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alence class of V, say 0. But then, except in the trivial case X =g,
V(X)=0, so
V(X)xV(X)=CxCOCV.

Hence, for any WeW, V(X)xV(X)C W, V(X) is bounded, and V ig
conserving.

CoroLLARY. A Hausdorff nonarchimedean wuniform space (8,9U) is
conservative f and only of W is discrete, i.e. 4 eU.

Proof. (§,U) is Hausdorff if and only if M W = 4.
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The inversion of Peano continua by analytic functions *

by
G. S. Young (New Orleans, La.)

1. Introduction. Suppose that f is a function analytic, or even
schlicht, in the open disk |z| < 1. Suppose that A.is an are which has
one end point, p, on the unit circle, but which otherwise lies in the open
unit disk. Despite the fact that A itself is locally connected at every
point, it may very well happen that the image of A—p, f(A—p), will
have a closure that is not locally connected. This will oceur, for example,
for any such arc that leads to a point of |#| = 1 which corresponds under
a conformal map to a prime end of the fourth kind [4]. If the map is
not schlicht, /(4 —p) may even be a cloged set, but fail to be locally
connected. Thus it is nof true of analytic functions that, given a Peano
continuum (*) P in the plane, and a component ¢ of the intersection
of P and the open disk, then the closure of f(0) is always a Peano con-
finoum. In this sense, analytic' functions are not “Peano-continuum
preserving”. They do, of course, preserve local connectedness for Peano
continua lying entirely in |2| < 1, since any continuous map on a Peano
continuum preserves this property.

This paper is concerned with the opposite problem: Given a func-
tion f into the plane or the extended plane, defined in |2 < 1, when is
such a function Peano-continuum reversing? By this I mean the follow-
ing: The map f(2), |2| <1, is Peano-continuum reversing provided that
if P is any Peano continuum in the extended plane, and C is a compo-
nent of f(P), then the closure of C, 0, is a Peano continuum.

In this paper, I show that bounded analytic or quasiconformal
functions, the elliptical modular functions, and some meromorphic func-
tions of bounded characteristic are all Peano-continuum-reversing. These
functions are all special cases of the interior light functions of Stoilow,
and, actually, the theorems of this paper follow by purely topological
methods-from topological hypotheses. Thus the results are quite general,
but that was not an aim of the paper. The fact is that I do not know

* The work on this paper was supported by the National Science Foundation
(U84), Grant GP-1634.
(*) A Peano continuum is a compact, metric, connected and locally connected space.
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how to shorten the proofs by use of analytic methods even for the spe-
cial case of bounded analytic functions.

That arcs can be reversed under some conditions is certainly well
known to many analysts, particularly those interested in cluster sets.
However, there exist analytic funetions f, defined in |2] < 1, and ares 4
such that some components of 77%(4) do not have locally connected
closures. The first such function I know of is Valiron’s 1934 example [8)]
of a regular unbounded function f in the open unit disk such that f is
bounded on some spirals approaching the unit circle, while on other
spirals f approaches co. For this function, if 4 is any arc (on the Rie-
mann sphere) with co as one end point, each component of f7'(4) will
necessarily spiral to |2| =1, and so cannot have a closure locally con-
nected at any point of [2|] =1. For other examples and references re-
lating particularly to such spirals, see Bagemihl and Seidel [3].

A. J. Lohwater has shown ([5], [6]) that if w = f(2) is a meromor-
phic function of bounded characteristic that has only a finite number
of poles and &, is a component of the inverse of the disk |w| < &, then
G, is a closed Jordan region. This result has proved quite useful in clus-
ter-set theory, amnd was the origin of my interest in this problem.
G. T. Whyburn has proved general theorems ([9], [10], [11]) about are
inversion for light interior maps of Peano continua, and has also showed
[10], essentially, that if 7 is a light interior map of the open disk into
the plane, and O is a component of the inverse of a Peano continuum,
then ¢ itself is locally connected.

2. Results. We will consider a function 7 defined in the open disk
D consisting of all numbers 2 with |2| < 1; we let ¢ denote the boundary
of D. We assume:
(1) The function f is a light interior map of D into the Riemann sphere, S
A meromorphic function satisfies (1), since poles are not singularities
from this viewpoint. In addition, for % = 2,3, ..., f will be assumed to
satisfy one or another of the successively stronger conditions:

{k) Given an arc of C, there are k points of the are such that at each of
these points the radial limit, Hm f(re®), ewists, and such that these

1
radial limits are all different.

We define the range of f at the point ¢? of ¢ to be the set R(f, ¢®)
composed of all points 20 in 8 that are taken on by f in evely neigh-
borhood of e®. We will prove the following theorems:

THEOREM A. If f is bounded and satisfies (1) and (2), and P is
a Peano continuum in B, then each component of F(P) has a closure thai
i a Peano continuum,.
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TueorEM B. If f satisfies (1) and (2), then either | is Peano-contin-
wum reversing or there exist am are ab of C, and two points w, and w,,
of §* such that for each point €® in ab, the set R(f, €®) contains 82— w;—w,.
TuEOREM C. If f satisfies (1) and (3), either f is Peano-continuum
reversing or there ewxist an arc ab of C such that for each point €° in ab,
the range R(f, %) is all of 82

CoroLLARY D. If f is a bounded analytic or quasi-conjormal function
satisfying (1) and (2), then }- is Peano-continuum reversing.

CorOLLARY E. If f is a miéromorphic fumction of bounded charac-
teristic defined in D and there is some value that is taken on by f only
a finite number of times in D, then f is Peano-continuwm reversing.

These two corollaries follow because each of the three classes of
functions of the corollaries have the Fatou property that the radial
limit exists almost everywhere on C, and the Riesz property that the
radial limit is not constant on any set of positive measure, so that all
three satisfy (1) and (n) for each n. The required proofs for quasi-con-
formal functions are in Agmon [1].

The four theorems have proofs that are identical up to a certain
point, so that it will be easiest to present one argument and at the ap-
propriate points pause to eomplete the proof of each. This will be done
in the next section.

The most useful result concerning continua that are not locally
connected is the following, due to R. L. Moore ([9], p. 18).

LeMMA 1 (Moore). If M is a locally compact connected meiric space
which is not locally connected at some point p, then there ewist an open
set U containing p and an infinite sequence of distinet components
NI,NZ,NS, ... of U that converges to a non-degenerate subcontinuwum N
of U that contains p. )

Leva 2 (Stoilow) (). If f is a light interior map from a 2-mani-
fold M into a 2-manifold, then each point of M lies in a nesghborhood on
which f is lopologically equivalent to w = z» for some positive integer n.

From these two results, Whyburn has proved ([10], [11], p. 80)
theorems stronger than the following, for which I will indicate a proof.

Lewva 8 (Whyburn). If 7 satisfies condition (1) in the disk D and P
is a Peano continuum in 8%, then f~'(P) is locally commected.

Proof. From Lemma 2 it follows that the points of D at which
f is not a local homeomorphism form a diserete, countable set. Since
local con.nectedness i3 preserved under homeomorphisms, the only points
where f(P) can fail to be locally connected lie in this discrete set.

(*} For a proof of this lemma, and generalizations, see Whybum s books [9], [11],
particularly, [11], 5.1, p. 88.
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It now follows from Lemma 1 that each componeni of FHP) is locally
connected. Hence if f(P) is not locally connected at a point 2, every
neighborhood of z, intersects infinitely many components of ).
Now let U be a neighborhood of 2, with UC D, on which f is equiv-
alent to 2%, n> 1, and let (i, Cy, ... be a convergent sequence of com-
ponents of f_l(P)"ham'ng % in their limit. If infinitely many sets 0; inter-
sect U—TU, the limit set of {C;} is non-degenerate, and f_l(P) is not
locally connected at any of the uncountably many points of U lying
in this limit seb, a contradiction. On the other hand, if infinitely many
sets C; lie in U, they are all mapped onto P by f. For if 0; is such a com-
ponent, and is not mapped onto P, there is an open set V C C; such that
f(V)~ P is a proper subset of P, such that ¥ is compact in D, and such
that (V—V) ~ f(P) is empty. Since f(¥V) is open, we get a contradiction.
Then f on U is infinite-to-one, not n-to-one.

This lemma shows that the only points where the closure of a com-
ponent of 7 (P) could fail to be locally comnected must lie in C.

3. Proofs. Suppose now that X is a component of ™'(P), and
that X is not locally connected. Since by Lemma 3, X itself is locally
connected, we can conclude that use of Lemma 1 gives a non-degenerate
continuum K in C, an open set U whose closure containg K, and a se-
quence K,, K,;, Ky, ... of components of X ~ U whose limit set is XK.
Since Lemma 1 is a ‘“local” theorem, we ean assume that K is an are,
zy, of C, and not all of C.

By Hypothesis (2), in #y—x—y there are two points, & and b, such
that the radial limit of f exists at each, but is not the same at a as it
is at b. Let Rs, Ry be the radil to a and b, respectively. The set R, u By
divides D into two sectors, D' and D’’, where D’ is the one whose
boundary contains the are ab of zy. Sinee # and y are in D" but not in I,
it follows that for » large, K, intersects both R, and Ry. However, there
is a radius B in D" such that, for n large, B does not meet K. Otherwise,
every point of ¢ ~ D" would be in K, implying falsely that K = C.

If n is so large that K, ~ R is empty and K, ~ s+ 0 # Kp ~ Ry,
then some component K, of K. ~ D’ has a closure that intersects both
E, and R,. Perhaps the most accessible proof of this is to note that
K, is locally compact, locally connected and connected, and so is are-
wise connected. It follows that in K, there is an arc up irreducible from
By~ Ky to Ry~ Ky. The open arc 4o is in D’ or in D”. Since it cannot
lie in D" without meeting R, it lies in D’. Let K., be the component
of Kn~ D’ containing the open arc ww.

The sequence {K,} thus obtained is defined for all values of # suf-
ficiently large, and will have all of ab as limit set. There may be other
components of {(P) ~ D’ that have closures that meet both B, and R,
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and there may be components of j’l(P) ~ D' whose closures meet only
one of B, or B;. In any case, by Lemma 3, no component of f_l(P) ~ D’
contains a limit point of the union of the other components, though
it could happen that the closure of one might contain such a limit point.
Also, Y(P)~ D’ can have only a countable number of components,
since each component is relatively open in 77'(P)~ D'.

If A is any component of f'(P) ~ D' that has a closure that meets
both R, and R, bub that does not meet the origin, then 4 and R, u R,
are two continua whose intersection is not connected, so that 4 u B, w Ry
separates the plane. It follows that A separates D’ U ab into at least
two sets, one containing points near the origin (since a neighborhood
of the origin contains points in D’ and D’ that are separated by
AU R, Ry), the other containing ab (for the same sort of Teason).
General theorems about separation of two points by disjoint sets (191,
D. 42 et seq.) show that given two components of 7'(P)~ D’, both
spanning B, v R;, one separates the other from ab in D' ~ ab. Further,
it follows from compactness and Lemma 3 that the order type of all
these components in the order induced by separation is that of the inte-
gers. We order them accordingly into a sequence A, 4,, 4, ..., where
for each n Ap.1, separates 4, from ab in D' ab.

For each n, there is just one component, Dn, of D'—f (P) that has
boundary points in A, and in Anyi; Dy has no boundary points in any
other set Apg.

One argument for this is to note first that no compoment of
FYP)~ D’ separates 4, from A,.: in D’. For (i) no component that
has limit points both in R, and R, can separate them, since such a com-
ponent is an 4, and this would violate the meaning of our ordering;
(ii) no component that has limit points in R, (or Rp) alone can separate’
them, because one can avoid such a component and go from A, to Anp
by an arc that stays in D’ very close to Rp; and (iif) no component whose
closure is entirely in D’ separates them, for the same reason. Now let
%ny ¥n11 be points of An, A,.q, respectively. Compactity D’ by adjoining
an ideal point w; then D' o is a 2-sphere. Add o to all the compo-
nents K, of f7*(P) n D'—An—A,: that have limit points in By w By U ab.
Then the collection {K,w w} is a countable collection of continna no
one of which separates @, from x,., in S, each two of which intersect
exactly in w, and whose union is closed. It follows from the Rutit-Roberts
Theorem that | J(K, v o) also fails to separate @, from #,.;. This gives
us a connected open set D* in D'—| K, that contains z, and Znei.
The compact components of f(P) ~ D* are countable in number, and
no one of them separates @, from @,.; in D* (for they would also sepa-
rate them in D'). Therefore their union fails to separate these points
in D*. We now have g connected open set D** in D' that contains an
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and. #,41, but that does not meet /™ (P)—An—Ans1. At least one com-
ponent of D** —A,—A,.; hag boundary points both in {tn and Ad,y,
for an arc in D** from a, t0 #,4+1 Will contain a subare lying in D** except
for one end point in 4, and one in A,.;. To show that there is exactly
one such component, let z, be a point on R, that lies between_Ra ~ Ay
and R ~ Ans1 on Rg, and z, be chosen similarly on I.Bb. There is an are
Zatty in (D'—A4y—An-1) © Zow &. There is a point y, lnjawb that is the
last point of #,a, to meet Ry, or to meet a component of f(P) ~ D’ whose
closure does not meet R,, but that does meet B,. There is a;lfo a first
point y; of w,by following y. that meets R, or a component of 7‘”‘ (P) ~ D’
whose closure does not meet R, but that does meet E;. There is no loss
in assuming that ¥,¥, meets no component of f~H(P) lying entirely in D* H
then ¥,y separates A, from A4,,; in D*, and must meet every com-
ponent of D**—A4,—A,.; that has boundary points botp in 4, and
Aps1. But yayp ~ D** is connected, so that there can be just one such
component. Let this component be denoted by D,.

We remark next that, for each n, the complement of D, has only
a finite number of components, since BdryD, lies in the locally con-
nected set R,u R, v f P), since D, is compact. The boundary
of each such component is, then, a Peano continuum. It follows that
Dy is also a Peano continuum ([9], VI, 2.3). Let J be the simple closed
curve in BdryD, that separates D, from the origin. The set J contains
two ares each irreducible from 4,3 ~J to 4, ~J. If one of these arcs
failed to meet either R, or E, it would follow that the union of that are,
with 4, and with 4,+; would be a connected subset of f'(P)n D,
contradicting the definition of {Ax}. It is not hard to verify, but I omit
details, that one of these arcs meets R, and the other meets R,. It fol-
lows that D, meets both R, and Rj.

We show next that there is a component F of 8*—P such that infi-
nitely many of the sets Dy are mapped by f into F. Since P is a Peano
continuum, the components #,, Fy, Fy, ... of §2—P form a contracting
sequence; that is, either there are only a finite number of them, or the
diameter of F, approaches zero as n increases ([9], VI, 4.4). Hence any
infinite sequence of components of S2—F contains a subsequence con-
verging to a point of P. Bach set D, is mapped by f into one of the
sets F%. If my remark were false, there would exist a sequence #,, 2y, %, ...
of distinet values of n and a sequence ki, k,, ks, ... of distinct values
of % such that f(Dy,) is contained in Fy, and such that {F%} converges
to a point ¥, necessarily in P. If R ig any radius leading to an interior
point of ab, B intersects all the sets D,, by the last paragraph. Hence
if the radial limit on R exists, it must be y. But this means that there
is only one radial limit in ab. This contradicts (2), and proves the

assertion. '
w»
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The same argument shows also that in ab any radial limit must be
in the part of P that bounds 7. B
Each of the sets F, §2—F, and F—F are Peano continua ([91, VI, 4.4),
though the last two may just be P. With this remark, we have now
proved:

Levma 4. Under Hypotheses (1) and (2) if there is a Peano continuwum
P such that some component of f (P) is not locally connected, then there
is a Peano continuum that does not separate 8% with the same property.

We now change the meaning of our notation. Let P now denote 82—F;
let Dy, D,, Dy, ... be those former sets D,, that map into F, the sub-
seripts still indieating order by separation; and let 4,, Ay, As, ... be the
components of the complement in D’ of the union of sets D; that con-
tains the old set 4;, the numbering being chosen so that D, has boundary
points in 4, and 4,.; as before.

We can give a topological characterization of P: since P does not
separate §% it has 2-cells for its true cyclic elements, and a “boundary
curve” for boundary ([9], VI, 2.3). It follows that any point x of the
boundary of P has arbitrarily small neighborhoods V such that F—V is
connected.

Recall that at ¢ and at b the radial limits of f exist and are unequal;
let these be a and B, a corresponding to a. There exist neighborhoods
Va and ¥V of a and B, respectively, such that 7, and 7, are disjoint,
and such that F—V.—¥; is connected. We have only to choose V, 50
that F—V, is connected, and so that ¥, does not contain B, and apply
our last remark to F—V, to get V. Since f(2) approaches « on R,, there
is an interval on R, terminating at ¢ and lying in 7 X(V.); and analogously
on R,. It follows that for all # sufficiently large D, meets both (V)
and (V). Sinee these are disjoint sets, Dy—fH(Va)—f1(V5) is not
empty; let B be one of its components. The boundary of ¥ is a com-
pact subset of /Y(P)w YV, w Vp). It follows from a theorem of Why-
burn’s, a variant of the maximum modulus principle ([9], VIIT, 7.3),
that the boundary of f(B) is contained in ¥, w ¥; u P. Then E must be
mapped onto all of F—V.—V;. Since V, and V; can be faken as small
48 we wish, this proves that if ¥ is a subset of F' whose closure does not
contain o or B, then there is an integer N such that for all n > N, Y is con-
tained in f(Dy). Further, see at once from this that given a point g n the
boundary of F, but distinet from a or By then there is am integer N such
that for all n >N, q is contained in f(BdryD,).

If by some chance F were unbounded, but f were bounded, as it
is in Theorem A, we would now have a contradiction since every point
of F is in the image of some set D,. If the original continuum P had
neither separated 8? nor had oo as an interior point, we would, then,
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have completed a proof of Theorem A. For these conditions would have
assured that ' is unbounded.

The remainder of the argument is a proof that points in the interior
of P, as revised, are also taken on in D’ arbitrarily closely to ab.

Suppose that @ is a component of the interior of P. Then @ is the
interior of one of the 2-cell cyclic elements of P, and @ ~ F is a simple
closed curve. Let ¢ be a point of that curve, other than « or f. We have
just proved that, for n large, g is contained in f(Bdry.D,). Now let r be
a point of @. There is an arc ¢r lying in G u g, and there exist neigh-
borheods V., Vs of a, § whose closures do not meet gr, and such that
¥ —V,—7V; is connected. For each n for which such a point exists, let
9» be a point of Bdry D, that maps into ¢. If n is large, any are from In
to a point outside D’ must meet either Dp_1, Du, [ (Va), or ().
It will simplify the argument slightly if we assume that gr does not con-
tain the image of any branch point of f, except possibly 7.

This is a safe assumption: Since the branch points of f form a count-
able set, we can take g not to be in the image of that set, and can also
select gr to avoid the image of the branch points. With this simplifi-
cation, we have a neighborhood of ¢, on which f is a homeomorphism;
and so there is an arc begimming at ¢, that is mapped homeomorphically
by f onto a subare of gr. Now consider all arcs {g,2} with that property.
It is easily seen that there is a maximal are with that property. The
construetion is rather familiar to the analyst. In outline it is this. First
if guty, gnay Guts, ... is 2 nested sequence of such arcs, all mapped homeo-
morphically onto a subare of gr, and lima; = #, then gz is an are and
@ is in D", Tt follows that a maximal nested sequence of such arcs has
a greatest element, g.y, lying in D’. If f(y) is not r, we could extend gy,
since f is a local homeomorphism at y, and contradict maximality. Thus
we have proved that the point r is taken on infinitely often in D',

Combining the last three italicized statements, we see that we have
established that if U is an open set containing ab, then f(U ~ D) contains
every point of 8 with the possible ewceptions of a amd p. This implies that
f is unbounded, and so establishes Theorem A.

The rest follows easily. In selecting a and b, we had no restriction
as to where on yz—z—y they lay. It follows almost immediately that
if ¢ s any point of sy—a—y, the range of f at ¢, R(f, c) omits at most
two points. For suppose that R(f,c) omits three points. Then there is
an open set U containing ¢ such that (U ~ D) omits these three points.
Let o', b" be points of ay—ax—y so that the arc a'b’ of oy lies in U and
contains ¢, and so that the radial limits of f exist and are unequal at o'
and b'. But we have just proved that f(T ~ D) contains all of &° except
these two radial limits, a contradiction. Hence E(f,c) is all 82 except
for two points.
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If there is a point ¢ in xy —x—y such that R(f, ¢) omits two points,
let U be an open set containing ¢ such that f(U ~ D) omits these two
points. Then at any point ¢’ in U ~ C, R(f, ¢) must omit precisely these
two points. This readily gives the are of € required in the conclusion
of Theorem B if / is not Peano-reversing, but under the supposition
that some E(f, ¢) omits two points. If no set R(f, ¢) omits two points,
but one, R(f, ¢), omits one point, w, select an open set U containing
¢ such that f(U) = 82—w. For any point 2 in U~ ay—a—y, R(f,2)
is 82—w. Let w be one of the two points of Theorem B, and select the
other at random. If no set R(f, ¢) omits any point, the result is trivial.
This completes the proof of Theorem B.

Now suppose Hypothesis (3); suppose that ¢ is a point in ay—z—y
such that R(f, ¢) omits a point w; and let U be an open set containing
¢ such that (U ~ D) omits w. If a'd’ is an arc in U ~ C such that the
radial limits exist at a’ and at b’, we have proved that the only values
omitted by fin U ~ C are these two radial limits, ¢ and 8. If a = w # 8,
we have a contradiction. But since there are three distinet radial limits
in U, it is possible to choose a and B to get this contradiction. Thus each
set B(f,¢) is all of 82 This establishes Theorem C.

Our arguments are all essentially local. Thus we could state them
locally. For example, Theorem A becomes:

If f satisfies (1), ¢ is a point of O near which f is bounded, and there
is a neighborhood U of ¢ such that given any arc of C in U, there are two
points of the arc at which the radial limits exist and are wnequal, then given
a component of the inverse of a Peano-conitnuum, its closure is locally con-
nected at o.

I will not give the analogous other statements.

4, Some comments and examples. Professor 0. Pommarenke
has kindly pointed out to me that if X is a finite set of more than two
points on the Riemann sphere, then the set 82—X has a covering surface
of hyperbolic type; and that the composition of conformal maps of the
open disk onto this covering surface with the projection is an analytic
or meromorphic function f such that the elements of X are exactly the
radial limits of f, each being a radial limit at a dense set of points. This
implies that even for analytic funetions Hypotheses (3) and (4) are inde-
pendent. It seems reasonable that Hypothesis (2) is also independent
of the others, but I have no meromorphic example. Actually, the res-
trietion to radial limits in the hypotheses was made only for verbal con-
venience, and at some loss of brevity the theorems could all be proved
if “radial limit” were replaced throughout by “asymptotic value”. For
the axioms modified by this change, I can prove independence. Indeed,
the following theorem, whose proof has appeared elsewhere [12], is true.

Fundamenta Mathematicae, T. LVI 22
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THEOREM. Let Wy, W,, W, be three finite sets of points on the Riemann
sphere. Then there exist three disjoint countable subsets Ay, 4y, A, of the
circle C, each dense in C, and a function f meromorphic in the open disk D,
such that (i) f has asymptotic values only at points of A, v 4, U Ay; and
(i) for each § =1,2,38, each of the points of W; is an asympiotic value
at each point of Ay, there being no other asymplotic value in A;.

It would be interesting to get similar examples involving radial
limits.

Tt is easy to give an example of a function continuous on the closed
disk and light and interior on the open disk but which violates Hypo-
thesis (2) and which is not Peano-reversing. Such a funection can be
obtained by taking an upper-semi-continuous collection filling up D v ¢
whose only non-degenerate element is an arc A of 0. The decomposition
space is again a closed disk, and we geb a map f: Duw C>Du C. If K ig
4 curve in D approaching 4 in the oscillatory style of y = sin(1/z), then
the image of K «w A under f is an arc whose inverse does not have a lo-
cally connected closure.

There are various special cases of the theorem that I will not list.
For example, if B is a rational curve, and f is Peano-reversing and interior
and light, each component of f(R) has a rational curve for closure.
Or if R is the closure of an open set each boundary curve of which is
a Jordan eurve, so is each component of f™'(R).

Perhaps here I should point out explicitly that the results of the
paper depend on the fact that our functions are defined in the disk,
rather than in any simply connected domain. If a domain does not have
a locally connected closure, then even functions bounded and analytic
on that domain need not be Peano-continuum reversing.
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