V. Novák

20

Let us suppose that η -ldim $G < \omega$, i.e. η -ldim G = n where $n < \omega$. Then $G \cong G' \subseteq {}^nP$ according to Theorem 4 and this is impossible because card $G = 2^{\aleph_0}$, card ${}^nP = \aleph_0$. Therefore η -ldim $G = \omega$.

References

- [1] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig 1914.
- [2] W. Sierpiński, Sur une propriété des ensembles ordonnés, Fund. Math. 36 (1949), pp. 56-67.
- [3] M. Novotný, Sur la répresentation des ensembles ordonnés, Fund. Math. 39 (1952), pp. 97-102.
- [4] O podobnosti uspořádáných kontinul typů τ a τ, Časopis pro pestování matematiky 78 (1953), pp. 59-60
- [5] I. Fleischer, Embedding linearly ordered sets in real lexicographic product, Fund. Math. 49 (1961), pp. 147-150.
- [6] H. Komm, On the dimension of partially ordered sets, Amer. Journ. of Math. (1948), p. 507.
- [7] V. Novák, On the pseudodimension of ordered sets, Czechoslovak Mathematical Journal, 1963.
- [8] J. Novák, On partition of an ordered continuum, Fund. Math. 39 (1952), pp. 53-64.
- [9] D. Kurepa, Ensembles ordonnés et ramifiés, Thése, Paris 1935, Publ. Math. Belgrade 4 (1935), pp. 1-138.
- [10] F. Hausdorff, Untersuchungen über Ordnungstypen, Berichte über die Verhandlungen d. königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-physische Klasse 58 (1906).
 - [11] G. Birkhoff, Lattice theory, New York 1948.

Recu par la Rédaction le 25. 6. 1963

Semigroups and clusters of indecomposability*

by

R. F. Dickman, R. L. Kelley, L. R. Rubin, P. M. Swingle (Miami, Florida)

In [4] and [9] we have generalized indecomposable continua in various ways; here we wish to consider these types of continua as topological semigroups. The examples in [4] and [9] are based upon Wilder's constructions for his Theorems 1 and 8 of [15], pp. 275-278, 290-292; these constructions and examples are complicated. However, we also give below simpler examples for which our definitions and theorems hold.

Below, S is a topological semigroup, which we call a semigroup, such that there is a continuous mapping $m: S \times S \to S$, called multiplication, where S is a Hausdorff space and m is associative. For $x, y \in S$, we write xy = m(x, y); and $AB = \{xy: x \in A, y \in B\}$. We let u be the unit of S and 0 be the zero, if these exist, where, for all $x \in S$, xu = x = ux and x0 = 0 = 0x. We use E to denote the set of idempotents of S, where for $e \in E$, ee = e. We recall that a non-null subset A of S is a left ideal if and only if $SA \subset A$ and it is a right ideal if $AS \subset A$; it is an ideal if and only if it is both a left and a right ideal. We denote the minimal ideal by K and the null set by \emptyset .

Basic definitions and results concerning semigroups are in [14]; for topology they are in [6] and [16]. By a continuum, or a subcontinuum of S, we mean a connected subset of S which is closed in S. We think of S imbedded in another space, so that the connected semigroup S need not be the same as its closure \overline{S} ; but then the multiplication operation m is extendable to \overline{S} ; this is true for the examples of connected semigroups in [5] and [7].

DEFINITIONS. We say, for $A \subset B$, that A is region-containing in B if the interior of A with respect to B is non-null; that is if there exists a region (neighbourhood) B such that $A \supset B \cap B$: if $x \in B \cap B$, we say that A is region-containing at x. The connected set B has an n-fold set $\bigcup Z_j$ (j = 1, 2, ..., n) of indecomposability if and only if every region-containing connected subset B of B is such that B, the closure of B in B, contains some B, and we take each B, non-null: if B is a constant B and say B has a set B of indecomposability, and if B is a con-

^{*} This work was done under National Science Foundation grant G 19672.

tinuum, then S is a continuum with a set Z of indecomposability [9]. Let $\{Z_i\}$ and $\{Z_i'\}$ (i=1,2,...) be disjoint classes of non-null disjoint subsets of a connected set S; let $Z=\bigcup Z_i$ and $Z'=\bigcup Z_i'$. Then we say that S is a connected set with cluster pair (Z,Z') of indecomposability if and only if every region-containing connected subset W of S is such that \overline{W} contains either Z_i or Z_i' for each i (i=1,2,...).

Example 1.0. Let $I = \{x: 0 \le x \le 1\}$, C be a Cantor ternary set and let S' be the cartesian product $C \times I$, where however we take as the same point all (c, 0) for $c \in C$; see the Rees Quotient of Theorem 8 below; this is what we call a Cantor ternary triangle in Example 1 of [11], p. 267 or of Example 4 [12], p. 125. Then S' is a topological semigroup with multiplication $(c, x)(c', x') = (\min(c, c'), xx')$, where xx' is the multiplication of real numbers and C retains the ternary number system from its construction on a unit interval, so that $\min(c, c')$ has meaning. Let (c, 0) = (0, 0). Then S' is a semigroup continuum with set Z = (0, 0)of indecomposability, and Z is its minimal ideal K. In Theorem 2 of [7], p. 247, we showed that there exists a biconnected semigroup B, dense in S', with dispersion point (0,0); thus B is a connected set with set Z of indecomposability; as a semigroup it has unit u = (1, 1) and zero 0 = (0, 0), as does S'. Let now S_i (i = 1, 2, 3, 4) be homeomorphic to a semigroup S' or B, $S = \bigcup S_i$, $S_j \cap S_{j+1}$ (j = 1, 2, 3) be Z_{j+1} where Z_{i+1} is the unit of S_i and the zero of S_{i+1} ; if $x \in S_i$, $y \in S_j$ and j < i, let xy = yx = y; if i = j, $xy = (\min(c, c'), xx')$ as above. Therefore S is a topological semigroup connected set with 4-fold set $\bigcup Z_i$ of indecomposability, with minimal ideal $K = Z_1 = (0, 0)$ of S_1 ; the unit of S is the unit of S_4 ; \bar{S} inherits the multiplication of S. For similar multiplication, see Hunter in [2], pp. 242-243. The set B above can also be taken as the biconnected semigroup of Theorem 1 or 2 of [5], pp. 234, 237.

DEFINITION. Let $A \subset V \subset S$. Let Q be open in V, W be closed in V and W be connected. We say $T(A, V) = V - \{x: \text{ there exist } Q \text{ and } W \text{ such that } x \in Q \subset W \subset V - A\}$; we take T(A, S) = T(A) ([11], [12]).

LEMMA 1. Let S be a connected set with n-fold set $\bigcup Z_i$ of indecomposability and let $p_i \in Z_i$. Then $S = T(\bigcup p_i)$.

Proof. Suppose $x \in T(\bigcup p_i)$. Then there exist open Q and a connected and closed in S subset W such that $x \in Q \subset W \subset S - \bigcup p_i$. Thus W is a region-containing subcontinuum of S, and so, by definition of S as a connected set with n-fold set $\bigcup Z_i$ of indecomposability, W must contain some Z_i ; hence $p_i \in W \subset S - \bigcup p_i$ is a contradiction. Therefore $x \in T(\bigcup p_i)$, and so $S \subset T(\bigcup p_i) \subset S$. See [12], p. 127.

LEMMA 2. Let p_i (i=1,2,...,n) be n distinct points of the cartesian product S of two nondegenerate connected Hausdorff spaces V and W. Then in any region R about any $p \in S$ there exists $x \in S$ and $x \notin T(\bigcup p_i)$.

Proof. We follow Jones' proof of his Theorem 7 in [3], p. 406. Let $S = \{(v, w): v \in V, w \in W\}$ and let $p_i = (v_i, w_i)$; it is known that S is a Hausdorff space ([17], p. 92). Since a finite subset in a Hausdorff space is not connected, let $(v'', w'') \in S$, where v'' is not any v_i ; in R about any $p \in S$ let (v', w') = x, where w' is not any w_i . Let $V(w_i) = \{(v, w): v \in V, w = w_i\}$. Since $V(w_i)$ is a closed subset of S, $\bigcup V(w_i)$ is also a closed subset of S, and so S contains an open subset Q such that $w \in Q$ and $Q \cap (\bigcup V(w_i)) = Q$. Now let $W(v'') = \{(v, w): v = v'', w \in W\}$; then W(v'') is a continuum and $p_i \notin W(v'')$, for any i.

Let $H_0 = \bigcup (V \times w_0)$ for all $w_0 \in W$ such that $(V \times w_0) \cap \overline{Q} \neq \emptyset$. The set H_0 is closed, contains Q, but does not contain any p_i , since $\overline{Q} \cap V(w_i) = \emptyset$. Let $H = H_0 \cup W(v'')$. Then H is a continuum, since each $(V \times w_0) = V(w_0)$ is connected and intersects W(v''), which is connected; and $H \supset Q$ and $H \cap (\bigcup p_i) = \emptyset$. Hence $x \in Q \subset H \subset S - \bigcup p_i$, and so $x \notin T(\bigcup p_i)$. Thus the lemma is true.

THEOREM 1. Let $S = ES \cup SE$ and let S be a compact semigroup continuum with n-fold set $\bigcup Z_i$ of indecomposability. Then the minimal ideal K contains some Z_i ; if S has a zero 0, then some Z_i is 0. If n = 1, then $K \supset Z_1 = Z$.

Proof. If S has a zero 0, then K=0; if S is compact, then K is known to exist. Suppose that K does not contain any Z_i . Let $p_i \in Z_i - K$. By Lemma 1, $S = T(\bigcup p_i)$. Let $x \in K$; then $x \in T(\bigcup p_i)$. But then, by Corollary 1.1 of [11], p. 266, $K \cap (\bigcup p_i) = \emptyset$, contrary to the way p_i was taken above. Therefore K contains some Z_i , and so the theorem is true.

THEOREM 2. Let S be a compact semigroup continuum with n-fold set $\bigcup Z_i$ of indecomposability. Then neither S, nor $K, -if \ K \supset Z_1$ and $K \supset R$ a region of S, — is the cartesian product of two nondegenerate continua; and hence K then is either a group or, for all $x, y \in K$, either all xy = x or all xy = y.

Proof. The case for S is true at once from Lemmas 1 and 2. Suppose that K is the cartesian product of two non-degenerate continua. By hypothesis, K contains some Z_i and let $K \supset \bigcup Z_i$ (i=1,2,...,f), but $K \not\supset Z_j$ (j=j+1,j+2,...,n); let $p_i \in Z_i$ (i=1,2,...,n), but $p_j \notin K$. By hypothesis, $K \supset R \subset S$ and, by Lemma 2, there exists $x \notin T(\bigcup p_i, K)$, $x \in R$; by definition, there exist region-containing continuum W in K and open set Q such that $x \in Q \subset W \subset K - \bigcup p_i \subset S - \bigcup p_i$. Since $K \supset R \subset S$, Q may be taken open in S; hence $x \notin T(\bigcup p_i)$, and so $x \notin S$ by Lemma 1. Hence K cannot be the cartesian product of two nondegenerate continua, and so by Corollary 1 of [13], p. 278, either K is a group or, for $x, y \in K$, all xy = x or all xy = y.

COROLLARY 2.1. Let S be a semigroup and compact continuum with n-fold set $\bigcup Z_i$ of indecomposability, each Z_i be region-containing, $S = ES \cup SE$, and E be countable. Then K is a group.

Proof. Since S is a compact continuum and $S = ES \cup SE$, K is known to be a continuum. We note if K is a point, K = 0 and so K is a group. Suppose that K is not a group. By Theorem 1 and hypothesis, $K \supset \text{some } Z_i \supset R$ a region of S; then, by Theorem 2, for all $x, y \in K$, all xy = x or xy = y, and so all $xx = x \in E$, which is countable. Thus K is a continuum containing only countably many points, which is false in a compact Hausdorff space.

Example 2.0. Let D be the complex number unit disc, C be the Cantor ternary set, let $S'' = D \times C$, with (0, c) = (0, 0) = Z for all $c \in C$ (i.e., S'' is a pile of discs with (0, 0) in common); and $(d, c)(d', c') = (dd', \min(c, c'))$; in $S = \bigcup S_i$ (i = 1, 2, 3, 4) of Example 1.0, let now S_f (j = 2, 3, 4) be homeomorphic to S''; let S_1 be a solenoid with multiplication such that S_1 is a group. Let otherwise the multiplication be as in Example 1.0. Let $Z_1 = S_1 \cup Z_2 = S_1$. Then S is a continuum with 3-fold set $\bigcup Z_i$ of indecomposability and S is a semigroup, as it was in Example 1.0. Then $K = S_1$ is region-containing and is a group as in Theorem 2.

EXAMPLE 2.01. Let C be the Cantor ternary set, $I' = \{x: 0 < x \le 1\}$ and let $S' = C \times I'$. Let (1,1) of this be at (1,1,1) of the xyz-space and let S' spiral down upon the square Z in the xy-plane with diagonal from (0,0,0) to (1,1,0) so that Z is the limiting set of S' and S' projects onto Z; let S then be $S' \cup Z$. For $(x,y,z), (x',y',z') \in S$, let (x,y,z)(x',y',z') = (x,y',0). Then S is a semigroup and a continuum with set Z of indecomposability; and K = Z, which is the cartesian product of two nondegenerate continua, but the conclusion of Theorem 2 is not true here; nor is its hypothesis for K.

EXAMPLE 2.02. Let S be as in Example 2.01, but let (x, y, z)(x', y', z') = (xx', yy', 0); then $K = (0, 0, 0) \not\supset Z$, contrary to the conclusion of Theorem 1; but $S \neq ES \cup SE$.

LEMMA 3. Let S be a semigroup, cancellative in $Y \subset S$ and let $C \subset S$. If $y \in Y$, $c \in C$ and \overline{C} is not region-containing at c, then $y\overline{C}$ is not region-containing at yc. If K = S is a group and $k \in K$, then $k\overline{C}$ is region-containing at kc if and only if \overline{C} is region-containing at c.

Proof. Suppose that $y\overline{C}$ is region-containing at yc. Since multiplication m is continuous, for a region $R'' \subset y\overline{C} \subset \overline{S}$ and $yc \in R''$, there exist regions R, R' of \overline{S} such that $y \in R$, $c \in R'$ and $yc \in m(R \times R') = RR' \subset CR''$. Since \overline{C} is not region-containing at c, there exists $s \in R' - \overline{C}$ such that $ys \in RR' \subset R'' \subset y\overline{C}$. Therefore there exists $c' \in \overline{C}$ such that ys = yc'.

Since S is cancellative in Y, $s = c' \notin \overline{C}$, which is a contradiction. Hence if \overline{C} is not region-containing at c, $y\overline{C}$ is not region-containing at yc.

The second conclusion, with S = K a group, is well known, but follows quickly from the above.

THEOREM 3. Let S be a semigroup connected set with n-fold set $\bigcup Z_i$ of indecomposability, let the minimal ideal K exist and be closed and let every nondegenerate region of K contain a region of S; let $K \supset Z_1$. Then $K = T(\bigcup z_i, K)$, for all i where $z_i \in Z_i$ and $K \supset Z_i$. If there are m of these z_i , then K is a connected set with m-fold set $\bigcup (K \cap Z_i)$ of indecomposability. (Also true for all $K \cap Z_i \neq \emptyset$.)

Proof. Since K = S x S for $x \in K$, K is connected. By definition $K \supset T(\bigcup z_i, K)$. Suppose $T(\bigcup z_i, K) \not\supset K$; by Lemma 1 of [12], p. 114, $T(\bigcup z_i, K)$ is closed. Hence there exist in K a region R of S and $k \in K - T(\bigcup z_i, K)$ such that $k \in R$ and $\overline{R} \cap T(\bigcup z_i, K) = \emptyset$. Then there exist an open Q and a closed connected subset W such that $k \in Q \subset \overline{W} \subset K - \bigcup z_i \subset S - \bigcup z_j$ for all $z_j \in Z_j - K$ $(j = 1, 2, ..., n; i \neq j)$ and all $z_j = z_i$. Because $K \supset R$ of S then $k \notin T(\bigcup z_j, S)$, although by Lemma 1 $T(\bigcup z_j) = S$. Hence $T(\bigcup z_i, K) = K$.

Suppose now that there exists a connected subset W of K which is region-containing, but does not contain any $K \cap Z_i$; hence there exists $x \notin T(\bigcup z_i, K)$, $x \in K$. Since this is false, the theorem is true.

In Example 2.01, we see that K is not a connected set with set Z of indecomposability, although the hypothesis of Theorem 3 is almost satisfied.

NOTATION AND EXAMPLE. Below in Theorem 4 we say that S is a connected set with n-fold set $\bigcup Z_i$ of indecomposability, and with n minimal, each Z_i maximal and $\bigcup Z_i$ is unique. By this we mean that of the possible ways to choose the Z_i , we take one in which n has smallest possible value, then we take each Z_i maximal in size, and finally we consider only those cases for S where the class of Z_i thus can be taken in only one way. Consider Example 3 of [12], p. 124, where $S = \bigcup I_j$ (j = 1, 2, 3) and S is a simple chain of the indecomposable continua I_j . As noted there S has 2-fold set $\bigcup Z_i$ of indecomposability (it also has 3-fold set), and the Z_i (i = 1, 2) can be taken maximal in three different ways. Thus the class $\{Z_1, Z_2\}$ is not unique. If instead I_3 were a Cantor triangle with its vertex q not in I_2 , then $S = \bigcup I_j$ would have n-fold set of indecomposability for n = 2, where n is minimal, the Z_i can be taken maximal and the class $\{Z_1, Z_2\}$ is unique (that is $Z_1 = I_1 \cap I_2$ and $Z_2 = q$).

THEOREM 4. Let S be a connected set with n-fold set $\bigcup Z_i$ of indecomposability, the minimal ideal $K \supset Z_i$ $(j = 1, 2, ..., n'; n' \geqslant 1)$ and K be a group and have n'-fold set $\bigcup Z_i$ of indecomposability; n is minimal,

each Z_i is maximal and $\{Z_i\}$ is unique. Then $K = Z_1$; if also Z_1 is region-containing in S, then K is either a point or an indecomposable connected set.

Proof. Let $\{\overline{C}\}$ be the class of region-containing subcontinua of K. By Lemma 3, $\{k\overline{C}\}$ is the same class, for $k \in K$. We see that $\overline{C} \supset Z_f$ implies $k\overline{C} \supset kZ_f$ implies $k^{-1}k\overline{C} = \overline{C} \supset k^{-1}kZ_f$, because $K \supset C \cup Z_f$; thus $\overline{C} \supset Z_f$ is equivalent to $k\overline{C} \supset kZ_f$. Hence $\{Z_f\}$ and $\{kZ_f\}$ are the same class, since $\{Z_f\}$ (i = 1, 2, ..., n) is unique in order that S have n-fold set $\bigcup Z_f$ of indecomposability.

If $Z_j \subset K$, then $kZ_j \subset K$ by definition of an ideal; also if $kZ_j \subset K$, then $k^{-1}kZ_j = Z_j \subset K$. Hence $Z_j \subset K$ is equivalent to $kZ_j \subset K$; and by hypothesis $K \supset Z_1$. We wish to prove that $K = \bigcup Z_j$. Since $K \supset \bigcup Z_j$, let $K \in \bigcup Z_j$ and suppose $K' \in K - \bigcup Z_j$. Then $K' = (K'K^{-1})K$. Thus $K \in Z_j$ implies $K' \in (K'K^{-1})kZ_j$; but $(K'K^{-1})kZ_j$ is itself some Z_j contained in K. Therefore $K' \in \bigcup Z_j$, which is a contradiction. Hence $\bigcup Z_j \supset K = \bigcup Z_j$.

Let $\{C'\}$ be the class of region-containing connected subset of S. We note that $Z_j = \bigcap \{\bar{C}_a \colon C_a \in \{C'\} \text{ and } \bar{C}_a \supset Z_j\}$, and since the \bar{C}_a are closed in S, Z_j is closed in S. Hence the connected set K is the union of n' closed subsets Z_j . Thus, if we suppose n' > 1, there exist two of these which intersect; say $Z_1 \cap Z_2 \neq \emptyset$. Each $C \in \{C'\}$, where either $\bar{C} \supset Z_1$ or $\bar{C} \supset Z_2$, is such that $\bar{C} \supset Z_1 \cap Z_2$. Hence $\{Z_1 \cap Z_2, Z_3, Z_4, \ldots, Z_n\}$ is a class of n-1 elements such that every \bar{C} contains at least one of them: thus S is a connected set with (n-1)-fold set of indecomposability, and so n is not minimal contrary to hypothesis. Therefore n'=1, and so $K=Z_1$ and K is a connected set with set Z_1 of indecomposability. Thus, by the definition of an indecomposable connected set, K is indecomposable, which however includes the case when K is a point.

EXAMPLE 4.0. Let G be the complex number group on the unit circle and let S' be the clan with kernel G, irreducible from G to the unit of the example, following Wallace and Koch's Corollary 1, in [13], p. 286. Let G be the Cantor ternary set, form $S' \times G$, and shrink each $g \times G$ to a point for $g \in G$. We are following here Hunter's Example 2.2 in [1], p. 286. Thus we can get a semigroup S, which may be described as a band of spirals winding down upon G, where there is a spiral for each $G \in G$; and $G \in G$ is a continuum with set $G \in G$ of indecomposability, where G = K. Thus the first conclusion of Theorem 4 is true; $K \in G$ is not an indecomposable continuum as in the second conclusion, but the hypothesis of Theorem 4 is not satisfied.

EXAMPLE 4.01. Let S be the union of an indecomposable continuum and a Cantor ternary triangle of Example 1.0, where these have intersection the point z, which is the vertex of the triangle; let the multiplication on the indecomposable continuum I' be that of a group and on the triangle be as in Example 1.0, with z at the unit of I'. Then S si

a continuum semigroup with set I' of indecomposability and K = I'; this illustrates Theorem 4.

EXAMPLE 4.1. This illustrates Theorem 3 and the second conclusion of Theorem 4. Let N be a topological group G and an indecomposable continuum. Let $I = \{x \colon 0 \le x \le 1\}$. Let C be a Cantor ternary subset of N, where C is taken such that $S = (C \times I) \cup N$ is a continuum with set N of indecomposability. Let the multiplication in N be that of G, and so for c, $c' \in C$, $cc' \in G$. For x, $x' \in I$, $g \in G$, let $(c, x)(c', x') = cc' \in G$, (c, x)g = cg and g(c, x) = gc. Thus S is the desired semigroup above.

COROLLARY 4.2. Let S be a nondegenerate compact semigroup continuum with n-fold set $\bigcup Z_i$ of indecomposability, where n is minimal, each Z_i is maximal and the class $\{Z_i\}$ is unique. If there exists $x \in S$ such that xS and Sx are both region-containing and if S = K, then S is a topological group and an indecomposable continuum.

Proof. Neither, for all $x, y \in S$, is all xy = x or all xy = y, since xS and Sx are region-containing and S is a nondegenerate compact continuum. Hence, by Theorem 2 above and by Corollary 1 of [13], p. 278, S is a group, and so, by Theorem 4, is an indecomposable continuum. For a related result, see Koch and Wallace's Corollary 1 in [13], p. 286.

LEMMA 4. Let $C, Y \subset S$, where \overline{C} is compact, let $Z' \subset S$ and let $X = \{x: x \in Y, x\overline{C} \supset Z'\}$. Then X is closed in Y.

Proof. Suppose that X is not closed in Y, and so let $x' \in Y$ be a limit point of X such that $x' \notin X$. Then $x' \bar{C} \supset Z'$, and since $x' \bar{C}$ is compact, there exist an open set $U \supset x' \bar{C}$ and a point $z' \in Z'$ such that $z' \notin U$. By continuity, there exist open sets U' and U'' such that $x' \in U'$ and $\bar{C} \subset U''$ and for which $U' \bar{U}'' \subset U$. But $U' \supset x \in X$; hence $U \supset U' \bar{U}'' \supset U' \bar{C} \supset x \bar{C} \supset Z' \supset z'$, which is a contradiction. Thus the lemma is true.

DEFINITION. For C, $Y \subset S$, we say that the right C-deflating subset in Y is the set of all $y \in Y$ such that $y\overline{C}$ is not region-containing in S. (Or put left for right and $\overline{C}y$ for $y\overline{C}$.)

EXAMPLE. Let S be the closed plane unit square with diagonal from (0,0) to (1,1) and the multiplication be coordinate-wise. Let Y be a subarc of S with a sequence y_i (i=1,2,...) on the x-axis: then each y_i S is not region-containing. Here the right S-deflating subset in Y is closed and is contained on the x and y axes.

EXAMPLE. It is of interest to note that $y\bar{C}$ can be region-containing when \bar{C} is not. On the x-axis, let S consists of the isolated point q and the sequence y_i (i=1,2,...) with sequential limit y_0 . Let $C=y_0$, $y=y_1$ and $Y=\bigcup y_t$ (t=0,1,2,...). Let $y_ty_j=q=q^2=qy_t=y_tq$. Then yC is region-containing, although C is not and the C-deflating subset in Y is \emptyset .

THEOREM 5. There exists a compact connected commutative semi-group S, with $Y \subset S$, such that the right S-deflating subset in Y is not closed.

Proof. We first show the existence of a nonconnected semigroup S' on the the x-axis with this property. We let $[x', x''] = \{x: x' \le x \le x''\}$. Let C be the Cantor ternary set on [0, 1], $y_i = 2 + 1/i$, $Y_i' = [y_{i+1} + \frac{1}{2}(y_i - y_{i+1}), y_i]$, Y_i be the Cantor ternary set on Y_i' , $Y = \bigcup Y_i$ (i = 1, 2, ...) and let $S' = C \cup Y \cup 2$.

Define $U_{ji} = [(j-1)/3^i, j/3^i] \cap C$, for i any natural number and j any odd natural number: thus the U_{ji} come from the nonomitted intervals of the Cantor ternary set construction, and, for any i, $\bigcup U_{ji} = C$ and only one U_{ji} then contains any $c \in C$. Note that the sets U_{ji} and Y_i are open subsets in S'.

We now define for S' a multiplication m: $S' \times S' \rightarrow S'$ as follows:

- (a) m(c, c') = 1, for $c, c' \in C$;
- (b) $m(y, y') = \max(y, y')$, for y, y' in the same Y_i ;
- (c) $m(y, y') = y_k$, for $y \in Y_i$, $y' \in Y_j$ and $k = \min(i, j)$, $i \neq j$;
- (d) $m(2, y) = y_i = m(y, 2)$, for $y \in Y_i$;
- (e) $m(c, y) = j/3^i = m(y, c)$, for $y \in Y_i$ and $c \in U_{ji}$;
- (f) m(2, c) = c = m(c, 2), for $c \in C$; and
- (g) m(2,2)=2.

We remark: the above multiplication gives S' = ES' = S'E, $K = 1 \\ \epsilon C$ is the zero of S', 2 is a unit for C, and every element of Y is idempotent. It is easily seen that the operation m is commutative. (Here we may use Y'_i in place of Y_i , but then S below would not have a set z of indecomposability.)

We now show that S' is associative. Consider first y(y'c) and (yy')c, for $y \in Y_i$, $y' \in Y_k$ and $c \in C$. Take first the case i > k. Then $(yy')c = y_kc$; since c is in some U_{tk} , say $c \in U_{jk}$; then $(yy')c = y_kc = j/3^k$. Then also $y(y'c) = y(j/3^k)$; then $j/3^k \in C$ and so in some U_{ti} , say $j/3^k \in U_{ni}$. Thus $y(j/3^k) = n/3^i$; but note $U_{ni} \cap U_{jk} \supset j/3^k$, and so their right end points are equal, that is $j/3^k = n/3^i$. Therefore (yy')c = y(y'c). A somewhat similar proof shows this for the cases i = k and i < k

We see that (yc)c'=1=y(cc'), for either y=2 or $y \in Y$. Consider yy'c, for $y=2, y' \in Y_k$, $c \in C$. Then $(2y')c=y_kc$ and $2(y'c)=2(y_kc)=y_kc$.

Since m is commutative, any other permutations of the elements still is associative from the above arguments. Thus we conclude that S' is associative.

Consider now whether m is a continuous multiplication. We see first that m is continuous on $C \times C$ and on $Y_i \times Y_i$, since then the multiplication is trivial. Let now $y \in Y_i$, $y' \in Y_k$, and suppose $i \ge k$; then

 $yy' = y_k$. Let U be an open subset of S' containing y_k ; now Y_i and Y_k are also open subsets of S' which contain y and y', respectively, and $m(Y_i \times Y_k) = y_k \in U$; therefore m is continuous on $Y_i \times Y_k$ for $i \ge k$. A similar proof shows this, when i < k.

Finally, let $y \in Y_k$ and consider $2y = y_k$. Let U be an open set containing y_k . There exists an open set V containing 2 such that $V \cap (\bigcup Y_i)$ for i = 1, 2, ..., k $0 = V \cap C$. Then $m(V \times Y_k) = y_k \in U$, and so m is continuous on $2 \times Y$. Thus m is continuous on $(Y \cup 2) \times (Y \cup 2)$. Consider now $Y \times C$.

Consider yc for $c \in C$, $y \in Y_i$; let $c \in U_{ji}$. Let U be any open subset of S' containing $yc = j/3^i$. Now U_{ji} and Y_i are open subsets of S' with $c \in U_{ji}$ and $y \in Y_i$, and $m(Y_i \times U_{ji}) = j/3^i \in U$. Hence m is continuous at (y, c).

Consider 2c and let $\varepsilon > 0$ and let $(c-\varepsilon, c+\varepsilon)$ be the open interval of C with these end points. There exist j and i such that $c \in U_{ji} \subset (c-\varepsilon, c+\varepsilon)$. The set $A = 2 \cup (\bigcup Y_k)$ (k = i, i+1, i+2, ...) is open in S' about 2. It follows that $m(A \times U_{ji}) \subset U_{ji} \subset (c-\varepsilon, c+\varepsilon)$, and so m is continuous at (2, c). Thus m is a continuous multiplication over $S' \times S'$.

For all i, the set y_iS' consists of a finite subset of C together with the finite set $\bigcup y_k$ (k=1,2,...,i), and so it has a null interior. However 2S' contains C, and so has a non-null interior. Thus the right (and so the left) S'-deflating subset in Y is not closed; hence the right C-deflating subset in Y is also not closed.

Let now $S'' = S' \times I$, where I is the unit interval. Then define m': $S'' \times S'' \to S''$ by m'((s, x), (s', x')) = (m(s, s'), xx'). We now form a connected space S by identifying the points $(s, 0) \in S''$ as one point and call this point z. Hence S is a connected set with set z of indecomposability. Let $z_i = (y_i, 1) \in Y$ and $z' = (2, 1) \in Y$. Then $z_i S$ is not region-containing, although z'S is, and so the right S-deflating subset in Y is not closed.

Remark 5.0. In the definition of m in the proof of Theorem 5, change now (b) and (c) to (bc) and (d) to (d') where

- (bc) m(y', y) = y'' = m(y, y'), where $y'' = \max(y, y')$, for $y, y' \in Y$;
- (d') m(y, 2) = m(2, y) = y, for $y \in Y$.

Then a similar proof to that of Theorem 5 gives that S is a connected set with set z of indecomposability, S is a commutative semigroup with unit at $(2,1) \in S$, K=z, the right S-deflating subset in Y is closed, but the right C-deflating subset in Y is not closed.

THEOREM 6. Let S be a connected semigroup with n-fold set $\bigcup Z_i$ of indecomposability, where each Z_i is region-containing, C and Y are connected subset of S, \overline{C} is compact and $\overline{C} \subset S$ and the right C-deflating subset

in Y is closed in Y. Then, for $y \in Y$, either every $y\overline{C}$ is region-containing or every $y\overline{C}$ is not region-containing.

Proof. Since C is connected, yC is connected. Let $X_i = \{x: x \in Y \text{ and } x\overline{C} \supset Z_i\}$. By the definition of S a connected set with set $\bigcup Z_i$ of indecomposability, if $y\overline{C}$ is region-containing, then $y\overline{C}$ contains some Z_i ; thus y is an element of some X_i . By Lemma 4, each X_i is closed in Y. Let Y' be the set of elements in Y such that $y\overline{C}$ is not region-containing. By hypothesis, the right C-deflating subset in Y is closed in Y, and so Y' is closed in Y. Also, if $y\overline{C}$ is not region-containing, $y\overline{C} \not\supset Z_i$ for any i, since each Z_i is region-containing. Thus $Y' \cap (\bigcup X_i) = \emptyset$. Hence the connected set Y is the union of the disjoint, closed in Y, subsets Y' and $\bigcup X_i$. This is a contradiction unless one of these subsets is null, and so the theorem is true.

COROLLARY 6.1. Let S be a compact continuum and semigroup with n-fold set $\bigcup Z_i$ of indecomposability, where each Z_i is region-containing. If the right S-deflating subset in S is closed and $s \in S$, then either sS is region-containing for all s or every sS is not; then, if zero $0 \in S$, no sS is region-containing, but if unit $u \in S$, every sS is region-containing; and S does not have both a zero and a unit.

The proof follows from Theorem 6.

. COROLLARY 6.2. Let S be as in Corollary 6.1, and both the left and right S-deflating subset in S be closed; let unit $u \in \cap Z_i$. Then S is a topological group and an indecomposable continuum.

Proof. By Corollary 6.1, for $s \in S$, sS is region-containing and so $sS \supset Z_i \supset u$ for some i. Hence there exists $s^{-1} \in S$ such that $ss^{-1} = u$. Similarly $Ss \supset Z_i \supset u$ for some i, and so there exists $s' \in S$ such that s's = u. Hence it follows that S is a topological group.

Since $u \in \bigcup Z_{\ell}$, each region-containing continuum contains u, and so T(u) = S. Suppose that there exist $x, y \in S$ such that $y \notin T(x)$. Then there exist open Q and continuum W such that $y \in Q \subset W \subset S - x$; hence $y'' = yx^{-1} \in Qx^{-1} \subset Wx^{-1} \subset Sx^{-1} - xx^{-1} = S - u$. Since S is a topological group, Qx^{-1} is open and Wx^{-1} is a continuum, and so $y'' \notin T(u) = S$. Hence T(x) = S for all $x \in S$, and by Corollary 14.3 of [12], p. 128, S is an indecomposable continuum.

THEOREM 7. If S=AS, S is closed and compact, and $S\supset A$, where A is countable, then there exists a ϵ A such that a S is region-containing in S. If further S is a continuum with n-fold set $\bigcup U_i$ of indecomposability, each Z_i is region-containing, A=E and the right S-deflating subset in S is closed, then every sS is region-containing and, for n=1, each $e\in E$ is a left unit for $Z=Z_1$.

Proof. Since S = AS = S, $S = \bigcup aS$ $(a \in A)$. Since a and S are compact, aS is closed. Suppose that no aS is region-containing in S.

Then the closure of S-aS is S. Since A is countable, this is contrary to Theorem 15 of [6], p. 11. Hence aS is region-containing in S. Hence, by use of Corollary 6.1, the theorem follows without difficulty.

Notation. If S is a semigroup and I is an ideal of S, then the Rees Quotient $S/I = S - I \cup \{I\}$, with $x \cdot \{I\} = \{I\} = \{I\} \cdot x$ and xy the ordinary multiplication of S if $x, y \notin I$. Let $\theta \colon S \to S/I$ be the natural mapping which is the identity on S - I and sends any element of I into the point $\{I\}$. If S is a topological space, then the topology on S/I is defined as follows: a set $U \subset S/I$ is open if and only if $\theta^{-1}(U)$ is open in S. If I is closed, then S/I is compact Hausdorff, if S is.

THEOREM 8. Let S be a connected semigroup with n-fold set $\bigcup Z_i$ of indecomposability; if I is an ideal in S, then S|I is a connected set with n'-fold set of indecomposability $\bigcup \theta(Z_i) \cup \theta(I)$.

Proof. Suppose that M is a region-containing subcontinuum of S/I which does not contain $\theta(I)$; then $\theta^{-1}(M)$ is a region-containing subcontinuum of S, and thus contains a Z_i . Thus M contains a $\theta(Z_i)$.

COROLLARY 8.1. Let $S = ES \cup SE$ be a compact continuum semigroup with n-fold set $\bigcup Z_i$ of indecomposability. Then S/K is a compact continuum with n'-fold set $\bigcup \theta(Z_i)$ of indecomposability $(n' \leq n+1)$.

9.0. Modified Wada connected set examples. We now give a brief description of the construction of the continua, either with n-fold set or with cluster pair of indecomposability, of our "Clusters of indecomposability" [4]: we assume knowledge of the (C. 4) Network Construction of [9], pp. 84-88, which is based upon Wilder's construction for his Theorem 8 in [15], pp. 290-291. (We hope a more complete description of [4] will be published later.)

9.0.1. Sets of indecomposability case. In [9], pp. 84-85, filling up a connected domain D, we have a class of disjoint nettings $\{N_i\}$ (i=1,2,...) with various properties there described: with each N_i is associated an opening Q_i and a connection T_i . Here disregard the T_i , but associate with each N_i two disjoint openings Q_i and Q_i ; let also Z and Z' be Z' of [9], p. 87; let $\{H_i\}$ be the class of regions, as in [9], p. 86, that close down on the points of Z and let $\{H_i\}$ be the similar class from Z'. The class of nettings $\{N_i\}$ is taken so that an H_i contains Q_i and H_k' contains Q_i' (i=1,2,...) as in [9], p. 86. With this modification in construction, a similar argument to that of Sections 6 and 9 of [9], pp. 84-85, 87-88, gives that $F(D_1) = S$ of Theorem 1 [9], p. 87 is a continuum with 2-fold set $\bigcup Z_i$ of indecomposability, where $Z \supset Z_1$ and $Z' \supset Z_2$; an obvious modification gives n-fold sets (n=1,2,...).

9.0.2. CLUSTER PAIR OF INDECOMPOSABILITY CASE. Let now $Z = \bigcup Z_i$ and $Z' = \bigcup Z_i'$ (i = 1, 2, ...), where $\{Z_i\}$ and $\{Z_i'\}$ are disjoint classes

of disjoint closed subsets. Let $\{H_{ij}\}$ be a class of regions closing down on Z_i in the perfectly separable manner and $\{H'_{ij}\}$ be a similar class closing down on Z'_i (i=1,2,...). Let N_1 with its two openings Q_i and Q'_i be as above in 9.0.1. Take now N_i with its opening Q_1 in H_{11} , N_2 with $Q_2 \subset H_{21}$, N_3 with $Q_3 \subset H_{12}$, N_4 with $Q_4 \subset H_{13}$, N_5 with $Q_5 \subset H_{22}$, N_6 with $Q_5 \subset H_{21}$, and continue by the diagonal process (but modify as in line 12, p. 86 of [9]); and each N_i is also taken so that Q'_i is contained in corresponding H'_{ij} by the diagonal process. A similar proof to that of Theorem 1 of [9], p. 87, now will show that $F(D_1) = S$ there is now a continuum with cluster pair (Z, Z') of indecomposability, where each region-containing subcontinuum W of S must now contain either Z_i or Z'_i for each i.

A trivial example of a continuum with cluster pair (Z, Z') of indecomposability would be; let S be an indecomposable continuum in the xy-plane, which is bisected by the y-axis; let Z'_i be the points of S on x = -1/i and Z_i those on x = 1/i.

SEMIGROUP EXAMPLE 9.0.3. We follow the method of Example 4.0. Let N be the continuum with cluster pair (Z, Z') of 9.0.2, let I be the unit interval, C be a Cantor ternary set on N, where C is taken such that $S = (C \times I) \cup N$ is still a continuum with cluster pair (Z, Z') of indecomposability, and let C be the semigroup C where C was C where C is taken such that C be the semigroup C where C is taken such that C be the semigroup C where C is taken such that C is C where C is the multiplication on C be as in Example 4, that is C is C where C is the projection of C onto C and similarly C for C is the projection of C onto C and similarly C for C is the projection of C onto C and similarly C for C is the projection of C onto C and similarly C for C is the projection of C onto C and similarly C for C is taken such that C

THEOREM 10. Let S be a connected set with cluster pair (Z,Z') of indecomposability, where $Z = \bigcup Z_i$ and $Z' = \bigcup Z_i'$ (i = 1, 2, ...). Then, for i = f, S is a connected set with 2-fold set $(Z_f \cup Z_f')$ of indecomposability; if $p \in Z_f$ and $p' \in Z_f'$, then $S = T(p \cup p')$; if also S is a closed compact semigroup and $S = ES \cup SE$, then the minimal ideal K contains either Z_i or Z_i' for every i.

Proof. Let W be a region-containing connected subset of S. By definition of S with cluster pair of indecomposability, we see that \overline{W} contains either Z_f or Z_f' ; hence, by definition, S is a connected set with 2-fold set $(Z_f \cup Z_f')$ of indecomposability. That $S = T(p \cup p')$ then follows by Lemma 1, and the rest of the theorem by Theorem 1.

Remark 10.0. If S is a compact continuum semigroup with cluster pair (Z, Z') of indecomposability and $S = ES \cup SE$, and Z can be taken so that $\bigcup Z_i$ is dense in S, then S = K; for then K exists and is closed. See the trivial example at the end of 9.0.2.

COROLLARY 10.1. Let $S=ES\cup SE$ and S be a compact semigroup continuum with cluster pair (Z,Z') of indecomposability. Then S does not have a zero.

Proof. By definition the Z_i are disjoint and by Theorem 10 K contains Z_i or Z_i' for every i; hence K = 0 cannot have this property.

Remark 10.2. Obviously one can restate Theorem 6 and Corollary 6.1 for S a connected set with cluster pair (Z, Z') of indecomeosability.

References

- [1] R. P. Hunter, On the semigroup structure of continua, Trans. Amer. Math. Soc. 93 (1959), pp. 356-368.
 - [2] -- Note on arcs in semigroups, Fund. Math. 49, 3 (1961), pp. 233-245.
- [3] F. B. Jones, Concerning nonaposyndetic continua, Amer. Jour. Math. 70 (1948), pp. 403-413.
- [4] R. L. Kelley and P. M. Swingle, Clusters of indecomposability. Amer. Math. Soc. Notices 6 (1959), pp. 643, 829.
- [5] Concerning minimal generating subsets of semigroups, Portugal. Math. 20 (1961), pp. 231-250.
- [6] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium Publications 13 (1932).
- [7] P. M. Swingle, Existence of widely connected and biconnected semigroups, Proc. Amer. Math. Soc. 11 (1960), pp. 243-248.
- [8] Widely connected and biconnected semigroups, Proc. Amer. Math. Soc. 11 (1960), pp. 249-254.
 - [9] Connected sets of Wada, Michigan Math. Jour. 8 (1961), pp. 77-95.
- [10] Sums of connected sets with indecomposable properties, Port. Math. 16 (1957), pp. 130-144.
- [11] H. S. Davis, D. P. Stadtlander and P. M. Swingle, Semigroups continua and the set functions T^n , Duke Math. Jour. 29 (1962), pp. 265-280.
 - [12] Properties of the set functions Tⁿ, Portugal Math. 21 (1962), pp. 113-133.
- [13] A. D. Wallace and R. J. Koch, Admissibility of semigroup structure on continua, Trans. Amer. Math. Soc. 88 (1958), pp. 277-287.
- [14] A. D. Wallace The structure of topological semigroups, Bull. Amer. Math. 61 (1955) Soc. pp. 95-112.
- [15] R. L. Wilder, On the properties of domains and their boundaries in E_n , Math. Annalen 109 (1933), pp. 273-306.
- [16] Topology of manifolds, Amer. Math. Soc. Colloquium Publications 32 (1948).
 - [17] John L. Kelley, General topology, Princeton 1955.

THE UNIVERSITY OF MIAMI

Reçu par la Rédaction le 8.7. 1963