mathfrak{X} and let $\mathfrak{F} = \sum_{0 \leqslant \xi < \omega_{\mu}} \mathfrak{F}_{\xi}$ where \mathfrak{F}_{ξ} are locally finite (discrete) systems consisting of open-closed sets (Proposition 2). For $U \in \mathfrak{F}_{\xi}$ define

$$f_U(p) = \left\{ egin{array}{ll} 1 & ext{ for } & p \in U \,, \ 0 & ext{ for } & p \notin U \,. \end{array}
ight.$$

The family $P = \{\max(\varrho_{\xi_1}, ..., \varrho_{\xi_n})\}$ of functions,

$$\varrho_{\xi_i}(p,q) = \sum_{U \in \mathfrak{F}_{\xi_i}} |f_U(p) - f_U(q)|,$$

makes \mathfrak{X} as \mathfrak{n}_{μ} -almost metric space its topology is the same as the original. In fact, the ϱ_{ξ} are continuous functions by the local finiteness of \mathfrak{F}_{ξ} . Conversely, for an arbitrarily given open set G and $p_0 \in G$, one



From theorem 7 we can derive some results which are closely related to Theorem M_2 .

COROLLARY 1. For $\mu>0$, for an ω_{μ} -additive space $\mathfrak X$ to be ω_{μ} -metrisable it is necessary and sufficient that there exist a collection of families of continuous functions $P=\{P_{\xi}\}$ and $P_{\xi}=\{f_{\eta}^{\xi}\}$, where $\xi<\omega_{\mu}$, such that the families of sets $E\left[p;f_{\eta}^{\xi}(p)>0\right]$ for fixed ξ are locally finite (discrete) systems, and the family of sets $E\left[p;f_{\eta}^{\xi}(p)>1\right]$ (where $\xi<\omega_{\mu}$ and $f_{\eta}^{\xi}\in P_{\xi}$) is a basis of $\mathfrak X$.

Proof. Necessity. It suffices to put in theorem 7

$$f_U(p) = \left\{ egin{array}{ll} 2 & ext{ for } & p \; \epsilon \; U \,, \ 0 & ext{ for } & p \; \epsilon \; U \,, \end{array}
ight. \quad ext{for every } U \; \epsilon \; \mathfrak{F}_{\xi}, \quad \xi < \omega_{\mu}.$$

Sufficiency. The families of sets $E[p; f^{\xi}_{\eta}(p) > 1]$, for fixed ξ , are locally finite systems, consisting of sets both open and closed:

$$E[p; f_{\eta}^{\xi}(p) > 1] = \sum_{n=1}^{\infty} E\Big[p; f_{\eta}^{\xi}(p) \geqslant 1 + \frac{1}{n}\Big].$$

COROLLARY 2. For an ω_{μ} -additive space to be ω_{μ} -metrisable, it is necessary and sufficient that there exist a family of functions $\{f_U\}$ which are continuous and $0 \le f_U(p) \le 1$ and that the family of sets $E[p; f_U(p) > 0]$ form an s_{μ} -basis of \mathfrak{X} .

Proof. Sufficiency. Completely the same as the proof of the sufficient part of theorem 7.

Necessity. The case $\mu > 0$ is contained in theorem 7. Let $\mu = 0$, and let \mathfrak{F} be an \mathfrak{n}_0 -basis of \mathfrak{X} , $\mathfrak{F} = \sum_{n=1}^{\infty} \mathfrak{F}_n$, where \mathfrak{F}_n are locally finite (discrete) systems. For $U \in \mathfrak{F}$ we put

$$f_U(p) = \varrho(p; \mathfrak{X} - U),$$

where ϱ is the metric function of \mathfrak{X} . Then $\{f_{\mathcal{U}}\}$ fulfils the requirement of Cor. 2.

§ 5. Compactness and bicompactness. The terminology of compactness and bicompactness has been given by Sikorski [9]. We say that the topological space \mathfrak{X} has the \mathfrak{n}_{μ} -Lindelöf property, if from every covering of \mathfrak{X} one can select a subcovering of power $\leqslant \mathfrak{n}_{\mu}$.

Proposition 3. If $\mathfrak X$ is a regular ω_{μ} -additive space which has the κ_{μ} -Lindelöf property, then $\mathfrak X$ is normal.

⁽⁷⁾ The proof given here is not based on Theorem M1.

Proof. It is completely the same as in the case of $\mu = 0$, which is classical and well known ([4], p. 113), whence omitted.

The above proposition had been given by Parovicenko in [8].

THEOREM 8. If \mathfrak{X} is an ω_{μ} -metric space and is compact (in the sense of [9]), then \mathfrak{X} has a basis of power $\leqslant \kappa_{\mu}$, whence is bicompact (in the sense of [9]).

Proof. By Th. 3, $\mathfrak X$ is a $(U)_{\mathbf N_{\mu}}$ -space. Since $\mathfrak X$ is compact, every subset X of power $\geqslant \mathbf N_{\mu}$ has in $\mathfrak X$ a contact point of order $\geqslant 2$ (p_0 being a contact point of X of order $\geqslant 2$ means that for every neighbourhood $V(p_0)$ of p_0 the set $X \cdot V(p_0)$ contains at least two points of X, [10]), then from Theorem of [10], $\mathfrak X$ has a basis of power $\leqslant \mathbf N_{\mu}$. Then Th. 8 follows from Lemma 2 of [10] immediately.

Recalling Cor. 1 of Th. 6, we have the following

THEOREM 9. For a Hausdorff ω_{μ} -additive compact (in the sense of [9]) space to be ω_{μ} -metrisable, it is necessary and sufficient that it have a basis of power $\leq \mathbf{s}_{\mu}$.

Proof. Sufficiency. Follows from Th. 6 immediately.

Necessity. Follows from Th. 8 immediately.

The case $\mu=0$ of this theorem is the well-know second metrisation theorem of P. Urysohn.

The author cordially thanks for the criticism and corrections made the reviewier.

References

- L. W. Cohen and C. Goffman, A theory of transfinite convergence, Trans. Amer. Math. Soc. 66 (1949), pp. 65-74.
 - [2] The theory of ordered Abelian groups, ibidem 67 (1949), pp. 310-319.
 - [3] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig 1914.
 - [4] J. L. Kelley, General topology, New York 1955.
- [5] S. Mrówka, On almost metric spaces, Bull. Acad. Pol. Sci., Cl. III, 5.2 (1957). pp. 122-127.
 - [6] Remark on locally finite systems, ibidem 5.2 (1957), pp. 129-132.
- [7] A necessary and sufficient condition for m-almost metrisability, ibidem 5.6 (1957), pp. 627-629.
 - [8] И. И. Паровиценко, Доклады Акад. Наук СССР 115 (1957), pp. 866-868.
- [9] R. Sikorski, Remarks on some topological spaces of high power, Fund. Math. 37 (1950), pp. 125-136.
- [10] Wang Shu-tang, On a theorem for the uniform spaces, Sci. Record, New Series, 2.10 (1958), pp. 338-342.

NORTHWESTERN UNIVERSITY SIAN, CHINA

Reçu par la Rédaction le 20. 8. 1962

On lattice-ordered groups

b;

B. Banaschewski (Hamilton, Ontario)

Introduction. We shall be concerned with a lattice-ordered group G, written additively though not necessarily abelian, with the set P of its positive (i.e. $x \ge 0$) elements, and with homomorphisms, epimorphisms, etc. from G to other such groups (mainly totally ordered ones and their products) which are always understood to be non-trivial. and lattice-ordered group homomorphisms, i.e. meet and join as well as sum preserving. If $K \subset G$ is an l-ideal in G then G/K denotes the quotient group as lattice ordered group, i.e. with the partial ordering defined by the image of P under the natural mapping $G \rightarrow G/K$, and we recall that for lattice-ordered groups and their homomorphisms the First Isomorphism Theorem holds, i.e. if $f: G \rightarrow G'$ is an epimorphism and $t = q \circ h$ its factorization into the natural mapping $h: G \rightarrow G/\text{Ker}(t)$ and the induced mapping $g: G/\text{Ker}(f) \to G'$ then h is an epimorphism and q an isomorphism (1). Our main object is to study the epimorphisms from G to totally ordered groups T, to obtain characterizing conditions for the existence of "sufficiently many" of these and hence of embeddings of G into products of such T, and to consider particular types of such embeddings. Some of our results can be regarded as an extension of those of Ribenboim [6] who restricted himself to the abelian case. The possibility of this extension is suggested by Lorenzen's theorem on regular lattice ordered groups [5] for which a proof is given in the present setting. The methods used here differ from the approach in [5] or in [6], the latter since we are able to dispense with Jaffard's notion of filet [4] in the proof of Proposition 3.

Particular subsets of P which will be of interest in the following are:

- (i) the filters in P: the non-void subsets $F \subseteq P$ with $x \wedge y \in F$ for any $x, y \in F$ and $x \in F$ for any $x \geqslant y$ where $y \in F$;
- (ii) the *prime filters* (2) in P: the proper filters Q in P for which $x + y \in Q$, x and y in P, implies $x \in Q$ or $y \in Q$;

⁽¹⁾ Terminology as in [2] unless stated otherwise.

^(*) We use the term "prime" with respect to the group operation here rather than the lattice operation of forming the join. However, a prime filter in this sense is also prime with respect to join since $x+y \ge x \lor y$.