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§ 0. Introduction. In some mathematical theories we deal with
objects having two structures: the algebraical and the topological one.
Objects of this sort are, for instance, linear topological spaces. For such
spaces one may consider three types of classifications: One with respect
to both structures (isomorphical clasgification), another algebraical and
the third topological. Only the first of these classifications has been
performed completely. It is known that. the only algebraic invariant
of linear spaces is their algebraic dimension. The present paper is de-
voted to the third classification of complete linear metric spaces, above
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all of those spaces which are locally convex. One of the reasons of the
significance of this subject is that there exist applications of non-linear
functional analysis of purely topological character in which the linear
structure of underlying spaces is quite immaterial.

Fréchet ([27], P. 95) and Banach ([2], p. 242) asked if every infinite-
dimensional separable Banach space was homeomorphic to .the Hilbert
space. Recent results due to Kade¢, Klee, Bessaga and Petezyiski suggest
an affirmative answer to this problem. From the hypothesis that all
separable infinite-dimensional Banach Spaces are homeomorphic it ean
be inferred that all separable inifinite-dimensional # -Spaces, except per-
haps R¥, B denoting the real line, are homeomorphic. Concerning un-
separable F'-spaces we know only that some of them (for ifstance certain
spaces of continunous functions) are homeomorphic to Hilbert spaces of
a suitable density character. No proof of topological non-equivalence
of two complete linear metric spaces having the same density character
is known. Hence at the present stage the study of topological classifi-
cation of complete linear metric Spaces aims establishing that some
Spaces or some classes of spaces are homeomorphic to Hilbert spaces.
A natural problem which arises is to characterize the topological struc-
ture of Hilbert spaces in purely topological terms. One of the possible
approaches to this problem is the following (1). Let us call & Keller retract
any complete metric space which is an absolute retract relative to met-
ric spaces and is topologically homogeneous. The following conjecture
may be posed:

CoNTECTURE. Any Keller retract which is not locally compact is homeo-
morplic to a Hilbert space of a suitable density character. Any locally com-
pact Keller retract is homeomorphic to a locally compact convex subset of 1y
(all such subsets are topologically described in Klee [497).

No results contradieting this conjecture are known to
However, to prove its truth seems extremely difficult.

There are several methods of establishing & homeomorphism between
linear topological spaces:

1. Direct method (Mazur, [65]). Consider
@ = 2(t) defined on [0,1]. Let

the author.

a square integrable function

¥(t) = |=(8)I”® sgna(y) .

It is easily seen that the mapping % which sends % to ¥ is one-to-one
from L, onto L,. It is also easy ‘to check that % is a homeomorphism.
Similarly any space I, is homeomorphic with l,. Hence all the spaces

(*) This idea was preséntad during the
grad 1961} in the report On Keller retracts
spaces by Pelezyiski and the author.

Congress of Soviet Mathematicians (Lenin-
and topological elassification of linear metric
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Ly and 1, are homeomorphic with the Hilbert space...'l‘his is l}istorically
the first example, due to Mazur in 1929, of non-isomorphic Banach
spaces which are homeomorphic. . ' . '

For the applications of the direct method in case of Orhsz _Spaces
and “Lp-spaces” of vector-valued functions, see 'Ka'czma‘rz [301,'Stcln§
[81], Bourbaki ([18], § 6 Exercise 10). Another application: Proposition 7.2
f this paper. )
° 2. gofrdmate methods. The discovery of those methods by Kadel
in 1953 and 1955 marked essential progress towards solvh_lg the _proh—
lem of Fréchet and Banach. The first of these meth().d§ is _a,pph{:,a-ble
to spaces X possessing an increasing system {X,} of finite-dimensional
subspaces with the so-called “Bernstein prolperty”. To any vector ?f
such a space a sequence dyx of its “coordinates” may be attached 113
such a way that {duo: ¥ ¢ X} coincides with the class of all real sequences
whose absolute values monotonically tend to zero, and that th‘e mapping h
between two such spaces, with dphe = dpx (n = 0,1,...), is a homeo-
morphism. The coordinates are inclinations of the vector from sub-

X, (n=0,1, ..).
spaeelgy tgwf use c;f ;;hls) method Kaded {36] proved the non-t‘rivial.fact
that ¢, a1 (cf. 7.4). Klee and Long [56] proved that all so-dlmgnsmna.l
normed linear spaces are homeomorphic. Bessaga [6] extended thlls result
to some more general classes of linear metric spaces. The speela.l.e.a.se
of the first coordinate method, concerning spaces with an unconditional
basis, is discussed in § 7. o '

The second method (Kadeé [37], [38], [39], Klee [51]) is in a cert--fun
sense dual to the first: coordinates are inclinations from su-bspa?es having
finite deficiencies. The most important result obtained by this method
is that all infinite-dimensional separable conjugate Banach spaces are
homeomorphic to the Hilbert space (Kadeé [39] and Klee [51]). .

Another coordinate method was employed recently by Kaded [40]
for the proof that in every infinite-dimensional separable Ba,nae‘h space
with an unconditional basis, the positive cone,- with respect to this basis,
is homeomorphic to the positive cone in 1.

3. Decomposition method (Bessaga-Pelezynski [8], [9]). Homeomor-
phisms are constructed by means of decompositions of spaces under
consideration into Cartesian products. The general idea of this method
is a simple abstract algebraic scheme: Propositions' 8.3 and 12.1, cf. also
Pelezyniski [70], Proposition 4; an essential role is also played b.y jc»he
Bartle-Graves theorem on cross-section for linear opera,tors: Slmlal‘
methods were employed previously by Borsuk [15], Pelezyriski [69],
Kaded-Lewin [41]. ) ]

dBy the us[e gf the decomposition method we can show that if ¥ is
an F-space homeomorphic with the Hilbert space Iy(x), then every
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F-space X which containg ¥ and has the density character equal to '
is homeomorphic with I,(x). Another result states that every separable
infinite-dimensional Banach space with an unconditional basis ig homeo-
morphic with %,. These two facts make it possible to show that every
“known” separable infinite-dimensional Banach space is homeomorphic
with ; it is 50 because no infinite-dimensional Banach space without an
infinite-dimensional subspace with an unconditional bagis is known.

The main results of this paper are Theorem 8.2 and itg corollaries,
9.1 and 9.3, contained in Chapter ITI. These results were previously
published in Bessaga-Pelozyriski [9]. The proof of Theorem 8.2 (the main
theorem in [9]) is based on some considerations of Chapter IT (propo-
sitions: 6.2, 6.3, 6.4 and 7.4) which were omitted in the short sketeh of
the proof of proposition 2 in [91. .

The purpose of this paper is to present all the more important known
results concerning topological classification of complete linear metric spaces
with special emphasis on the decomposition method. There are, however,
some exceptions to that: A large part of the considerations of Chapter II is
valid for incomplete spaces, too. In § 10 using the decomposition method,
we establish homeomorphisms between some non-linear spaces. In §11 the
classification of F-spaces considered as uniform spaces is studied.

A more comprehensive discussion of the subjects omitted from this
paper can be found in Klee’s expository paper [54] and in the papers
listed in the references. For the classification of compact and locally
compact convex subsets in F-spaces, see Keller [45] and Klee [49]. The
classification of closed convex bodies ean be found in Klee [48], Corson-
Klee [19] and Bessaga-Klee [77, [82]. Cones are studied in Corson-Klee [19]
and Kadeé [40]. An essential progress in the field of uniform structure
of Banach spaces and related classification has been made by Linden-
strauss; see his recent paper [62].

In the present paper nineteen open problems are mentioned. These
problems were partially published by Klee [55], Pelozyriski [72], Bessaga-
Pelezyriski [10]; some of them were Posed in the report On Keller retracts
and topological classification of linear metric spaces during the Congress
of Soviet Mathematicians in Leningrad in 1961.

I would like to express my gratitude to Professor Vietor Klee: his
seminars, his papers and discussion with him greatly influenced the
Present papers. I want also to express my thanks to Docent A. Pelezyriski
~ {who is a co-author of a great part of the results of thig paper) for hig

valuable remarks during the Dreparation of the paper. I am very mueh
indebted to Professor M. I. Kadeé, who communicated to me the un-
published part of the proof of the theorem on topological equivalence

of spaces ¢, and I (the proof of the lemma (%), p.269) and gave his consent
to my publishing it here.
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On topological classification
I. Preliminaries

§1. Notation and terminology. The symbols w, W will be
used for set union, intersection and difference, —[—,.-,‘— being reserved
for algebraic 6pera,ﬁons: both for vect?rs alfld sets in linear spaces. F;r
ingtanee, if £ is 2 number, y is a vector in a linear space X and 4, BC ,
then {4 = {ir: wed}, A+B={n+o: fed, 2,eB}, A—y={o—y:
zeA), ete. The emply set will be denoted by !Zi and 0 will represent ‘thg
number zero and the neutral element of the linear spajce }mder conside-
ration. card A = cardinality of the set A. If and only if will be rendered
by iff. The symbols {pa¢ or {pul’zy‘--'}’ {ij vy Prp {Pa}aea (OT ShOTﬂ:Y {jpzf, .
if the set A is fixed in considerations) will flenote a sequence, & k-tuple
and an indexed system of points, respectively. (p> represents a one-
point set and <{pi, Ps,...» is the set of elements of.the sequence {pa}.
[#] will denote the coset determined by the vector z in a quotlen.t space
under consideration. The only type of parenth_es used for d.e.nqtmg the
values of funetions is (...), but usually we omit them, associating sym—
bols written consecutively to the rig(ht, ;vhether they denote funections

i ipliers, e.g. fgm = f(g(x)).

* ml«l}:)lre 1:1}1&517 1;:)1;)1213giea1, spicggQ, w@ will denote the den,?iiy character
(weight) of @, i.e. the infimum of cardinalities of bases of ne}ghbgu?‘hzojs
for Q; if 4 CQ, then 4, Int A will denote the closure, the {nterlol [} 1—,
By compact space we always mean & 'Hausdorff_ top.ologleal compac
(= bicompact in Russian terminology) space. @ is said to be a sefgzz?
compact space iff there exists a sequence {@»} of compact subspaces o
such that

(%) Q= UQ»; @n C Int Qnr1 for n=1,2,..

. oxv
Symbols X xY and [[ X, denote topological product of spaces; X
ZeA ;
= J] X, with all X; = X, card 4 = &,. If @ isa compact [semicom-
ied

pact] space, and W is a metric space, then by we (cf. Kur.'fntowskifgfnl],
§ 88, VI) we shall denote the space of all W-xfalued eontmuous‘ e-
tions: f, g, ... defined on @ with the topology given by the metric

o(f,9) =supo(fp, gp)
peQ

_ Sy ) 1 pelip,9p)) s
[elf,9) ,,;: 2 iggﬂg(fp )l +§30"e

where @ = | J@, is an arbitrary decomposition (*) fo.r.Q (th; bo_é)ol;)%g_‘”y
does not depend on the choice of concrete d,ecompos‘utlon)]. y' t,> A ,
J we shall denote the set of all real numbers and 1gtewals {t: }/. }i
{t: 0 <t<1), respectively. We shall write X'~7¥, if the topologica
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Spaces X and Y are homeomorphic; Y|X if there exists a topological
space Z, such that X ~¥ Z; X is then said to be -divisible by Y.

Unless otherwise explicitly stated, all the linear spaces considered
in this paper are over the field of reals. However, all the proofs can be
automatically transferred to the complex case.

A real-valued function |-|| defined on a linear space. X iy called
a norm iff it satisfies the following conditions: (1) |j0f = 0, (2) llm+yji
<ol +Hlyll @,y € X), (3) fital = M lol] (@< X, teR), (4) [l =0 implies
z=0; ||| is called a distance function (or F-norm), or a pseudonorm
Hf it satisfies the conditions (1), (2), (4) or the conditions (1), (2), (3),
respectively. A topological space which is simultaneously a linear space
with linear operations continuous in the topology is called a linear topo-
logical space (1.t.s.). By a subspace of an Lt.s. X we mean a closed linear
manifold in X. Two Lt.s’s X and Y are called isomorphic (written
X=Y) iff there ig a linear homeomorphism (isomorphism) between these
spaces. An F-norm ||, in particular a norm defined on an Lt.s, X, will
be called admissible, iff o(@,) =lz—y| is a metric compatible with
the topology of X; |-| is called complete iff the metric p is complete.
A sequence of pseudonorms {l'la} in X will be called admissible iff
leh < o, <0 ... for every r in X and the F-norm

(@) bl = 3 2 alof(1+ i)

is admissible. An Lt.s. ¥ with a fixed admissible #-norm |-|, in partie-
ular with a fixed norm [[-fl, is called a linear metric space (Lm.s.), in
varticular a normed space. If this fixed F-norm || or norm ||-{ is com-
plete, X is said to be a complete linear metric space or a Banach space
(shortly B-space), respectively. An Lt.s. X in which no admissible norm
can be defined is said to be non-normable. An Lt.s. X with a fixed ad-
missible sequence of pseudonorms {{-l.} such that the F-norm (rx) is
complete is called an F-space (= B,-spacé in the terminology of Mazur-
Orlicz [66]). Obviously, every F-space is a B-space, with all the pseudo-
norms coinciding with the norm. Any convex set with a non-empty
interior in an Lt.s. X is ealled a conver body.

By a Uinear operator (linear functional) we mean a continuous linear
vector-valued (scalar-valued) funetion defined on a linear topological space.
If any mappingis denoted by a capital letter, it will be assumed to be a linear
operator or functional. If X is an Lts., X* will denote its conjugate
$pace, i.e. the space of all near functionals defined on X, equipped with
its strong topology (Bourbaki [1], TV, 3.1). The conjugate of a normed
space X is a Banach space under the (admissible) norm {|F)| = sup {Fa:
el < 13}. X is called reflemive ift every linear functional ¢ defined on X*
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is of the form @F = Fag (s e X). If X is an Lt.s., F e X*, then the sets
$re X: Fa = const} are ecalled hyperplanes in X. ‘
b A series Emn with @, in an lLt.s. X is said to be concergent to x iff

n " . . .
lim Z'm- = x; it is said to be wnconditionally convergent iff for every
n—o0 k=1

i i ices ceries ! jg "917-:&‘.‘»(:‘11{‘\11(36
permutation {p,} of indices the series 2 @y, is convergen seq

" .
i i Ui - 2z in X is uniquely representable in
{my} is called a basis of X iff every  in X is uniquely rep 2
d ey i
a form o = /thwn; a system {#:}zeq 1S said to be an wnconditional basis
bl o= L '

iff every « en}‘l has a uniqﬁe (up to permutation of terms) representation
P 2 t,&;, the series being unconditionally convergent and 4,C A,

i€dy

with card Az < 8,. A basis {,} will be called primitive iff >i,2, con-
verges for every real sequence {,}.

§ 2. List of special spaces. The spaces 71,(5) (p > 0). Hlements

of the space Ip(x) ave real functions « = {&} defined Eon an a;bs;rac;f;
set A, with eard /4 =, such that card{i: & = 0} <{x, and 7,@1
< oo, the morm being defined by the formula |jz] = (;‘]E;_]”)Z", wAhere
4 = min(1, 1/p).
' Tlle(ﬁ;mc{f)eo(s) consists of real functions o = {{;} defined on a set A,
with card A =8, such that card{i: |&|> d} < 8, for every 6> 0.
Here |z} = %1111) 71N

The spaces Ip(s,) and ¢(s,) are shortly denoted by I and ¢. Instead

of I,(s) and I, we also write I(sx) and I. -
1(T]m spa(a;s Ly (p > 0). The elements of L, are measurable funetions

2 =x(t) defined on 3, such that
' Jle@ < +o0.
The norm, o : . ‘
i = ([l2@F), where =y —min(L,1/p).
The space s,'which is composed of all real sequences & = {£}, under
the topology given by the pseudpnorms [{énHa : ig) 1Ex]- . '
The Kothe spaces (2). Let {@an}an=1. be an infinite matrix of posi-
tive numbers such that -
(.’1) A1y <K lop X oen ('n = 1, 2, ---); Z am/a.aﬂ,,,, < o ((1 = 1, 2, ...) .
fn=1
By M(asm) we shall denote the space of all real sequences » = {£x}, such
that |2}, = sup aamlésl < co.
n

6 inci ith t] f nuclear “Stufenrdume” —
?) The class of Kothe spaces coincides with that o o
Kiithf(s )[57] and [58] § 30.8 (see Grothendieck [32], Chapter II, p. 59, Proposition 8).
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The space m(4) of all real bounded functions @ — {£,} defined on
an abstract set 4; |jzf = sup|&,).
A

The spaces ly(s) and L, for p < 1 are complete linear metric spaces
without being F-spaces. M (4e) and s are non-normable F -Spaces. All
the other spaces listed above are Banach spaces.

§ 3. Auxiliary theorems on linear functional analysis.

3.1. Suppose that X is a complete lm.s. and Uy: XX (n=0,1,.)
are linear operaiors, with lim Uy — Uy for every  in X; then this con-

N—+00
vergence is un-ijqrm on any compact subsei of X.

3.2. Let X and ¥ be complete linear metric spaces. If T is a linear

operator from X onto ¥, then Y is isomorphic to the quotient space X [ker T,
where ker T = T,

This is an immediate consequence of the well-known closed graph
theorem.

3.3 (Schauder). Fvery Banach space X, with wX <, is a linear
image of the space I(x). ’

Let {314 with card 4 = x be an arbitrary system of points of X
dense in the unit sphere of X. The required linear operator 7' from I(x)
onto X can be defined by the formula T'{&} =) &, (see Banach-

2
Mazur [3], p. 111 and Klee [51], Prop. 2.1).
3.4. Byvery F-space X is isomorphic to & subspace of the F-space

oo
Y = [ X., where X, is the completion of the quotient space Z, = X/{z ¢ X:
a=1

[le = 0} considered as a normed space under the norm |-|.

Proof (Mazur and Orlicz [66], 1T, 232). The required embedding is
given by the formula 7w — {{#], [#]e, ...} € ¥, where [#]. denotes the
element of the quotient space Z, that is determined by .

35. If {] |} and {| L.} are two admissible sequences of pseudonorms
jor an F-space X, then for every a there exist an o' and ‘e positive number

Ca such that |zl < C o). s 1ele < Clllle for every o in X (Mazur and Orlicz
[661, II, 2.2).

3.6. Let F = M () be a Kothe space. Then the formula U {&}

= {E_S.,: Garb} defines a Tinear operalor from B onto s.

o0
Proof. Put Fo{&} — kZ %aibx. Fo are in B*, and, by § 2, formula (x),
=]
we get n: l{(?ué; Frzl < oo} =<1, 2, «.;a. Now from REidelheit’s re-

sult [1], Satz 2 (see also Makarov [64]), follows the assertion of our prop-
ogition.
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3.7. If Xis a Banach space such that X s is reflexive, then X is reflemive.

This follows directly from the fact that every F e (X > s)* has the
unique representation F(z,y) = Fiz--F,y, where F, e X*, F, e s*.

3.8. If X is a B-space whose conjugate X* contains a reflexive sub-
space Y, then there exists a linear operator U from X onto ¥*,

Proof. Define (Uz)F = Fz for F' ¢ Y. Since the adjoint operator U*
with (U*F)oz = Fz is the embedding operator and has, evi@enﬂy, the
continuous inverse, by Banach [2], p. 146, Theorem 1, U is onto X.

3.9. If X is a non-reflexive B-space with an wunconditional lm:s'ls,,
then X contains either a subspace isomorphic with ¢, or a subspace iso-
morphic with 1 (James [34].) :

3.10. For every infinite-dimensional F-space X the condition
() @M Xooa/{w € Xor1: |@wla = 0} is either 0 or oo, for sufficiently large a,
implies the following one:

(8) X 4s isomorphic to no Cartesian product ¥ xs, ¥ being an B-space.

If X is non-normable, then (B) is equivalent to the condition

(y) X contains a subspace isomorphic to a Kithe space.
Proof. Non (B) implies non («). Let # = (y, {£x}) € ¥ x s. The spe-
cial system of admissible pseudonorms |zj, = []y{l—l—n{lgax |&| does mnot

satisfy (x). But from 3.5 it follows that no admissible system of pseudo-
norms satisfies (&). .

For the proof of the second assertion, see Bessaga-Pelezynski-Role-
wiez [13].

3.11. If {x.} is a basis in an F-space X, then every l?ubse_quen.oe
{t6p,} forms a basis in its linear hull. If {@,} is an unconditional basis,
then {®p,} 18 also unconditional.

3.12. Let X be an F-space with a non-primitive basis {wn}._ Then-
there is a subsequence {m,,} whose closed linear hull satisfies condition ()
of 3.10.

Proof (cf. Bessaga-Pelezyniski-Rolewicz [14], I?roof of Theorem 7).
Among the pseudonorms |-|. of the space X there is one |-|a, s*u(.zh that
|#pley 7= 0 for infinitely many p, say p;, Ds, ..., because otherwise the
series ) t,#, would be convergent for any real sequence {fy}. Put

»

Y = closed linear hull of {m,,}.

s

By 3.11, every 'y in ¥ can be represented in a form y =n§ tap. The.
formulas

o

oo q
| 3 ], = sun | 3t
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define an admissible system of pseudonorms on Y. Since all these pseudo-
norms are norms, condition («) is fulfilled.

3.13. Bvery F-space with a primitive basis {m} is isomorphic to the
space s.

Proof. The required isomorphism is given by the formuly
T Stnwn = {in)'

n=1

Let us notice that, conversely, every basis in s is primitive (Banach
[2], Chapter III, Theorem 13 and Bessaga-Pelezyiski-Rolewicz [14],
Theorem 5).

II. Infinite products of spaces and their mappings

§ 4. Coordinate spaces and coordinate products. Through
this section 4 is assumed to be a fixed abstract set. & — {65} em(4),
ued, with 6 =0 for A s£ 4 and & =1 for =2

DEFINTTION 1. An lm.s. B whose elements ave real-valued functions
« = {£} defined on A, satisfying the following conditions:

@) If & = (&) B, y = {p1} em(4), then yo = {8} < B, [yal <lyll-|a],
{B) cardsupp x <x,, for every « e B, where supp {&} = {1: &, # 03},
(v) every x in B is a sum of the wuncontitionally convergent series Xy A

where u runs over supp ,

(8) jor every pe A, we have & < E,
will be called a coordinate space. Tf A = d,2,...;, the space B will be

called a countable-coordinate space. We shall use also terms: coordinate .

F-space, coordinate normed space, etc. For any coordinate space B, by B+
we shall denote the positive cone in E, i.e. the set of those elements in F
all coordinates of which are non-negative.

The class of eoordinate F-gpaces coincides, up to isomorphisms,
with the class of F'-spaces having an unconditional basis. Let us also
observe that ’

4.1. Every coazdinate space E can be embedded in a complete co-
ordinate card supp B consisting of all such functions y = {&) defined on A
Jor which card supp y < 8o and the series Y &"y satisfies the Cauchy conditions
as a series of elements of B. g
*  The spaces Iy(x), 6o(8); M (@on), s defined in section 1.2 are complete
coordinate spaces. As an example of an incomplete coordinate space
Wwe can consider the subset of ¢, consisting of all finite-supported sequences,
or that consisting of all absolute summahble sequences, ete.

DEFINTTION 2. Suppose that E ig a coordinate space and {X3}rea
is a family of normed spaces with norms |-fs, respectively. Denote by
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Y X, the Lm.s. consisting of all systems y = {m}. with @; < X;, such

: i - = |{lzdl}]. In the case where all X,
wlli} € B, with the F-norm |{z:)] = |{i= ; ¢
gi;i;’:}ide W,i'Gh a fixed space X, we shall write ZzX instead of %‘EX;.

The space >zXa will be called a coordinate product of the spaces X in
the sense ofl B (3); X, and F will be called the factors 0# the product and
its generating space, respectively. Products eorresponding to countable-
coordinate generating spaces are said to be countable. %, s an

Ii B is an F-space and X; are B-spaces, then ¥ = 2 X, 18 a

= | re admissible for Y.

-gpace, the psendonorms |{m}. = ,{umﬂl;_}IH are a )
d SpLet’us mention that for X which is a B-space the spaces Z,'g,,l,
53X, %X, ZueX are isomorphic with the tensor products: X ® ¢y,
X@)’Z Xés, X@) M (@), respectively (for the definitions of tensor
produ’cts and related notions, see Grothendieck !j32].) ) ) ,
Let ¥ = 5 X;. We shall employ the following notation: if y = {z}
is in ¥, then fnody = {llmlla} e B+, sgny = {z}, where zimz/llwzll ifay#0
and 2 ,= 0 if 4, = 0. For an arbitrary system y = {@;} with 1 ¢ X, (not
necessarily belonging to Y) we write Fuy = 2. In the case where

k
. T T o
A=<1,2,..), we shall use also the following notation: & yA ig,’léa:,,

Sy = Sty —8y, Sy =y—8"y.
It is easy to show that ‘ ‘ W
4.2. The functions 8%, Sy, F; restricted to ¥ are Zmem: opmato;’s, ere
function mod is continuous, the superpositi'on Fisgn is continuous (:'L H:z:d Y
point y, such that Fry, # 0. For every y n Y we i.uwe y = jggﬂymoa :)I/,
the multiplication being undersiood coordinatewise, i.c. Fiy = (¥, Y

) i ‘ ion. of B defined
- (Fisgny). For every yekg1 g Xy (E being the completion of f

in 4.1) we have ’]clﬂ Sy =y, .
Since every coordinate space is a coordiua,t(.a product W"lth 1= S,
all the notations and the last proposition are valid for coordinate spaces.
5. Direct sums. -
iEFINITION 3. A complete lm.s. X will be ea..lleq a c‘l‘wect 31];11, 522
(d.s.) of its subspaces X, (=1, 2,..) if there exist continuous ;
projections 7T, from X onto X, such that

o R
(5) TnTy =0 for m=m; o= 2 Tya, for any ¢ in X.
n=1
i i idered in Ba-
(*) Coordinate products with special generating sp were

: Day [20], Chapter 2, § 2.
. 243, and denoted by (X;X;...)r; see also y .
e (%L'I'ijs noti:: of direct sum has been introduced by Grinblyum [31‘]1']];;15\::; ;:;xtd:.ed
by S. Mazur in his seminar in 1955 and independently by W. MeArthur an:

19
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X will be called an unconditional dir
\ | ect sum (u.d.s.) of a family
of its subspaces if there are continuous linear projections {T' }y:t‘:erl}kA
onto X, respectively, such that s om
(6) ?‘1 Ty, = 0 for 2 # p; the cardinality of the set Suppx = {1: Tz == ()
18 <8 for every e X; = Th®, the series being uneondit'io '
aJ]l | suppz on-
Yy convergent.
Let us remark that the class of direct sums (unconditional direct

sums) of one-dimensional subs inei i
. paces coincides with the class 3
having bases (unconditional bases). 7 o spaces

o lf.l. ;I‘J:IE;REM. If X 1,.9 an u.d.s. of its subspaces X; (A« 4), Y s
- B8y hat : 1Y are continuous and such that 710 = 0 for every ,A and
every © in X the series th;_ Tiz = hx is unconditionally co;we;'gent
then the mapping h is continuous. ’

The proof makes use of the following proposition

N L )

52. Let X be o d.s. of .its subspaces X, and let hn: Xpn—=Y be con-
tinuous and such that h,0 — 0 for all n and ha =
for every @ in X. Then h is continuous.

Proof of 5.2. Put

©
D b Tz s convergent
n=}x

n
9o = D by T

=1
gvlze af;nzt;lfﬂr;s tg,, :;111'& czﬁtinuous as finite sums of continuous funetions
0 show that they are equicontinuous .
e b at 0. Suppose other-
;;nsee:‘3 tzjn olne can choose a neighbourhood U of Zero inppY vect;:s
" =1,2,..) and increasing sequence {ks} of indices, s:mh that

P
(a) D e
=1 !
and
(b} © Gk ‘
aabn €V,  grm VLV =1, ¢
o + n=1,2,.).
kn
€y = 2 T{.’ﬂi.
i=kp-y+1
Sim i iti i
Since X is complete, condition (a) implies that the series Den=c is
conver, . Si i
gent. Since according to the hypothesis the series h’:,T,.e con-
verges, we get B
kn
Yn = 2 h;TiC 0. .
T=kn-1+1

icm°
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But
kn kn kn
hiTie = Z b Tien = Z hi Ty, = Grepyn— Glenailn 5
i=kp-1+1 =kp-1+1 T=kp—1+1

and by (b), ¥y€V, which is contradictory to 1, —0.
We have just proved that for every neighbourhood ¥ of zero in ¥
there is a number §(V) > 0 such that

(e) it ¥ eX, |2l < 6(V), then gaz eV .

Suppose ax—>%, in X. Let ¥ be a neighbourhood of 0 in Y. Put
k
S :21’,-40, Spz =x— Sz
i=1

By Definition 3, 8%z ->®, by 8.1, this convergence is uniform on the
compact set (&, &y, -..>; therefore there exists an index 7, such that

(d) |Spe] < 8(F)  for k=0,1,..

By (c) and (d), we have
hay— hy = hiSn®r— BB+ (Gnor — o) €V +V + (gnor:— Gnolo) -

Since gn, 18 continuous, for sufficiently large % we have gnZr— oo € V3

thus, for such %, hax— ha, € ¥4V +V, which means that & is continnous.

Proof of the Theorem. Let ¥ be a separable subspace of X.

Let A, =\ suppz. From the separability of ¥ it follows that the set
zel

A, is at most countable, say 4o = <Py, Be; -0+ Thus Y is contained in
a d.s. of spaces Xz, Xp,, ... and by 5.2, h is continuous on ¥, but a func-
tion which is continuous on every separable subspace must be continuous

on the whole space.
Remark 1. An w.d.s. X of its subspaces which is an F.space can be defined as
a module over the space m(4) such that: the operation of multiplica.tio.n by elements
of m(x) is bilinear over m(A4)x X, if A4, are disjoint subspaces of 4, with 5}11,, =4
o
and y, are its characteristic functions, then z = Y 4, % (in norm convergence)
. B
for any » in X. Here we have T,z = z,0. X; = T;X.
Such an approach suggests an idea of generalization
o the case in which the role of m{A) would be played by a space of all
measurable functions defined on a space with a measure.

§6. Coordinate and cylindrical mappings. In this s
we shall discuss the question what sorts of continuous mappings (resp.
) of generating spaces and of factors determine con-
rphisms) of coordinate products.

of the coneepts considered
bounded

ection

homeomorphisms

tinuous mappings (resp. homeomo
\ 19%
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By 5.1, we have:

6.1. Suppose that B, and E, are complete coordinate spaces with con-

mon A, X;, ¥; (Ae A) are Banach spaces and X — A;EIX}.; Y =S¥,
A
If b XY, are continuous and such that b0 = 0 and T3y} € Y for

any y < X, then the mapping h: X =Y with by = {l By} is continuous.
If, moreover, h, are homeomorphisms and h is onto ¥, then h is a homeo-
morphism from X onto Y.

DEFINITION 4. Suppose that ¥; — ;EII;_ (¢ =1,2) are coordinate
products. Any mapping g: ¥, =Y, (in particular ¢: B, = ZpR~>E,
= Zg,R), or g: B >Hy, fulfilling the conditions:

(Wo) superpositions Frg are continuwous and such that Fry = 0 implies
Fagy =0 for any i A

(W1) &gy = 98"y for every y < ¥, pe d,

is called a coordinate mapping.

If ¥; are countable-coordinate products, then any mapping ¢: ¥, ¥,

.or g: Bf —E, satisfying condition (W) and the following one:

W;) there exists a homeomorphism ¢ from R+ onto itself such that
’Sﬂgy] ’gq’]SnZ{I, yeX, n=1,2,..

will be called a eylindrical mapping.

A homeomorphism % from Y, onto ¥, such that both & and A1
are coordinate (resp. eylindrical) mappings will be ecalled a coordinate
(vesp. cylindrical) homeomorphism.

6.2. Suppose that B, and B, are coordinate spaces with « common 4,

and X, (i ¢ A) are normed spaces. If h: BY By is a coordinate (eylindrical)

mapping, then h, with by = sgny - h(mody), is a coordinate (resp. cylin-
drical) mapping from Y, onto Y,. If h is one-to-ome and onto By, then
h is one-to-ome and onto Y,.

Proof. (i) We have
(a) Fahy = (Fisgny) (F:h mod y) .

If b satisfies ( Wy), from (a) and 4.2, we see that Fu% is continuous at
all points y, for which Fiy, 0. But i Fiyy =0 and y,—y,, we have
again F,hy, = (F8gnYn) (Fah modys) >0 = Fyy,, because the sequence
of the first factors is bounded and the second factors tend to zero.

(ii) Suppose that 7 satisfies (W3). Then &hy = &*(sgny-h mody)
= ("sgny) (ho"mody) = (sgné"y) (ho"mod y) = héy.

(iil) Suppose that 7 satisfies (Ws). By 4.2, we have |8, by} = Imod 8, hyi
= lth mody] ﬂq’lSny,.

The second statement of

the proposition is' an obvious consequence
of the first.
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6.3. Suppose that E; (i =1,2) are complete coordinate spaces, X;
0. U S

[=4]
V. X; R erer; 'dinate mapping h:
(4 e ) are Banach spaces, ¥; = ig,;ErL. Then every coor DPing

g - he BY >HS is continuous. A

Y, ¥, or h: BT ->HEy is con )
1 Pﬁoof. The continuity of & in the case h: ¥, Y, follows. directly

from 6.1. Assume h: EY Ny ; then the mapping h ,Z.Ellf: =2 R is by‘ 6..2

a coordinate mapping again, and therefore it is gontmufus. But 1.13 is

2-15% to see that in this case & is the restriction of h to Ei, whenee it is

zllSl; continuous.

S i ) ble-coordinate products.
6.4. Let Y; =n‘§E" w (8 =1,2) be two countable-co L P

Any cylindrical mapping h: ¥,~—~Y, is continuous.

> = ..). Th
TEmMA 1. Suppose ¥ :n’}:EX" and yre¥ (k=0,1,..). Then
Y —=Ya, iff the following conditions are satisfied:
() Fnyr—=Fnlo (n=1,2,..),
lim (sup|8xys) = 0.
(p) n—>0 k

Proof of Lemma 1. The necessity of («) is obvious. Since
n=1

o
lim 8yy = 0, for every y belonging to the complete Lm.s. DX
N-soo

fhe tilda denotes the completion defined in 4.1), by 3.1, t}'léf conv)eli;
gence is uniform on (Yo, ¥y -7 But this means that condition (B

ecessary. )
! Thrg sufficiency. Given ¢ > 0. By (B) there exists an N, such that
N‘
e Foyn—Fuyd <3
3= ol << 18 yal+ 18 ol + 187 (yx — w0l <€+8+,§| w i — Fn Yo} )

for sufficiently large k. -
Proof of 6.4. If yx—>Yy,, then by Lemma 1, F,,yk;F;:yo :;Eg
sup|Snyil —0; but by (W,) and (WE)? we have Fnhyx-—>Fuhy,
k
sup|Snhyx} 0, whence, by Lemma 1, hyn—>hy,- -
® . -
6.5. Suppose Y, = DpXi, ¥y= AZ'EZJ, B being mormed spaces
g -
If hy: X1—Z; are continuous and such that ||zl < 4'[]!67[3, f;r i?‘m za:h
' the mapping h: X, 29
tant A, for all © ¢ X, and all 1 € A, then p p
;z{m;} =,{}fuml} is continuous. If h, are homeomorphtsm; i?;zm X, onfo Z;
such that |jaol) < Allhaoll < A%, then h is an homeomorphism. e coie
Proof. Begin with the case where Y, a.nd?z are 0011(1)1 bl ooor”
dinate products. It is obvious that % fulfils condition (Wy). On
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hand, by the definition of &, by condition (d) of Definition 1 und by
the homogenity of norm in E, we have

18 hye] = |8y modizgkl < A]Sn mody| = Al‘&zy;c[ 5

thus & fulfils also (Ws), and by 6.4, » must be continuous.

The general case of prodmets of arbitrary power can be reduced
to the case of countable produets as follows: Every sequence {Yn} in ¥
may be embedded in a countable coordinate pro

duct corresponding to
those indices 4 for which Y
%

IIF2y4l] # 0; therefore, using the countable
version of the proposition, we
implies that of {hy}.

The second statement of this
first one.

In the case of coordinate products with complete factors the as-
sumption that ¥ is a normed space can be omitted in the formulation
of 3.5, Indeed, the mappings ks, with |[ha) < Allz|| determine a mapping
h: ZpX -2z Y between complete Spaces which, according to 3.1, is con-

tinuous. Hence the mapping k which is a restriction of 5 %o Zr X is also
continuous.

In particular, we have:

conclude that the convergence of {yk}

proposition follows directly from the

6.6. Suppose that X and Z are Banach spaces, and B is a coordinate
space. If there exists a homeomorphism b from X onto Z, with the property
kel = )], then the formauda ﬁ{m} = {hx;} defines a homeomorphism from
SEX onto EEZ

From 3.6 follows

6.7. Let X,Z be Banach spaces,
If X ~Z, then BxZgX ~ B ZgZ.

Proof. According to Klee [48],
infinite-dimensional Bansch SP!

and let E be a coordinate space.

the unit sphere of an arbitrary
ace is homeomorphic with the hyperplane
(subspace of defieiency one) of this space. Hence X ~ Z implies that
the unit spheres in the spaces Bx X and R ~Z are homeomorphic. Let
® be a homeomorphism from the unit sphere of the space R <X onto
that of R xZ; then the formuls ha = |zl p(f|lzl]) if 2520 and ho = 0
defines a homeomeorphism from ¥ xR onto Z »xR. Thus by 6.6,

(X xR) ~ Zp(¥ XR), ie BExIgX ~FxIg¥.

§ 7. Applications.

. 7.1. The mapping h{&) — sgné- |5 is o coordinate homeomor-
Phism from I(s) onto L(s)- (p, 9) > 0). (Mazur [65].)
This is an immediate consequence of 6.3.

icm®
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7.2. For every Kdithe space M (a.) there is a coordinate homevmor-
dadie ! 8 : . )
phism from ¢, onto M (@an). (Bessaga-Pelezyniski [9], Lemma 1; cf. Role
wiez [76].) . N
Proof. Without loss of generality we may assume that the matrix
{@} satisties the additional condition
Im ap =00 (0=1,2,..).

() Him
(for every matrix satisfying condition (oc.) of section I.Zzt.we cans;:;l:
(«') by multiplying the rows of the matrix by some PO]SI ive eoz{ . )),
obviously such an operation does not change thfz topo! (;rgy mR OntgnR.
From (¢') it follows that there are homeomorphism hn 01;1 o
such that he(l/a) = 1w (a,n =1,2,..), hat = (h,,.lt{)- sgn‘. ondtion
(«) §2 implies that the space Iilll(aa,,,) fcan be elllazaeter;zsg :s : v ' LHence
s {&) for which &) < 1/@an, for a=1,2, ... > No. :

s ifn}ma,m) i kbl < Lo, for a=1,2, ... s the iﬁi’épﬁfé
{50} € M (@) iff By &, —0. The last .condl’mon means hia; the mapping
h{En} = {hn&y} is the required coordinate homeomorphism fro 0

M(aaﬁi‘t us remark that there is no coordin;.a,te homeomorphmlx; h'%m Cy
onto 1. In fact: take {&,} e¢cy, &> 0. Owaust, for every N 8,n:l{h,{.é.. }i
Ex, Exs .o} € €. Thus if there existed a coordinate homeomorp. n

h oo
P ) = and there would
= {hn&n} from ¢, onto 1, we would have ; gj; |hién| = oo an

i itive i ers, such
exist an increasing sequence {p,}, with p, = 1, of positive integers,
1Jn+_1'.*1
that >

i=pn

thibp,| > 1. Take {a} in ¢, with g = &p,, for p, Lh< pprr;

we now get S |k 7! = oo, which leads to a contradiction.

Now we :1712111 describe a method of construction of ey]i.ndrical homeo-
morl;hisms due to Kadeb. Let E be a countable-coordlnate B-space.
Consider its positive cone E+. Put

drx = ||Skl, reEt (k=0,1,..),
ie. dpxw denotes the distance between z and _the sull)spa,ee _spa,?ne(;i ;;;)1(()11;
the first k¥ unit vectors of E. Obviously dyx is non-increasing ane Joncs
to zero (written dxx{ 0) for every « in E+. One can prove (se
stein [5] and Kadeé [36]) that: . o '
For every real sequence {0x) with 0 0, there ewists an w in E* such that

dyx =& (k=0,1,..).

The space & is said to have the Bernstein prqpeﬁy if for every jif:i;
with & 0, there is in B+ at most one point z (i.e. exactly one P
satisfying (a).

for

{a)
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7.3. If spaces B, and E, hdve the Bernstein property, then the mapping h,
which sends any » e B to the y in B such that dya ~ ey (k=0,1, o)
8 a cyléindrical homeomorphism.

Proof (¢f. Kaded [36], Klee-Long [66]). The Bernstein property en-
sures that k is one-to-one and onto E,. It is obvious that sgnhe = sgne
for e e B+, and that

(b) |Snhef = ||Spel]  for every ecB* (n=0,1,..).
This means that h satisfies condition (W,).

Take o —m, in B+, By (b), sup k]l < o0, and by Lemma 1,
k
SUp o (hai, 8" B,) < SUup |18 hazgl] = SUD {8 | 0 .

Hence the set 4 = iy, hay, ...> is bounded and can be approximated
by finite-dimensional linear sets S"B,; therefore it is totally bounded
(precompact). Let ¥ be a cluster point of this set. Since d,hzy = dpze
and d, are continuous, Uy = dusy (n =0, 1,..), and, by the Bernstein
property, y = ha, is the only cluster point of the set 4. Thus & is con-
tinuons and wusing 4.2, we infer that % satisfies condition (W,). The as-
sumptions concerning % and 7! being symmetrical, we infer that 1™ ig
also continuous.

74 (Kadet [36]). There is a cylindrical homeomorphism between 1+
and ¢+,

Proof. The Space ! has the Bernstein property: if » = {&,} I+,
then &= dy_y2— dya. Thus, to complete the Proof, it is enough to find in Co
an admigsible norm |- ||| under which this space has the Bernstein property.

Let @(t) = tan inf4 for 0 < ¢ < 2, and {6,} and {ax} be sequences of
positive numbers such that

@ D<o, limop(2—20,). Da=0, Moo
n=1 B0 k=n k=1
Now for any z={£}ec, we put lefll = int{t > 0: 3 ar@(Erft) < 1},
= 3 k=1
Stmoe ¢(1) =1 and mo(t) = oo, we got [Jaf] < ] <5 o] tor every

@ in ¢, ie. the new norm -l is admissible. The Bernstein property
for the space ¢, equipped with this norm i8, clearly, equivalent to the
following statement:

(%) For an arbitrary sequence of positive numbers 6,10, the system
of equations

kg’:aw(ek/am_l) =1 m=(01,.,)

has at most one solution z - {&} in of .

N 2
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Proof of (x). Take a fixed n and write the first # equations in
the reverse order:

e

‘@A~q7(§k/5;1—1) =1,

tnoa@lEnsfn2) ~ D, arp(Efbns) = 1.

k=n

(b) =
“m‘P(fm/Bm—l) + "l'anwlq»’(én—l/ém—l) - };ak'p(gklamwl) =1,
g (&) + o +nmsplEnnafs) + 3 aapEalo) = 1,

Let Z, denote the set of those 2= {&}eey xvllich satisfy the
equations (b). For any real-valued function j defined on ¢; we shall write

dpfoe = sup{|fz—f2'|: 2,2 € Z,} .
Since ar > 0, the first of eguations (b) gives us
(e) 0< &< 20,1 for Ek>=mn.

Thus, since the function ¢ is increasing and the sequence {d,} does not
increase, we have .

A D) wxp(Enfom) < sup{ D) axp(Elom): (6} € Znf < 2 ax9(2n-sfom)

k=n ke=n

and therefore

@ A ) arp(Enfom) < p(200afba-s) D s for m<m—2,

ken k=n
Sinee §; < &; for § > ¢, we have
AnlEmf83) < AnlEmdy) -
This combined with the fact that the function ¢ is convex gives
(e) An@(Emfbs) < An(lmfd;) for =i, m=12,..

We are going to estimate 4,8m@(én/dn—s), for m < n—1. By the
m-th of the equations (b), we have

B EmlB—1) < Anms1@ EmsafOna) + oo+ ;FZ.: :(£x/dm-)
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Thus, by (d) and (e),

n—m—1 0
(f) Anam(f)(fmjém—l) < ;‘:2: an—kfp(én-«k/é‘n—k—ﬂ ‘;"P(zénwl/an——z) . Z“l;.
=1 k=n

. This inequality, for m = n—1, gives

n—m—1 o0
dntus@Gaafon-) < D (nafbns) D ar.
k=1 k=n

Now, by induction, we obtain

(g) J7bain¢(§m/61}1—1) =< 2““’”90(2671~1/6n) . Zuk (”1' < ‘n_l) .
k=n

o0
Since 6,~0, the product [] 0n/0-1 is divergent, whence
1

A=

\’18

. (1 _6n/én~1) =00.

[
-

n
Now, from the conditions (a), it follows that
ALY
for some increasing sequence {n;} of indices, and that

o0

1im inf 2" g (28,/8,-1) - Dla=0 (m=1,2,.).

k=n
The estimation (g) now gives

wan%w(sm/am_,) =0 (m=1,2,..).

Since ¢(t) = tanin/d > #2, we get

liminf A6 =0 for k=1,2,..

n—>o0
But this just means that the system of equations (%) has no more than
one solution.

The consequences of results of §6 and § 7 can be sumarized as follows:

) 7.'5‘ THEOREM. Assume that X;, ¥,, 4 ed, are B-spaces which are
pagmse homeomorphic wunder homeomorphisms hy: X;~Y,, such that
AT ] < o) < A-Jlfl, A being a constamt independent on 1, and let
_E = Iy(card A), B = ly(card A), p,p’' >0. Then ZzX, ~ 2pY;. Moreover,
if eard A =w,, then for B and B being any two of the spaces co, b
{(p.>0), M(a.,), the assertion 2g X~ ZgY; holds.

Ly
-1
[
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III. Spaces homeomorphic with a Hilbert space

§ 8. General theorems. We recall that the symbol Y{X denotes
that X is homeomorphic with a Cartesian product ¥ - Z for some topo-
logical space Z. )

8.1. THEOREM. Lei X and Y be F-spaces. If either Y is a subspace
of X or Y is an image of X under a linear operator, then ¥|X.

8.2. THEOREM. Let X be an F-space, with wX = x. If I(8)|X, then
X ~1U(s) (cf. Bessaga-Pelezynski [9], Theorem 1).

The first theorem is a corollary to the Bartle-Graves [4] result,
which states that if ¥ is a subspace of X (X and Y being F-spaces)
then there exists a continuous mapping ¢: X » ¥ =X sending any coset
{x] of the quotient space X/¥ to a vector belonging to this coset. This
mapping induces the homeomorphism fzr = ([#], #—¢2) between X and
Y - X/Y. To prove the sufficiency of the second assumption of 8.1,
we use 3.2.

The proof of the second theorem is based on three auxiliary prop-
ositions:

8.3. Let X and Y be topological spaces and let ¥ ~ ¥™. Then the
condition X|\Y implies ¥ ~ X x ¥; the condition Y'X implies X ~ X - Y.
Hence the both conditions imply X ~ Y.

Proof. For the cases X|Y and Y|X: there exists a W such that
YauXWa (X oWloa X xWh v X « X%« Whone X ¥, and there
exists a Z such that Y ZxY a Z T ZxT% Y ~ X ¥,
respectively.

8.4 If X is an F-space, with wX =y, then (L)

Proof. By 3.5 and 8.1,QY| [l X, where X, are B-spaces, with
g=1

wX, <<s. By 3.4 and 8.1, X li(s) (¢=1,2,..). Hence
([Txd]en™ and  10s) ~ (10s)™.
g=1

8.5. Let X be a B-space. If X = %X, then X ~ X. In particular
1) ~ (1(s))™.

To prove this proposition we shall need the following:

Lemma 2. Suppose that X is a B-space and E = M{aen) is a Kothe
space. Then there exists o linear operator T from ¥ = XpX onto XX,
namely

. T {wn} = {g llnk-vk} .
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Proof of Lemma 2 (%). It is obvious that T'is additive; moreover,
o0 o0
| T {@a}la = Sup fI g_,: ankkaH < sup (( k; ank/an+1,k) sup an+1,krlmnll)

< (sup j ank/“n+1,k)!{mn}lu+1 .
n<e p=y

Thus T is continuous. It remains to prove that I' is onto X,.X. For any
zeX and e = {na} ¢ E, we shall write

e ={ma}elpX.
Obviously
(a) le ® wla = lela]lz]l .
Let 2 = {23} be an arbitrary element in X, X. We are going to find any
in XzX such that Ty = 2. Pubt 4% = {0, ..., |lsl[, 0, ...} €5, and let U be
the linear operator from ¥ onto s defined in 3.6. Since, obviously, |yl = 0
for k> a, from the propositions 3.2 and 3.5 it follows that for every
index « there is an o such that inf{lel.: Ue = ya} = 0 for 2 > o’. Thus
we can choose vectors ¢ (k=1,2,..). in F such that

(b)
Let ug = apfllen]) if 2 5 0, and u = 0 if % = 0. By (a) and (b), the series

U =y =lex] =27° for k>d.

y= e @ uk is convergent and
k=1

(Tex) ®'wk=2yk®up=z. Q.E.D.

k=1

e

Ty =

k

[
-

Proof of Proposition 8.5. By Theorem 7.3, we have X = XX
= 2y X. Bub according to Lemma 2, and 8.1, Z,X|Zypq.nX, whence
2, X|X. But, obviously X* = X,X; therefore X*|X. Now taking ¥ = X%
and applying 8.3, we get X ~ X%,

The second assertion follows from the obvious fact that 1(x)
~~ 211(0).

Proof of Theorem 8:2. According to 8.4 and 8.5, from the hypo-
thesis of the theorem it follows that the spaces X and ¥ — T(x) fulfil
the assumption of 8.3, whence X ~ Y.

§ 9. F-spaces.

9.1. THEOREM. Let X be an infinite-dimensional separable F-space.
Bach of conditions (i)-(xviii), listed below, is sufficient in order that X be
homeomorphic with 1.

(%) This proposition can be derived from 8.6 and some of Grothendieck’s results

on tensor products (cf. Bessaga-Pelozynski [9], proof of Lemma 1). The present proof,
however, does not make any use of the apparatus of tensor products.
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(1) there exists @ B-space Y such that X = ¥*,
(ii) X 4s isomorphic neither to an B-space mor to any product
sx ¥, X being a B-space, -
(i) X ~1Ixs,
(iv) X is non-normable, but there ewists a continuous norm de-
fined on X.
(v) X is reflemive (in particular, nuclear) and non-isomorphic with s,
(vi) X is a B-space and X* contains a reflexive infinite-dimensional
subspace Y,
(vil) X has a non-primitive unconditional basis,
(viil) X' is non-normable and has a basis no subsequence of which
18 primitive,
(ix) there ewists a semicompact metric space having at least one
cluster point and an F-space Y such that X = YQ,
(x) X is a linear image of a space R®, Q being a compact space,
(xi) X is a space of complew-valued functions defined on a com-
pact space Q, under the sup-norm, and has the following property
(G1). For every £> 0 and every A e(R+)Q there is an 2 e X such that
:?151%) “m(t)]—;fl(t)f <eg,

(xii) X is a Dirichlet algebra (in the sense of @leason [1]),
(xiil) X = ZpX,, where B is a countable coordinale space and X,
(n=1,2,..) are infinite-dimensional B-spaces,
(xiv) X~ %, Y being a infinite-dimensional F-space non-iso-
morphic with s.
(xv) X #38, X ~ T%, where T is an arbitrary topological space,
(xvi) X is a subspace of a B-space with an unconditional basis,
(xvii) X is a subspace of L.
(xvill) X 4s a subspace of a space RQ, Q being a countable compact
space.

Proof. (i) The sufficiency of this condition has been proved by

Kaded [38] and Klee [51].

(ii) If this condition is satisfied, then, according to 3.10, X con-
tains a subspace Y isomorphic to a Kothe space M (a.,), whence, by 8.1,
M(am)|X, and by 7.2 and 7.4, U|X. Using 8.2, we get X ~ L.

(iii) Since w(l % 5) = 8, and I|(I x s), Theorem 8.2 gives Ixs ~ I

(iv) Since the space s admits no continuous norm (no convex
body in s is linearly bounded), condition (iv) implies (ii).

(v) ¥ X is a B-space, condition (v) implies (i) and therefore
is sufficient. So it is enough to restrict our attention to the case where
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X is non-normable and (ii) is not fulfilled, i.e. X ~ ¢ x ¥, where ¥ is
a B-space. But, by 3.7, ¥ must be reflexive, whence, by (i), ¥ ~ 1,
and therefore X ~1:s. Now, by (iii), X ~ L

(vi) Under this condition, by 3.8 and 8.1, Y*X, but by (i),
¥* ~ 1, ie. [|JX. Now, by 8.2, X ~1.

(vii) If X is a B-space, to get the statement, we apply in turn:
(v), 3.9, 7.4, 8.1 and 8.2.

If X is non-normable, according to 3.11, 3.12 and 3.10, there is
a subspace ¥ of X, with an unconditional basis, non-isomorphic to any
product s time a B-space. We have ¥ ~ I, by (ii), or by what we have
just proved. Hence, by 8.1 and 8.2, X ~ 1 .
(viil) Under this assumption, according to Bessaga-Pelezynski [12],
Lemma 4, no subspace of X is isomorphic to s, whence, by (ii),
Yl .

(ix) Begin with the case ¥ = R. Let {g»} be a sequence in @,
with ¢n—¢,. From Tietze’s extension theorem it follows that the for-
mula Tx = {®(gn)—#(g)} defines a linear operator from R? onto Co-
Hence, by 8.1 and 7.4, l|X, and, by 8.2, X ~[. The statement in the
general case follows from the fact that RQ!YQ and from 8.2.

(x) If X contains a subspace isomorphic to ¢,, the assertion
follows from 7.4, 8.1, 8.2. Otherwise, by Pelezyriski {10], Theorem 35,
and Eberlein [23], X is reflexive. Therefore, by (v), X ~ I

(xi) Since X is infinite-dimensional, @ is infinite and therefore
there is a sequence of non-empty disjoint open subsets G, C Q. Aceording
to Urysohn’s Lemma and condition (G1), one can find a’sequence {m,}
in X such that

12 sup@a() >1-27""  sup o) <27 (n=1,2,..).
D an(1)]

teGn LeQ\Gn

Let Y be the closed linear hull of x,. It is easy to see that 2 Enity, 18

n=1
norm-convergent iff limé&, = 0; moreover
- ‘

) &n -Z'nj

e il
n

1 o
5 5Up i€, sﬁ,‘j
Pl |

s 2supl|énl,
n
iLe. Y is isomorphic to ¢. Now, by 7.4, 8.1, 8.2, X ~ 1.

(xii) It is easily seen that every Dirichlet algebra has the prop-
erty (G1) (cf. Glicksberg [297]).

(xiii) If the generating space E does not consist of all real sequen-
ces, the unit vectors constitute a mnon-primitive basis for E, whence,
by (vii), F ~ . But sinee E is isomorphic to a subspace of X, from 8.1
and 8.2 follows X ~ I. In the other case the formulas {zn}l] = max {{|mil.:
i< a} define an admissible system of psendonorms for X such that
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Am Xopoff € Xoga: fllle = 0} =00 (2 =1,2,...), X, being defined in 3.10.
Hence, by 3.10 and (ii), X ~1.

(xiv) If ¥ is a Banach space, the assertion follows from (xiii).
It Y satisties (ii), then ¥ %1, and, by 8.1,8.2, X ~ L. ¥ ¥ ~ Z x s, where
Z is an infinite-dimensional B-space, then Z%|X, but Z% ~ I, and by 8.2,
we get again X ~ 1

(xv) X m T n (TP ~ X, ie. condition (xiv) is satisfied.

(xvi) Under this assumption, according to Bessaga-Pelezynski [11],
Theorem 5, X contains an infinite-dimensional subspace ¥ with an un-
conditional basis. Hence, by (vii), 8.1 and 8.2, X ~ L

(xvii) By Kaded-Pelezynski [42], any subspace of L is either refle-
xive or contains a subspace isomorphic to I. In both cases, by (v), 8.1,
82, X ~1L

(xviii) Under this condition, according to Pelezynski-Semadeni [74],
P. 214, X contains a subspace isomorphic to ¢,. Now, by 7.4, 8.1 and
82, X ~1.

Observe that, in view of Theorems 8.1 and 8.2, to show that a sep-
arable F-space X is homeomorphic with the Hilbert space (or with ),
it is sufficient to find a subspace of X satisfying one of the conditions
of 9.1. As we have mentioned in the Introduction, for any concrete
known Banach space it is enough to use condition (vi). The eclassifi-
cation of F-spaces is closely related to that of Banach spaces; this is
due to the following proposition (Bessaga-Pelezyiiski [9], Remark 1).

9.2. Under the conjecture that all separable infinite-dimensional B-
spaces are homeomorphic with 1, every separable infinite-dimensional F-space
X, with X +#s, is homeomorphic with 1.

From the conjecture that there is an F-space ¥ with ¥ # s and ¥ ~ s,
it follows that all non-normable separable F-spaces are homeomorphic
with 1.

Proof. The first statement follows directly from 9.1 (ii), (iii). The
assumption that ¥ is non isomorphic with s and ¥ =~ s gives s m s
~ Y*, whence, by (xiv), sas1. This implies that every non-normable
F-gspace which does not fulfil (i) is homeomorphic with L :

We see that if it is trne that all separable infinite-dimensional
Banach spaces are homeomorphie, then all the topological types among
infinite-dimensional separable F-spaces are represented either by two
spaces, I and s, or only by L If the first situation oceurs, the class of
F'-gpaces homeomorphic with s consists of one members. Hence it would
be worthwhile fo solve:

ProBLEM 1. Is the space s homeomorphic with 1?2 In Banach’s
monograph [2], p. 233, it is mentioned that s 5 1, but no proof of this
fact is known.
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It is interesting to know whether or not an analogical method ean
be applied o separable complete linear metric spaces. This iy connected
with the following three questions:.

ProBLEM 2. Suppose that X is a complete linear metric space and
Y is a subspace of X. Is the formula X ~ ¥ x XY valid?

ProBLEM 3. It is true that X|I for every separable complete linear
metric space X?

ProBLEM 4. Is it true that every separable infinite-dimensional
complete linear metric space with an unconditional basis is homeomor-
phic with 1?7

We know that the answer to Problem 2 is positive if ¥ is an F-space
(Michael [67]). Perhaps a good approach to Problem 4 is to modify
Kaded’s [40] method in a suitable way.

Also the following question is still open.

ProBLEM 5. Is the space § of all measurable real functions on 3,
with the topology of measure convergence, homeomorphic to 1%

Let us come back to F-spaces. In the non-separable case all that
we know can be summarized in the foliowing theorem.

9.3. THEOREM. Let X be an infinite-dimensional F-space, with den-
sity character x. Bach of the conditions (xix)-(xxiv) listed below is suffi-
cient in order that X be homeomorphic with 1(x).

(xix) X* contfains a reflewive subspace homeomorphic with 1(s).

(xx) X is an abstract L-space (Kakutani [43]).

(xxi) X = R% where @ is a compact space which admails « sequence
{uao™* of Baire measures such that measure algebras B(un, Q) are homo-
gencous in the sense of Maharam [63] and supw B (s, @) =& (cf. Bessaga-
Pelezynski [9], Corollary 6). " )

(xxil) X = RG, where @ is a compact topological group.

(xxiii) X = RQ, Q being a Stone-Cech compactification of a discrete set.

(xxiv) X = _RQ, where @ is a semicompact space containing a closed
subspace @y, with R%~ I(R). i

The proof of the sufficiency of condition (xix) is the same as that
of (vi). To prove (x3), we represent the space X as a space L(u) (accord-
ing to Kakutani’s [43] representation theorem) and then we use Mazur’s
[65] homeomorphism which sends any function x belonging to L(u) to
the function |#]'*sgna in Iy(p).

The proof of (xxi), (xxii) and (xxiii) i§ given in Pelezynski [T1].
The sufficiency of (xxiv) follows from the fact that, according to TUry-
sohn-Tietze extension theorem, the linear operator of restriction of fune-
tions defined on @ to the subset Q, is onto RQ‘, and from Theorems 8.1, 8.2.
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In particular, the following problems remain open.

PrOBLEM 6. Is the space ¢(x) homeomorphic with I(x), for s > x,?

ProBLEM 7. Is it true that every reflexive Banach space of density
character s (8> 8,) is homeomorphic with I(x)?

ProBLEM 8. Is it true that every Banach space with an uncondi-
tional basis of density character s (x> x) is homeomorphic with 1(8)?

§ 10. Spaces 1x W and W° From 8.3 and 8.5 it follows that

10.1. For an arbitrary topological space W the conditions W 1 a1
and Wl are equivalend.

Hence the problem for which W, W x1 ~ 1 is reduced to the study
of divisors of 1. We hawve

10.2. If WL, then WQEZ for any metric semi-compaci space Q. If W,ll
(A ed, card A <&,), then IgW;!T.

Proof. The condition Wl implies WQ[lQ, but 1 is a separable
F-space, with IJI9 and by 8.2, ¥~ 1

The condition Wil (1 e 4) gives || W,|I%. Now Proposition 8.5 gives
our second assertion. ’

10.3. Any closed convexr body W in an arbitrary separable ¥ -space X
is a divisor of 1.

Proof. If X is one-dimensional, there are only three, up to homeo-
morphisms, convex bodies in X, namely: 3, B¥, R. We have
(a) R, R, 3.
The first fact is trivial. The second and the third have been proved by
Klee [48].

In the general case, by Bessaga-Klee [7] (cf. Corson-Klee [19]),
W has a representation W ~ ¥ x3? x (R*)", where Y is a subspace of X
of a finite deficiency, » = 0 or 1, and ¢ is a non-negative integer. Since Y is
a separable F-space, by 8.4 and 8.5, Y|l. Now according to (a) and 10.2, W1l

10.4. Any locally compact closed convexr subset of W an arbitrary
F-space X is a divisor of 1.

Proof. By Klee [49], W is representable as I°x (R*)" xR’ with
P <8, g <K, ¥<8. Now, by 10.2, W|i.

Let us consider another example of a divisor of I:

10.5. Let I' = {(u, v) e RXR: 0 < v < g(uw), |u| <1}, with g(t) =0 for
t<1, g(t) =1 for t =1. Then I' % Foa I, whence in particular I'll.

Proof. Put

A ={{&}eR% —1<E<L, &ed for k>1},
B ={{&) cB%: (£, &) el £¢3 for k>2}.

Our proposition is obviously equivalent to the statement 4 ~ B.
Fundamenta Mathematicae, T. LVI
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By Klee [53], there exists a homeomorphism A from 3% into itself
such that h{{fx} e I%: & = 0} = {{£x} € P: £ = & = 0}. Now it is easy
to check that the formula

hig, &0y i 520,
{6,0,0, . 34R{0, &, &, .3} if

(addition being understood coordinatewise) defines a required homeo-
morphism from 4 onto B.

We have just proved that I'|3%, but since, by 10.4, %I, we get I'l.

Now we shall consider some sufficient conditions for the space Q,
in order that function spaces W2 be homeomorphic with 1.

10.6. If @ is a semicompact metric space and W,§ are metric spaces
such that U°, §|W, W|I, then WO ~ 1.

Proof. Since W, by 10.2, W%, On the other hand, the condi-
tions U3, FW imply {yW° Now, by 8.3 and 8.5, W ~1.

10.%. Let § be an arbitrary interval. If W has the properties WII, 3|W,
then for arbitrary semicompact metric space Q having at least ome cluster
point, we have WO ~ 1.

Proof. The space R itself, (R+)? and 3° are closed convex bodies
in the space R°. Hence, by Corson-Klee [19], in any of the three cases:
& =R, R+,3, we have ¥ =1, applying 10.6 we get W° ~ 1L

From 10.3, 10.4, 10.5, 10.7 and from previously used representations
of closed convex bodies and convex locally compact sets, follows:

10.8. Let X be a separable F-space. If W is either a closed comvew
body in X or a closed convew locally compact subset of X or W = I'x3,
T being defined in 10.5, then W ~ 1 for any semicompact metric space Q
having af least one cluster point.

Denote by R; and R, the classes of all metric spaces which are di-
visors of the Hilbert cube 3* and of the Hilbert space, respectively.
Let R be the class of all metric spaces W such that there exists an
infinite compact metric space @, with W®~1; and let R, be the class of
all metric spaces such that W91 for every infinite compact metric space Q.

ProBLEM 9. Do the classes R, and R, or R, and R, coincide?

PrROBLEM 10. Does the class %R, contain all the compact spaces
belonging to R,?

ProerEM 11. Does every closed convex set in an arbitrary B-spaece
belong to R,?

ProBLEM 12. Is it true that every closed convex set in an arbi-
trary B-space is divisible by an interval?

PROBLEM 12--4. Does every compact metric absolute retract belong
to the class R (4 =1, 2,3, 4)% (Cf. Klee [54] and [55].)

&y by} =
f{ 13 52 El §1<O
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§ 11. Special homeomorphisms. Begin with the following:

DeFmNITION 5. Let Y and X be linear topological spaces. A mapping
¢: X =Y will be called:

(a) Lipschitzian,

(b) Lipschitzian jor small distances.

(e) Lipschitzian for large distances,

(d) uniformly continuous
iff for every neighbourhood V" of zero in ¥ there is a neighbourhood U
in X such that @, —a, ¢ tU implies pr;—gu, €tV (a) for all real ¢, (b) for
all 11, (¢) for all £ >1, (d) for t =1;

(e) ¢ is called locally wniformly continuous iff every # in X has
a neighbourhood in which ¢ is uniformly continucus.

A homeomorphism % from X onto ¥ will be called wuniform, Lip-
schitzian, Lipschitzian for small distances, ete., iff both » and A~ are
of the corresponding type.

From Definition 5 it follows that

11.1. (1) A mapping ¢ is Lipschitzian iff ¢ is Lipschitzian for both
small and large distances.

(2) If ¢ is Lipschitzian for either small or large distances, then ¢ is
undformly continuous. :

(3) If @ is uniformly continuous and homogenecous (i.e. ¢(ix) = lp(x))
then ¢ is Lipschitzian (cf. Corson-Klee [19], Corollary 5.5).

(£) If Y is a locally convexr Uinear topological space, then every uni-
Jormly continuous mapping ¢ from a linear topological space X into ¥
is Lipschitzian for large distances. In particular, the notion of & Lipschi-
tzian mapping and of a Lipschitzian mapping for small distances, for
locally conver spaces, coincide (cf. Corson-Klee [19], Proposition 5.3).

The statements (1)-(3) are obvious. To prove (4), we shall need:

Lenia 3. Let U be a neighbourkood of zéro inm an Lts. X. Write
U™ = {w e X: there are @, ..., w0 ¢ X, with @, =0, @y = @, &—z_ ¢ U}
Then we have U"DnU; moreover, if U is convew, then U™ =nTU.

Proof of Lemma 3. We obviously have

U"=U+..+0.

n times
This immediately gives the first statement: U"D nU. Now suppose that
U is convex. If y = @+ ...+ 2, with @4 e U (i = 1, ..., %) is an arbitrary
veetor in nU, then
1 1
y=nlGot ot ),
20%
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1 1 o . o
and (—— 2+ ...+ >m,) is in U as a convex linear combination of vectors
% n

By, ey Zn. This means that y enU, which completes the proof of the
lemma.

Now assume that ¢: X —Y is uniformly continuous, ¥ is a locally
convex Lt.s., and X is an arbitrary l.t.s. Let V be a neighbourhood of
zero in Y. Without loss of generality we may assume that ¥ is convex.
Take a neighbourhood T, in X such that #,—, ¢ U; implies gz — g, € 1,
and another neighbourhood U, with zU C U; for any 0 <7< 2. Let
n <t < n-+l, where n is a positive integer. We have tU C iU, for any
0 <7<2, whence tU CnU,C Uf. Now from the definition of T, it
follows that the condition ®,— &, € tU, implies @, — &, ¢ UT, which implies
@n, — @y e V", whence, by the lemma, @n— @z, e nV CiV.

The notion of a Lipschitzian mapping defined above generalizes
that of a mapping fulfilling the Lipschitz condition in the sense of norm,
for normed spaces. In general, for linear mefric spaces these two notions
do not coincide. To observe this, consider in the one-dimensional space
R two F-norms: the absolute value |#| and the following one fa]
= |ojj(1+]2]). The identity operator T: (X, lz|>—=><(X;lzll> obviously
fulfils condition (a) of Definition 5 but does not satisfy the metrical
Lipschitz condition. The reason we use Definition 3 is that we want any
linear operator to be Lipschitzian.

The above consideration suggest an abstract approach to the def-
inition of a ¢Lipschitz structure” as a uniform space with an operation
of multiplying neighbourhoods of the diagonal by real numbers, sub-
jected to some axioms. Another axiomatic definition of ‘“Lipschitz strue-
ture” can be found in Sandberg [77]. The readers interested in abstract
problems of Lipschitzian mappings are also referred to Katetov [44]
and Efremovié [24].

Let us observe that if spaces X and Y are equivalent under a ho-
meomorphism 7 such that f and f~' are differentiable, then obviously
they are linearly isomorphic. The differential [df].—., is a required linear
operator (isomorphism) from X onto Y. Thus there is no reason to
study in this paper the differentiable homeomorphisms, OP-isomorphisms,
analytical isomorphisms, ete.

With each of the types of homeomorphisms considered above a clas-
gification of linear topological spaces is connected. We shall diseuss in
more detail only the case of uniform homeomorphisms and the related
classification. To begin with, we shall recall the terminology on uniform
spaces (cf. Bourbaki [17] and Kelley [46]).

By a uniform space (X ,U) (shortly X) we mean a pair consisting
of a topological space X and a filter U of subsets of X .« X satisfying
the following axioms:
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(1) every W e contains the diagonal {(x,x): x e X},

(i) if W e U, then {(y, ): (@, y) e W}ell,

(iii) for every U e there ewists o Well with Wo W e, the oper-
ation o being defined as follows: W oV = {(z,y): there is a = with
(z,2) ey (2,y) e UL

(iv) for every x e X the family of all the sets W (w) = {y e X: (2, y) U},
with W e U, is a basts of neighbourhoods of the point x in the topology of X.

The filter U is called the uniformity of X and its members are called
the neighbourhoods of the diagonal or entourages.

A mapping ¢ between two uniform spaces <X,YU> and <¥,B) is
said to be uniformly continuous iff for every U e 8 we have {(z,z)
e X xX: (@z, gz') e U} e U. A one-to-one mapping h from X onto ¥ is
called a uniform homeomorphism iff both A and h~! are uniformly con-
tinuous.

In the sequel we shall write W" = Weo Wo...o UW.

= Gmes

A uniform space <X, YU} is called uniformly bounded iff for every
U e U there is a positive integer n, with U” = X X (8). X is said to
be locally uniformly bounded iff there exists an open set ¥ sueh that for
every W el we have V xV CU" for some n.

There exist uniformly bounded linear metric spaces; for instance
the space S of all measurable functions defined on 3. No locally convex
Lt.s. is uniformly bounded. As we shall see later, among the locally con-
vex spaces only the normed spaces are locally uniformly bounded.

Of course, uniform boundedness (local uniform boundedness) is an
invariant under uniform homeomorphisms; moreover, it is easy to show that

11.2. If X is uniformly bounded (locally wuniformly bounded), then
the image of X under an arbitrary uniformly continuous (uniformly con-
tinuous and open) mapping is uniformly bounded (locally uniformly bounded).

DerFiniTION 6. Let (X, U be a uniform space and let U, VU C U
Write

(U, U, &) = sup{n: for every z X there are Byy oeny Tn € W)

such that (zy,z;) é U for ¢ #4}.
Let I (W, U) be the class of all non-negative functions (), defined
for ¢ > 0, such that there is an g > 0, with (¢} = M (U, V, &) for ¢ < &.
Write

X)) = U Fw,0).
Vel Wel

5(X) will be called the approvimative dimension of the uniform space X.

B (%) Spaces with this property were considered in Atsuji [1] and were called “finitely
chainable”. The term ‘‘uniformly bounded” has heen proposed by Isbell [33].
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Observe that the conditions U, C U, and U, C Uy imply M (A, V,)
C M(Us,, V,). Hence :
11.3. If B is any basis for the uniformity B of a wniform space X,
then (X)) = [ U M@, D). '
VeB WUeB

€

We can also easily check that

114. If Y ds uniformly homeomorphic with X, then ®(¥) = d(X).

Now assume that X is a locally convex linear topological space.
The uniformity U of X is then determined by the class € of all convex
symmetric neighbourhoods of zero. Namely, the family {U: U ¢ €}, with
U={#,y)e XxX: g—yeU}, then is a basis of the filter U. From
Lemma 3 it follows that :

(%) nO=0" (n=1,2,.).
This means that X is locally uniformly bounded iff X is locally bounded
as a linear topological space, i.e., according to Kolmogorov [60], iff X is
isomorphic to a normed space. Hence, by 11.2,

11.5. If X is a normed space and Y is o non-normable F-space, then
Y is not uniformly homeomorphic with X.

Assume that U and ¥ are in €. Put

M(U,V, e) = {supn: there are a, ..., 2, s% U, with a;—w;6 V (4 24)).

Now define M (U, V) and @(X) in the same way as in Definition 6, with
Jf(...) replaced by M{(..) and U replaced by C.
Since
1
%

[l} g% for O0<e<1,

A/\

L4
from (%) it follows that

M(U, 4V, &) < H(U, T, 6) < (T, V, ¢).
Hence, by 11.3, we get

11.6. If X is a locally convex limear inpological space, then @(JY)
= @(X).

The functor ®(X) is a known invariant under isomorphisms of linear
topological spaces, called the Eolmogorov approwimative dimension. It has
been studied and computed for concrete spaces, in Pelezyniski [73],
Kolmogorov [53], Mitiagin [68], Rolewicz [75]. According to 11.4 and
11.6 the Kolmogorov approximative dimension is also an invariant under
uniform homeomorphisms. We know many examples of separable in-
finite-dimensional F'-spaces distinguishable by means of &(-). For in-
stance, if H, denotes the space of all entire functions of n complex
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variables, then O(H,) = @®(Hn) for n = m (cf. Rolewicz [75]). It has
been shown also that such properties of F-spaces as being a Schwartz space
or being nuclear can be characterized by means of approximative dimengion.

The above method cannot be applied to infinite-dimensional B-spa-
ces, because &(-) does not distinguish between such spaces. The uni-
form structures of Banach spaces have been studied in a recent paper [62]
by Lindenstrauss. Examples of non-uniformly homeomorphic separable
infinite-dimensional B-spaces are given in it. All this implies that classi-
fication with respect to uniform homeomorphisms does not coincide with
the topological classification as well in the case of Banach spaces as in
the case of F'-spaces. The following problem is still open.

ProBLEM 17. Do there exist two non-isomorphic F-spaces, which
are uniformly homeomorphic?

§12. Abstract decomposition scheme; invariant infinite
powers; radial homeomorphism. It is easily seen that proposition
8.3 can be generalized as follows:

12.1. Let A be an algebra consisting of objects X, ¥, ... with two oper-
ations X xY and X and one relation ~. Assume that the following
axioms are satisfied:

() X~X; X~Y and ¥Y~Z imply Z~X.

(B) X~X, and Y~Y, implies X «¥Y~X, x ¥,.

(Y) X~Y implies X*~T¥".

() (XXX XZ~X (T #2); (XY ~X" x T

If X and Y are elemenis of W such that X~Z =¥, Y~X « W for
some Z, W e, and ¥Y~T°~Y x Y, then X~Y.

Pelezyniski in his paper [70] used a concrete model of scheme 12.1,
in which 9 is the class of all Banach spaces, with ~ and X - ¥, X* being
interpreted as the relation of isomorphism and Cartesian product and
23, X, respectively. For the purposes of topological classification, the
symbol ~ should denote the relation of being homeomorphie; the nat-
ural interpretation of X« Y is as a Cartesian product. The infinite
power X° can be interpreted in different ways. For instance, as in 8.3,
we may assume X~ = X¥o; obviously X is invariant (i.e. fulfils axiom (y})
in the class of all topological spaces. In Bessaga-Pelezyniski [7] we assumed
X¥ = X, X; this is, of course, invariant in the elass of all Banach spaces.
Similarly, from Theorem 7.5 it follows that X — %, X is also invariant
in the class of all B-spaces. !

It is natural to ask if every coordinate product is invariant; in other
words:

ProBLEM 18. Suppose that F is a coordinate space, and X and ¥
are B-spaces. Does the condition X ~Y imply 5z X ~ Zg ¥?
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Let us mention another similar question:

ProBLEM 19. Let X, ¥, X;, ¥; be B-spaces. Do the conditions
X ~X,, Y~Y, imply that the tensor products X ® ¥ and X, ® Y,
or X® Y and X, ® Y, are homeomorphic?

According to Proposition 6.6, if X and ¥ are homeomorphic by
means of a norm-preserving homeomorphism, then Xz X ~ Xz ¥ holds.

We have

12.2. Let X and Y be normed spaces. The following conditions are
equivalent:

(a) There is a non-preserving homeomorphism between X and Y.

(b) The unit spheres in X and Y are homeomorphic.

(¢) If X, and X, are hyperplanes in X and in ¥, then X, ~ Y,.

(d) There is a homeomorphism h from X onto Y such that hiz = Ahw,
[lhl] = |ll] for every real A and every x < X.

Proof. The implication (a)--(b) is obvious.

(b)—~(c). This follows from Klee’s [48] result stating that hyper-
planes of infinite dimensional normed spaces are homeomorphic with
unit spheres.

(b)—>(d). If ¢ is a homeomorphism from the unit sphere of X onto
that of ¥, then hw = |lz|lg(z/|z]) for # £ 0 and k0 = 0 is a homeomor-
phism from X onto ¥ with the required properties.

(d)-(a) is obvious.

DeFINITION 7. Two normed spaces X and ¥ satisfying any of the
equivalent conditions (a)-(d) of 12.2 are called radially homeomorphic.

To solve Problem 18 it would be sufficient to show that any two
homeomorphic B-spaces are radially homeomorphic.

§ 13. Conjectures weaker than that of topological equiva-
lence of all infinite-dimensional Banach spaces. Consider the
following sentences:

(I) Every separable infinite-dimengional B-gspace is homeomorphic with I.

(I') Every separable infinite-dimensional B-space is radially homeo-
morphic with 1.

(2) Every separable infinite-dimensional B-space is divisible by s.

(2) Every separable infinite-dimensional B-space is homeomorphic with

a certain non-normable F-space.

(3) In every infinite-dimensional B-space all the closed convex bodies
are homeomorphic.

(8") In every infinite-dimensional F'-space all the closed convex bodies
are homeomorphic.

(4) For every infinite-dimensional B-space X, we have X xR~ X.

{6) Bvery two homeomorphic B-spaces are radially homeomorphie.
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(6) There are only finitely many topologically different separable in-
finite-dimensional B -spaces.
(7) For every B-space X, the condition X xR~1 implies X ~1.
(7'} Every B-space homeomorphic with I is radially homeomorphie with 7.
(8) In every B-space homeomorphic with I all the closed convex bodies
are homeomorphic with 1.
None of the above sentences has been proved. All the known impli-
cations between them can be expressed by the following diagram:

(1) (2) @)= (3)—
o ,
v 4 '
()= (2) > (4) > (8) > (1) > (8)
: Vi
| J

Proof. (I)«> (I’). This follows from 12.2.

(1) (2). To prove this, it is sufficient to note that by 9.1 (iii), =i

(2 < (2). This follows from 9.1 (ii) and (iii).

(2)—> (3). Let W be a convex body in X. By Corson-Klee [19],
WaZ <3 x (R+), where p, r are non-negative integers and Z is a sub-
space of X of the deficiency p+r. Let ¥ be a separable infinite-dimen-
sional subspace of Z. By 8.1, Wa(Z/Y) x ¥ X3’ x (R*). Now assuming
(2), we get Wwas(Z]Y)x ¥ xF x (R*)" xs. But, by Bessaga-Klee [1],
s~ (RY)" 3% x s~ s X R”'", whence W~Z xE*™" ~ X.

(3) - (3°). Aeccording to Bessaga-Klee [7], if X is a non-normable
F-space, then all the closed convex bodies in X are homeomorphic with X.

(4) > (8) > (7)>{7'). This follows from 12.2.

(7)->(8). Let X~ and let W be a closed convex body in X. We
have WaY x3 x(R+)". Since ¥ is of a finite deficiency in X, from
the hypothesis (7) follows ¥ ~1. Now, by Klee [2], ¥ x I x (B+) ~1x

(P X (R ~l.

(6)—> (7). Assume X xRwvl. Put Xy= X xR, X; =X, X,y = a sub-
space of Xy of deficiency one (n =1, 2,..). Under hypothesis (6) there
are p,q (p <g), with X,~X,. But this implies that X, ,~X,xR?
~X, «R*~Xy=1. Since X is separable and X,_,|X, by 8.2, we get X ~1.

All the other arrowed implications are trivial.
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On Egoroff’s theorem
by
E. P. Rozycki (Buffalo, N. Y.)

I. Although Egoroff’s theorem [6] is usually stated for sequences
one finds it used in certain instances when the collection of functions
involved is non-denumerable ([5], [7]). However, several counter-exam-
ples exist in the literature which show that the conelusion of the theo-
rem does not in general follow in this case ([2], [8], [9], [10]). Hahn and
Rosenthal [3] must have realized this, although no reference to a counter-
example i3 mentioned, since they state and prove a non-denumerable
analogue to Egoroff's theorem, but by placing certain restrictions on
the functions not found in the original form of the theorem. Essentially,
they prove:

Let m be a measure junction on an additive class of sets A of a space
X, 4 an element of A such that m(4A) < +oco and F a real function de-
fined on A x (0, 1) such that for each z ¢ A, F(x, -) is continuous on (0,1)
and for each te(0,1), F(-,1) is measurable on A..If

im P(x, t) = G(x)
-0

a.e. on A, where G is finite a.e. on A, then, for each 5> 0, there ewists
a set BC A such that m(A—B) < n and the convergence of F(-,t) to @
15 uniform on B.

It is the purpose of this note to weaken the hypotheses of the
above theorem. In what follows F, m, 4, @ and 4 are to have the same
significance as above as well as the notation F(z, -) and F(-,1). We
obtain our results by replacing the set (0, 1) with an infinite set M and
varying its nature.

IL We first suppose that M is an infinite subset of a topological
space Y which is Hausdorff and second countable while its closure,
<l M, is countably compact (see Hall and Spencer [4]). This allows us
to assume without any loss that if we let M’ denote the derived set of
M and H a countable subset of M dense in M, then, if » eclM but
p e H, then p e M'— M. Let ls.c. (u.s.c.) denote lower [upper] semi-con-
tinuous. If f is a rveal function defined on a set ¥ and H C F then the
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