116 W. Sierpinski
11 est & remarquer qu'il résulte tout de suite du théoréme II que
si F est une famille indénombrable d’ensembles infinis distincts de nombres
naturels, il ewiste un ensemble B de la famille F et une suite infinie By
(t=1,2,..) densembles de la famille ' autres que B ¢t tels que B C B, +
+E A

11 en résulte que dans le théoréme I le terme finie ne peut pas &tre
remplacé par dénombrable.

Regu par la Bédaction le 3. 1. 1964
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Invariant Borel sets

by
Dana Scott (Stanford)

Let N =0,1,2,.., be the set of non-negative integers, and let I
be a group of permutations of ¥. Each permutation of ¥ induces in the
obvious way a permutation of the product space 2¥ which is continunous
in the usual product topology on 2¥. With this topology 2% is of course
homeomorphic to Cantor’s Discontinuum, and so the theory of Borel
subsets of 2V is well understood. We shall let the whole group I" act on 2¥
and ask which subsets of 2¥ invariant under I" are Borel. The main result
presented in Section 1 shows that, under suitable conditions on I', every
minimal Iinvariant subsel of 2N is a Borel set. By a minimel I-invariant
set 'we understand a non-empty set invariant under the action of I" which
includes no smaller such set. In other words, the orbits under I" of single
points of 2¥ are exactly the minimal I-invariant sets.

In Section 2 we shall apply the main result to solve a problem of
Kuratowski and will thereby show that several kinds of interesting subsets
of the space of all sets of rational numbers are actually Borel sets. Pre-
viously it was only clear that these sets were analytic sets. The method
applied to this problem is then generalized to give a useful, more abstract
result.

In Section 3 if is shown, with the aid of the abstract result of Sec-
tion 2, that certain subsets of the (complete metric) space of all closed
subsets of Cantor’s Discontinuum are likewise Borel sets. The interesting
question (proposed to the author by David Freedman of the University
of California, Berkeley) of whether these conclusions extend to the space
of closed cubsets of an arbitrary compact metric space will be discussed,
but unfortunately the methods of this paper do not seem to give the
answer.

The author has to admit that metamathematical considerations
originally led to the main result. Indeed the main theorem is a generaliza-
tion of the author’s result about the possibility of characterizing count-
able relational structures up to isomorphism using sentences from a cer-
tain infinitary first-order language. TFurther information about the
metamathematical results can be found in [4]. For the sake of the author’s
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mathematician friends who were kind enough to express an interest the
conslusions about Borel sets but do not feel comfortable with metamathe-
matical terminology, it was decided that purely mathematical versiong
of the proofs would be more useful.

The authors gratefully acknowledges his indebtedness both to
Professor David Freedman and to Professor Czeslaw Ryll-Nardzewski
for many stimulating conversations on Borel sets in general and the
topies of this paper in particular.

1. The main result. To formulate the proper condition on the
group I', we let N! denote the group of all permutations of the set W,
Further N¥ denotes the Baire space which we regard as a product space
with the product topology. Now N!C N¥, so we can treat N! as a subspace
of N¥ with the relative topology. Finally the desired condition on I"is
that I' be a closed subset of N!. The combinatorial meaning of this con-
dition is very simple: namely, if ge N! and if every restriction of g to
a finite subset of N agrees with the corresponding restriction of a permu-
tation in I', then g itself must be a member of I'

There are many examples of closed subgroups of N!. To cite one
we shall find useful later, let n: ¥x NN be a fixed one-one corre-
spondence between ordered pairs of integers and integers. Let I, be a given
closed subgroup of of N! (e.g. let Iy = N'!). Then another closed sub-
group I can be obtained by taking the set of all permutations g, € N!
for which there exists a (unique) permutation g, ¢ I', such that for all
z,y N,

(@, 4)) = w(go(@), goly)) -

In words we can say that I' is obtained from I7, by transferring the
coordinatewise action of I, on NxXN back to the set N with the
aid of the correspondence s That I is indeed closed is very easily
checked.

Turning now to the proof of the main result, we let I' be a fixed
closed subgroup of N1. The action of a permutation ¢ € I' on the space 2V
is defined formally as the mapping that takes a function fe2¥ to the
function fog-L The symbol o denotes the operation of composition of
two functions. If we think of fe2¥ as the characterigtic function of
@ subset of &, then f o g~ is the characteristic function of the direct image
of the set under g; whereas fog would be the characteristic function
of the inverse image. If f,, f, are arbitrary functions with sets of integers
a8 domains, we write

quf1(-F)

to mean tha.t. fi="foo g for some g eI Clearly this relation is an equiv-
alence relation between funetions, and our problem is just to show
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that the equivalence classes under this relation of functions in 2¥ are
Borel subsets of 2.

Tet N™ denote the set of all finife sequences of integers. A finite
sequence 8§ = {Ng, Ny, ooy Np—ay 1S jush 2 function. with domain
{0,1,..,k—1} where s(i) =mn; for all i<k We v-'rlte ls| =% and
call |s|, the length of 5. The empty sequence of length 0 is denoted by < >.
Tf 8 = {My, Tiyy ooy N1y DA T = (Mg, Myy ooy My, then

8Tt = (Mg, Nyy ey N1y Moy Myy eery Mi—1) -

We shall write
st (I
to mean that = hos for some heI. Note that s~ ¢ (I') implies that
sl = [].
With the above notation we can now state a fundamental lemma
which might appropriately be called “Cantor’s Lemma”, since it slightly
generalizes Cantor’s well-know method of proof.

TEnmA. Let I' be a closed subgroup of N and let fo, f, € 2. Suppose
that R is a binary relation on N° such that { YR >. Suppose further that
for all s,te N=, if sRt, then we have:

() st (I);

(i) foos =Tfiot;

(ili) for all n e N there ewists am m < N such that s™{(n)> Rt~ {mp;
(iv}  for all m e N there ewists an n e N such that s~ {(nd>Rt™<m).

Then it follows that fo=f,(I').
Proof. We define two infinite sequences fg, oy, ..., and mg, My, .
simultaneously by recursion:
nay, = the least integer n ¢ {n:: © < 2k};
mer = the least integer m such that
{Ngy My y weey Noogd B (Mg My g evy Mag—y, M5
Mar+1 = the least integer m ¢ {ms: 4 < 2k +1};
Nag+1 = the least integer » such that

",-77’07 Ty y "'a'nﬂk:'n>R<moy'mly A 'm'2k+l> .

Since we assume that < YR{ > holds, it is clear from (iii) and (iv) that
the two infinite sequences are well-defined and that every integ’er oceurs
in each (possibly with repetitions). Now if n; = m;, then by (i) there is
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a permutation e I' such that m¢ = h(n:) and my = h(ny); whence ms = my.
Similarly m; = my implies ns = n;. Thus the correspondence

g <> Mg

defines a permutation ge N! such that g(n:) = ms for all 4 ¢ N. Condi-
tion (i) shows at once that every finite restriction of g agrees with some
hel; so gel, because I' is closed. Finally condition (ii) shows that
folg=(ms)) = fu(ms) for all §eN; that is, f; = foo gt Thus f, = A is
proved.

Taking the hint from the Lemma, we are now ready for the con-
struction that is the major step in the argument. We let N* denote the
space of all k-termed sequences of integers with the discrete topology.
A point in 2¥ x N* will be written as <f, s) where f ¢ 2¥ and s ¢ N%. The
space 2¥ X N* is given the product topology, and a subset § 2N x Nk
is called I“imvariant if whenever {f,s) ¢S, then for all gel'y, {fog,
go8> eS8, We shall identify 2% with 2¥ x N0 = 2¥ x {¢ >}; so that the
Iinvariant subsets of 2¥ x N¢ in the sense just defined are exactly the
subsets of 2¥ invariant under the action of I" in our previous senge. We
shall write

<foy 85 = {f1, ©> (I"Borel)

to mean that for all Iinvariant Borel subsets §(C 2¥ X N%, where
lsl =1l =&,
Jor8>e8  if and only if  (fy,t>eS.

It fo=/uI), then obviously fo=f, (I"Borel) (i.e. {fy, < >> = <fy, < >
{I“Borel).) Our main result will show that the converse also holds; how-
ever the result is stronger than just this implication.

Let f, now be a fixed element of 2¥. We note that with the aid of
the Axiom of Choice we can choose for each % and each s € N% g Minvariant
Borel set ¥, C 2¥ % N* such that for all ¢ ¢ N*

oy t>eWs  if and only if  (fy, > = <fy, £ (I“Borel) .

This is possible because for each s ¢ N* there are at most a denumerable

number of ¢t e N* such that for 835 <foy 1 (I“Borel). Let these i be
Toy 11y By wouy 81 ... For each ¢ choose a I-invariant Borel set @; 2N » Nk
such that

{fo;8> €®; and {fos 1) ¢ O .
Then set

Y= {04 icN}.

Clearly &, is both Iinvariant and Borel.
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Next consider the following subsets of 2% which are numbered to
correspond to the conditions of the Lemma:

OO = {f ¢ 2V: for all ke N, all s,1eNF,
if {fy1> e Wy, then s ~ 1 (I)};
P = [f e 2¥: for all ke N, all s,%eN¥,
if {f;1> ¥, then foos =fot};
P = {f e 2¥: for oll ke N, all s,te N®, if {f, 1> e ¥, then for all
n e N there ewists an m e N such that <f, T (m>> € Poremy};

O = {f e 2¥: for all ke N, all s,te N% if {f, 1> e ¥y, then for all
m e N there exists an ne N such that <f, 1"<md> € Pyogny}

The sets @9 and @W are obviously countable intersections of Borel
sets and so are Borel. The separate Borel sets in these intersections are
not themselves necessarily I-invariant, but the final intersections are.
For suppose f e PP and gel. Thenif ke N and s,2e N* and (fog™,1) e ¥,
we can conclude <f, g'ot> e ¥, because ¥ is chosen to be I-invariant.
But since f e P, we have s ~ gto#(I") and thus s a~ ¢(I'). This shows
that fogle®® and that PO is IMinvariant. The argument for @@ ig
similar. Since every I-invariant subset of N¥ iy a Borel subset of NF,
it is clear that from the basic property of the sets ¥, that f, e #®. Similarly,
in view of the fact that for ¢ <k the set

{<Fy 8> € 29 x W®: f(s(s)) = 1}

is a [Hinvariant Borel subset of 2¥ x N*, we see that f, e W,

The sets @W) and PU7 are countable intersections of countable
unions of Borel sets, and by the very form of their definitions they are
seen to be I“invariant. Let us check that f, e P, Suppose that ke N,
$,te N¥, and. {fy, t> ¢ ¥s. Then (fy, s> = {fy, t) (I~Borel). Suppose that
7 e N; we wish to show that there is an m ¢ N such that

{fos 87> = {fo, £ (md> (IBorel) .

Assume not; then for each m e¢ N we can choose a I-invariant Borel
subset Z, of 2¥ xN*+ guch that

oy ¥0D> € Bm but foy 07$md> ¢ B .
Let
E =) {En: meN},
Now & is a I™invariant Borel subset of 2% x N¥+1 and its projection 5+

on 2¥ x N* is obviously also a Iinvariant Borel subset of 2V x N®. Since
{foy 87<n>> € B, then (fy, s> e T*; therefore (f,,t> ¢ + Thus there must
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exist an m e NV such that {fg, " <md)> ¢ 5. A contradiction is reached by
noticing that & C &n.
Finally set

O = {f e2V: {J, (D> e ¥y} A PO ~ B ~ PUD ~ GV |

“We see by construction that f,e® and @ is a I-invariant Borel set.
Suppose f,¢P; we wish to show that f, = f,(I"). To this end define the
binary relation R on N* so that for s,te N¥,

sRt if and only if <{f, 1> e Ps.

We see at once the definition of & that B has all the properties demanded
in the Lemma. Hence we have f, = f,(I") as desired; in fact, we have
proved that

D ={e2V: fo=F(DI)}.

Sinee @ is Borel, the Iorbit of f, in 2¥ is thus shown to be a Borel set.
In summary we have the

THEOREM. If I" is a closed subgroup of N !, then the relation f, = f, (I)
partitions 2 into the minimal I“invariant sets each of which is a Borel
subset of 28, '

It is worthwhile to note that the Theorem cannot be strengthened
to read: {{fy,/ > €2¥ x2¥: f, = f,(IN} is a Borel subset of 2¥ x 2¥, Thig
set is analytic (assuming that I' is closed), but for certain I" it is not
a Borel set. A counterexample follows from known results in [2] as will
be indicated in the next section.

It I'y is a closed subgroup of V!, then as already explained it induces
another closed subgroup I by use of a pairing function z: N x N« N.
Indeed = induces a homeomorphism between 2¥x¥ and 2¥. Instead of
using all these round-about mappings, we can simply let I'y act as a group
of autohomeomorphisms on 2¥*¥ in the direct and obvious way. It is
then seen that our Theorem above holds with 2 replaced by 2¥x¥, Of
course, fo=f,(I') now means that for some gely, we have for all
x,YyeN:

1@, 99) = Fol<g (@), g2(9))) -

Note also that an arbitrary denumerable set could, replace N in the theorem.

It should also be clear that the Theorem holds for 2¥ x N* replacing 2¥.
The easiest way to see this is to go back to the proof. The Lemma should
be changed by replacing condition (i) by

8078 ~ 87t (1),

‘where &, 8, are given elements of &%, Then condition (ii) must be altered
to read:

foo (8078) =f,0(8,71) .
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Conditions (iii) and (iv) remain the same but the conclusion of the Lemma.
now reads:

{for 80> = {fry 80 (1) -

These changes necessarily dictate corresponding changes in the defini-
tions of @, O and O.

The o-fields of invariant Borel subsets of 2¥ x N* and their relation-
ships for different k¥ are quite interesting. The author hopes to make
them the topic of a subsequent paper.

2. The solution to Kuratowski’s problem. Let @ be the set
of rational numbers. The product space 22 is indeed homeomorphic to 2%,
but in this section we prefer to replace the set N by @ since we want to
emphasize the natural ordering of the rationals. In fact, if f,, f, € 29, we
shall think of these functions as representing sets of rationals, and we

write
fo=fi

to means that the corresponding ordered sets are order isomorphie. More
precisely, fo o~f, means that there is a one-one function % mapping
{0 Q: f{g) = 1} onto {ge@: fi(g) =1} such that i fy(g) = f1lr) = 1,
then ¢ <r if and only if a(g) < h(r).

The problem which Prefossor Kuratowski states in his book ([3],
p. 377, Remarque) then amounts to this: for a given f,e 29, is the subset
{f1 €29 f, o2 f;} a Borel subset of 29% In case the set {g<@: fo(q) = 1} is
well-ordered by <, the result is established ([3], § 26, XIT, 1) by transfinite
induetion on the order type of the well-ordered set. Invoking the Theorem
of Section 1, we shall now answer the question affirmatively for general
order types.

First let T: 20—>29%Q be the transformation defined by the con-
dition that for all f € 22 and all ¢, 7 €Q:

T(f)((q,’l‘>)={1’ %f f(fl)=f(r)=l a’”’d Q<T5
0, otherwise .
It is obvious that 7' is continuous.

Next let I be the subset of all fe 29 such that both of the sets
9€Q: f(¢) =1} and {geQ: f(g) = 0} are infinite. The set 29~I ig
denumerable, and hence all of its subsets are Borel.

Finally notice that for f,,f, €I,

(%) foszfy if and only if  T(f) = T(f) (Y,

where Q! is the group of all permutations of @ which we think of as acting
on 29xQ, This remark shows that for 7, 2@

(ie2% fofi} =T~ T7f €299 T(f) = (@O} v D,
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where D is a suitable subset of the denumerable set 2€~I. It at once
follows from our Theorem that {f, e 29: f, = f;} is a Borel subset of 2e,
As is pointed out in [2], p. 173, note, {(fo, f> €22 X 2@ fy o £} is
not a Borel set; hence we see that the set {(fo,f1) €20%Q x 2¢xQ; fo= f(QN}
is also not a Borel set. This gives the specific example mentioned after
the statement of the Theorem in Section 1.
Let IT be the group of all order preserving permutations of Q. It ig
quite easy to see that I7 is a closed subgroup of Q!. Thus the sets of the
form {f, € 29: f, = f,(I)} ave all Borel. Note that

he2@ fo=FfUID} C{f12% fo = fi};

however, these new sets are much less interesting and useful than the
sets in Kuratowski’s problem. The example does show how easy the
method is to apply.

The reader should verify that the only special property of the re-
lation < that was used in the solution to Kuratowski’s problem was the
fact that g < g for all ¢ € Q. This is needed to verify condition (#), because
the function 7'(f,) ¢ 2¢% @ must uniquely determine the set {g€Q: folg) =1}
This special circumstance can be completely avoided as will now be shown
when we give the abstract version of the solution.

Let us return to the use of the set N rather that Q. Instead of the
product spaces 2¥ of 2¥=¥ it will be more convenient and natural to use
the power-set spaces

P(N)={4: ACN}, and P(NxXN)={R: RCNxN},

which are given their own topology induced by the obvious one-one
correspondences with the product spaces.
We shall make special use of the space

8 ={C4,R>: ACN and RC AxA}.

8, i8 a closed subspace of P(N)xP(N X N). We refer to the elements
of 8, as binary relational structures (on. subsets of N ). We shall now use
the symbol = to-denote the relationship of isomorphism between elements
of 8, so that .

{4, B> =2<(B, 8>
means that there is a one-one function #: A« B such that for all w,yed

@, y> R  if and only if <hi@), h(y)>eS.

The equivalence classes of elements of 8, under =~ may be called isomor-

phism types of (countable) relational structures. The method of solution
of Kuratowski’s problem now leads to the following general result.
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THEOREM. Hach isomorphism type of a structure in 8, s « Borel subset
of §,.

For the proof we may restrict attention to the subspace J; of all
(4,RYe8, where 4 is infinite. This is a Borel subset of 8, because
8y~J; is denumerable. Corresponding to each infinite subset of N, let
g4t N—A denote the function which enumerates the elements of A in
order of magnitude; thus for all 1 ¢ N we have

e4(i) < z4(i4+1),
A = {e4(i): 1eN}.
Define next a mapping U: J,—2¥%¥ guch that for all {4, B> eJ; and
all n,meN,
U4, BY)({n, m)) =1 if and only if {eu(n),s4m)>eR.

In the solution of Kuratowski’s problem, the mapping T: 2¢—20xQ
was actually continuous; for the present argument it is quite enough
to check that U is a Borel function. That is, for each #,m ¢ N we need
to show that the set

Bam = {{4, B> eJ: U(K4, B)){<m, md) =1}
is a Borel subset of J,. Let ¥ = max(n,m) and notice that

B = N {4, B 3y

<y <eae <Tp €N YSTR
{@ny TmY € R, amd y e A if and only if y e {my, @y, oy Bi}} -

and.

This formula makes it obvious that Bam is a Borel seb.
To complete our argument, we have only to remark that for <4, B),
(-B ] S> € Jz;

{4, B) =2 (B, 8> if and only if U4, B}) = TU(KB, R))(N}),

and the desired conclusion follows at once.

This Theorem is the first step in the geomeirisation of countable re-
lation types (cf. [1] and [2] for results about order types). The above result
extends easily to the space S of k-ary relational structures <4, R> where
ACN and RC A*. We could even go on to consider more complicated
structures (4, R, 8> where, say, BC A* and 8C A" Nevertheless, the
binary case is sufficient for the purposes of this paper.

Some readers may prefer the Baire space N¥ to the spaces 2¥, 2¥x¥
or 8,. Again the basic resultf ollows quite easily. If I"is a closed subgroup
of N, then each ge I induces the autohomeomorphism of N¥ that sends
a function fe N¥ to g of e g-t. Now when we write

fo=hH ()
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we mean that f; = g f, o g% for some g e I'. Does this relation partition N¥
into Borel sets? Yes, for consider the mapping V: N¥—2¥x¥ guch that
for each <« N¥ and n, me N

V() ({nym)) =1 if and only if m =f(n).
The mapping V is continuous, and further for fy, f, e NV,
fo=H(T) if and only if V(fo) =V (f,) (I),

where the symbol = is used in both its old and new senses. The answer
to the question is now obvious.

3. The space of closed sets. If I is any compact metric Space,
let 2T denote the space of all closed subset of . With a very natural
metric, the space 2%° is a complete metric space ([3], § 15 VII, VIII;
§ 29 IV). Consider the group % of all autohomeomorphisms of the space X.
This group also acts in a natural way as a group of autohomeomorphisms
of 2%, David Freedman asked the author this interesting question: Is
the J-orbit of a point of 2F always a Borel subset of 21 Using the methods
of this paper we can give an affirmative answer for the very special cases
where &I is (homeomorphic to) a cloed subset of Cantor’s Discontinuum 2¥.
The author has been unable to see the answer, however, even in the case
where X is the unit interval [0,1].

For illustration, let us suppose that £ = 27. For closed sets F,, F, 2T
we shall write

Fy= P, (%)

to mean that F, is the image of ¥, under some autohomeomorphism
in Je. Next let B be the denumerable Boolean algebra of all clopen (i.e.
closed-open) subsets of L. In this ease of Cantor’s Discontinuum we are
very fortunate that 8 completely determines the topology of X; indeed B
is & base for the open sets. Even better there is a natural isomorphism
between the autohomeomorphism group ¥ and the automorphism group U
of B (every autohomeomorphism obviously induces an automorphism
of B; but every antomorphism induces an autohomeomorpshism of X,
because the points of X correspond exactly to the prime ideals of the
Boolean algebra B). Let the reader verify that 9% is a closed subgroup
of Bl (The same conclusion holds for the automorphism group of any
relational structure with finitary relations or operations.)
Define next the mapping T: 2m—>_P(§B) such that for F e 2%

T(F)={BeB: FnB=0}.

The powerset space P(8B) is of course given it§ natural topology. Inasmuch
as for each B ¢ B, the set {Fe2%: Fn B — 0} is clopen in 2T, we see
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that 7' is a continuous function. There is no difficulty in showing for
Fy, Fy € 2% that

Fo=F, (%) if and only if T(Fy)= T(F)().

Thus the fact that F, = F,(#) partitions 2% into Borel sets follows ab
once from our main Theorem. The same argument applies word for word
to all closed subspaces of 2¥; indeed the closed subspaces of 2¥ correspond
exactly to the Stone spaces (prime ideal spaces) of countable Boolean
algebras.

We have just applied the Theorem of Section 1; now we shall apply
the Theorem of Section 2. Again let T = 27. This time write, for Fy, F, € 2%,

Fy, ~F,

o mean that the closed subspaces F, and F; arve simply homeomorphic.
The relationship F, = ¥,(J) implies ¥, ~ F;, but not conversely. For
Fye2T, we may call the seb {F, ¢ 2C: Fy ~ F,} the homeomorphism type
of F, in 2%. We wish to prove that the homeomorphism types of elements
of 2% are Borel subsets of 2%,

To this end, let By, By, ..., Bi, ... be an enumeration of all elements
of the Boolean algebra B of all clopen subsets of . If F' < 2T, let

Br={FB: BeB}.

Br is the Boolean algebra of all clopen subsets of ¥ when F is considered
as a topological space in its own right. We are going to make use of the
fact that Fy ~ F, if and only if the Boolean algebras By, and By, are
isomoxrphie.
Define two mappings 4: 2% —P(N) and R: 2T P(W xN) by the

formulae

AF)={meN: FABi#=F By all i <},

R(F) = {{n, m>»: n,me A(F) and F ~ Bn C Bu}
for all ¥ ¢ 2L, Then let U: 2% 8, be such that for ¥ e 2T,

U(F) = <A(F), R(F)) .

There is no trouble in checking that 4, R, and U are continuous func-
tions. Furthermore, {A(F),R(F)> is constructed to be isomorphic to
the the inclusion relation restricted to the Boolean algebra Br. Now
two Boolean algebras are isomorphic if and only if their inelusion re-
lations are isomorphie; hence, for F,, F, ezm,

FyoeF,  if and only if U(F,) o2 UF).
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Thus each homeomorphism type in 2% ig the inverse image under U of
an isomorphism type in 8,; which implies that the homeomorphism
types are Borel.

The major reason why the author cannot extend his method beyond
the closed subspaces of 2V is that for more general compact metrie spaces
(even the unit interval [0, 1]), he does not know how to associate a canon-
ical countable relational structure with the space in such a way that
the isomorphism type of the structure determines the homeomorphism
type of the space. Maybe a new method is required for this more general
question.
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On Borel measurability of orbits
by

C. Ryll-Nardzewski (Wroclaw)

The aim of this note is to extend, using an alternative method,
the result of D. Seott [2] concerning groups of permutations to a large
class of topolcgical groups. This has also permited us to sclve in the
whole generality a problem of Freedman partially solved in [2].

Let {F,;} be a decomposition of a topological space @, i.e. for every
g €@ we have g e #y and Fy =F,, or Fg nFy, = 0 and F, is closed.
We say that such a decomposition is open if {g:Fy~ U 5 0} is an
open set provided U is open. The distance function of G is denoted
by o.

LevMA. Bvery open decomposition {Fg} of a complete and separable
melric space G has a Borel selector, i.e. there exists & Borel set S C G
such that card (S ~nFg) =1 for ge@G.

Proof. Let 7y, 7,7, ... be a fixed sequence dense in @. Now we

define some functions: gu(g) = n where ¢ = min {k: g(rx, Fy) < 1/2" and,
if n>0, then g{ry, pa-a(g)) <1/2"7'}. In view of our assumption all
sets {g: o(rx, Fy) <1/2"} are open and hence @, are Borel functions.
Moreover we have the inequality o(pa(g), Pass(9)) <1/2", and all ¢, are
constant on each F; and g(qo,,(g), F;) <1/2". Consequently the limit
function @(g) =lim gu(g) is Borel, constant on F,, and ¢(g) ¢ Fy, which
clearly implies that the set {g: ¢(g) = ¢} is a Borel selector.

THEOREM 1. If a topological growp G admiis a complete and sep-
arable metrisation and G acts transitively on a melric space X in such
a way that, for some x, ¢ X, 2,9 18 a continuous function of g ¢ @, then X
is a Borel space (i.e. X is a Borel set in any metrisadle extension of X).

Proof. Put F ={g: mg =m). F is a closed subgrcup of @. Ob-
viously the decomposition of @ given by F,=Fg (g <) is open. Let
8 be a Borel selector given by Lemma. The ecntinucus mapping of §
into X defined by the formula zys (s € ) is cne-tc-one and onto (S is
a selector!); hence X is a Borel space (cf. [1], p. 396).
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