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The usefulness of theorem 5 is not limited to the systems deseribed.
in theorem 7. For example, a well-ordered set is a system (X, <) sat-
isfying
(WO,) (ZX; <) is simply ordered,

(WO,) AYCX[Va@eX)>VylyeX A As[ze T>y <zl)].

Axiom WO, is equivalent to a set of sentences possessing the negt-
ing property, as shown above, and axiom WO, is a second-order sentence
preserved by every equivalence relation on X which preserves the order.
A fortiori conditions (1) and (2) of theorem 5 must hold. This implies
that a well-ordered set may be represented as a subdirect product of prop-~
erly drreducible well-ordered sets. One may show without difficulty that
the irreducible factors are isomorphic to ({0,1}, <).
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Closed subgroups of locally compact Abelian groups
by
K. A. Ross (Rochester)

Let & be an Abelian group, and let O, and O, be two topologies
on @ such that O, ;z 0, and (&, 0,) and (G, D,) are locally compact

topological groups. E. Hewitt [1] has proved that there is an D, -con-
tinuous character on @ that is O,-discontinuous. We submit here an
outline of a somewhat shorter proof of this result based on an obser-
vation about closed subgroups. We then make some further remarks
about closed subgroups.

We first given an alternative proof of Lemma (2.1) in [1]:

Let R denote the additive group of real numbers with the usual topol-
ogy, and let (B, D) be a locally compact group such that O is strictly
stronger than the usual topology of R. Then O is the discrete topology.

Proof. Let ¢ denote the identity mapping of (R, D) onto R; ¢ is
clearly continnous. Let ¢ be the component of the identity in (R, O).
If 0=R, then (R,D) is o-compact and (5.29) [2] shows that ¢ is
a homeomorphism, contrary to our hypothesis. Hence ¢(C) is a proper
connected subgroup of R in the usual topology. Therefore ¢(0) = {0},
0 = {0}, and (R, D) is totally disconnected. By Theorem (7.7) [2], (R, D)
contains a compact open subgroup H. Since ¢(H) is a compact subgroup
of B in the usual topology, we have ¢(H)= {0} and H = {0}. Conse-
quently, {0} is open in (R, D) and O is discrete.

Hewitt’s theorem follows from the following lemma.

Levwa 1. Let @, Oy, and D, be as before. There exists a subgroup
H of @ that is O,-closed but not O,-closed.

Proof. Let ¢ be the [continuous] identity mapping of (&, O,) onto
(@, D,). Arguing as in the proof of Theorem (3.3) [1] and noting that
invoking Theorem (2.2) [1] is unnecessary, we find that there is a sub-
group J of @ such that the topology O, on J is strictly stronger than
the' topology O, on J, and such that either

(1) (7, O,) is topologically isomorphic with R,
or

(2) (7, O,) is compaet.
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Suppose that (1) holds. By Lemma (2.1) [1], (J,90,) is a discrete
group. If H is a proper subgroup of J that is dense in (', D,) [a copy
of the rationals, say], then H is ©O,-closed but not D,-closed.

Suppose that (2) holds. Let M be a subgroup of J that is open,
closed, and ecompactly generated in the DO, -topology. The group (J,0y)
is not o-compact, since otherwise (5.29) [2] would imply that o is
4 homeomorphism on J. It follows that J/M iy [uncountably] infinite,
Let {mM, 2, ,...} denote a countably infinite subgroup of J/M, and

let H= DwkM. Clearly H iy open, closed, and o-compact in the
k=1

D;-topology; also H is not O,-compact. Assume that H is D,-closed.
Then H is locally compact in the D,-topology and (5.29) [2] implies
that (H, ©,) and (H, O,) are homeomorphie. Since H CJ, H is O,-com-
pact, while not being O,-compact. This contradiction shows that H is
not O,-closed. '

TeeEoREM (Hewitt [1]). There exists an Dy -continuous character that
48 O,-discontinuous.

Proof. Let H be a subgroup of @ that is O,-closed and not
D,-closed. Let H, be the O,-closure of H. By (24.12) [2), the character
identically one on H can be extended to an D, -continuous character
on H, that is not identically one. This character can be extended to an
O;-continuous character on @. Plainly such a character is not O,-con-
tinnous.

As easy counting argument shows that @ has at least 2% O, -con-
tinuous characters; from the above it follows that at least 2% of them
are O,-discontinuous.

We next make an elementary observation:

ProPOSITION. Bvery infinite locally compact Abelian group has o non-
irivial proper closed subgroup. -

Proof. Assume that the proposition is false; then there is a group
& for which every element different from the identity generates a dense
subgroup. Obviously & cannot be the discrete group of integers. Since
@G is monothetic, ¢ must be compact (9.1) [2]. The character group X
of @ is discrete and hence containg g nontrivial proper subgroup Y.

The character group of X/Y must then be a nontrivial proper closed
subgroup of @; see (23.25) [2].

We now consider the question: to what extent is a locally com-
pact Abelian group determined by its family of closed subgroups? For
the remainder of this paper, (6, 0,) and (@, D,) will denote locally

<compact Abelian groups such that a subgroup of @ is O,-closed iff it is
Oy-closed.
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One can easily construct examples where D) # 0,. (Let T denote
the circle group, and let ¢ be a discontinuous isomorphism of T onto 7.
Let O be the usual compact topology for 7 and O, consist of images
of sets in O, under ¢. Then clearly D, s O, and the only ©,-closed or
D,-closed subgroups are finite.) The writer has been unable to produce
an example for which the groups (G, 9D,) and (G, D, are not topo-
logically isomorphic. In spite of this, he feels that Theorems 1 and 2
below are of some interest.

Levwa 2. Let HC@. If G is O,-compact and H is O,-open, then
H is D,-open.

Proof. Let ¢ be the natural mapping of @ onto G/H. Let $ be any
subgroup of G/H. Then § = ¢(K) for some subgroup K D H of G. Since
H is O,-open, K is O,-open. Therefore K is O,-closed and hence K is
D, -closed. Bince (@, O,) is compact, pis a closed mapping in the O, -topol-
ogy by (5.18) [2]. Hence $ = ¢(K) is closed In (G/H,O;). In other
words, every subgroup of (G/H, D) is closed. Consequently we have from
Lemma 1 that the locally compact Abelian group (G/H,D,) is discrete.
Hence H is O;-open.

The following shows that for locally compact Abelian groups, the
closed subgroups alone determine whether the group is compact.

TEEOREM 1. The group (@, D,) is compact iff (G, D,) is compact.

Proof. Assume, on the contrary, that (¢, O,) is compact and that
(G, D) is not. Since (¢, D,) contains an open, closed, and compactly
generated subgroup, (9.8) [2] shows that there is a subgroup J of @ such
that (J,O,) is topologically isomorphic with R®xF for some integer
a >0 and some compact group F. ‘

Suppose first that @ > 0. Then clearly there exists a countably
infinite subgroup H of & that is D,-closed. Hence H must also be
D;-closed. By (4.26) [2], we see that (H,D,) is discrete and this con-
tradicts the compactness of (G, ).

Suppose now that a =0, so that J=F. Since F is 0,-open,
Lemma 2 shows that F is O,-open. Since (@, O,) is compact, it follows
that G/F is finite. Since ¥ is ©O,-compact, this in turn implies that
(@, 0,) is compact—a, contradietion.

If one of the topologies in Theorem 1 is 0-dimensional, a stronger
conclusion results.

TeEOREM 2. If (@, D) is compact and 0-dimensional, then O, = O,.

Proof. By Theorem 1, (G,D,) is also compact. By (7.7) [2], the
family § of subgroups of @ that are O,-open is a basis at the identity e.
By Lemma 2, each H in § is also D,-open. Since ({H: H ¢ §} = {e},
an’ elementary compactness argument shows that § is a basis at e for
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the " O,-topology. (Compare the proof of (8.5) [2].) It follows that
D, =29,.

The author wishes to thank Professor Edwin Hewitt for the oppor-
tunity of reading a pre-publication copy of his paper.
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.. Note. As remarked in [1], the theorem of Hewitt is included in a more general
result by I. Glicksberg, Unijorm boundedness for groups, Canad. J. Math. 14,
pp. 269-276; see Corollary 2.4.
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