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Let us suppose that #-1ldim @ < o, i.e. 4-1dim@ = n where n < w.
Then & o~ @ C™P according to Theorem 4 and this is impossible be-
cause card@ = 2%, card "P = §,. Therefore n-1dim& = .
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Semigroups and clusters of indecomposability *
by
R.F.Dickman, R.L. Kelley, L. R. Rubin, P.M. Swingle (Miami, Florida)

In [4] and [9] we have generalized indecomposable continua in var-
ious ways; here we wish to consider these types of continua as topo-
logical semigroups. The examples in [4] and [9] are based upon Wilder’s
construetions for his Theorems 1 and 8 of [15], pp. 275-278, 290-292;
these constructions and examples are complicated. However, we also
give below simpler examples for which our definitions and theorems hold.

Below, 8 is a topological semigroup, which we call a semigroup,
such that there is a continumous mapping m: 8 x8 -8, called multipli-
eation, where § is a Hausdorff space and m is associative. For @,y €8,
we write oy = m(w,y); and AB= {my: < A, y<B}. We let % be the
unit of § and 0 be the zero, if these exist, where, for all we 8, 4u ==
= ux and 20 = 0 = 0z. We use E to denote the set of idempotents of 8,
where for ¢ ¢ H, e¢ = e. We recall that a non-null subset 4 of S is a left
ideal if and only if SA C A and it is a right ideal if AS C A; it is an ideal
if and only if it is both a left and a right ideal. We denote the minimal
ideal by K and the null set by 9.

Basic definitions and results concerning semigroups are in [14]; for
topology they are in [6] and [16]. By a continuum, or a subcontinuum
of 8, we mean a connected subset of § which is closed in 8. We think
of § imbedded in another space, so that the connected semigroup S
need not be the same as its closure S; but then the multiplication oper-
ation m is extendable to §; this is true for the examples of connected
semigroups in [5] and [7].

DerFINITIONS. We say, for 4 C B, that A is region-conlaining in B
if the interior of A with respect to B is non-null; that is if there exists
a region (neighbourhood) B such that 4 DR ~ B: if <R n B, we say
that 4 is region-containing at @ The connected set § has an n-fold
set \JZ; (j=1,2,..,n) of indecomposability if and only if every region-
containing connected subset W of § is such that W, the closure of W
in 8, contains some Z;, and we take each Z; non-pull: if » =1, we let
Z = Z, and say S has a set Z of indecomposability, and if § is a con-
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tinuam, then S is a continuwm with a set Z of indecomposability [9]. Let
{Z} and {Z}} (i=1,2,...) be digjoint classes of non-null disjoint sub-
gets of a connected set §; let Z = |J Z; and Z'= {J Z;. Then we say
that 8 is a connected set with cluster pair (Z,Z’') of indecomposability
if and ouly if every region-containing connected subset W of 8 is such
that W contains either Z; or Z; for each ¢ (1 =1,2,..).

ExAMPLE 1.0. Let I = {&: 0 <2 <1}, ¢ be a Cantor ternary set
and let S’ be the cartesian product C xI, where however we take as
the same point all (¢, 0) for ¢ ¢ C; see the Rees Quotient of Theorem 8
below; this is what we call a Cantor ternary triangle in Example 1 of [11],
p. 267 or of Example 4 [12], p. 125. Then 8’ is a topological semigroup
with multiplication (e, &)(¢’, #') = (min(e, ¢'), zx'), where xz’' is the
multiplication of real numbers and O retains the ternary number system
from its construction on & unit interval, so that min(e, ¢’) has meaning.
Let (¢, 0) = (0, 0). Then §’ is a semigroup continwum with set Z = (0, 0)
of indecomposability, and Z is its minimal ideal K. In Theorem 2 of [7],
p. 247, we showed that there exists a biconnected semigroup B, dense
in 8, with dispersion point (0, 0); thus B is a connected set with set Z
of indecomposability; as a semigroup it has unit «=(1,1) and zero
0= (0, 0), as does S'. Let now S; (¢=1,2,3,4) be homeomorphic to
a semigroup 8" or B, §=J 8, 8;~ 81 (j=1,2,3) be Z;;; where
Zj+1 18 the unit of 8; and the zero of Sji.; if @ €S, ¥ € 85 and § <4, let
sy =yw=y; if ¢=7j, sy = (min(e,¢'),ss’) as above. Therefore § is
a topological semigroup connected set with 4-fold set |JZ; of inde-
composability, with minimal ideal K = Z; = (0, 0) of 8y; the unit of §
is the unit of 8,; § inherits the multiplication of §. For similar multi-
plication, see Hunter in [2], pp. 242-243. The set B above can also be
taken as the biconnected semigroup of Theorem 1 or 2 of [5], pp. 234, 237.

DerFINITION. Let ACV C S. Let @ be open in ¥, W be closed in V
and W be connected. We say T'(4,V)=V—{»: there exist ¢ and W
such that @eQC WCV—A4}; we take T(A,8) = T(4) ([11], [12]).

Lemwma 1. Let 8 be a connected set with n-fold set \ ) Zi of indecom-
posability and let pic Z. Then 8= T(|Jps).

Proof. Suppose 2 ¢ 7'(|J pi). Then there exist open @ and a con-
nected and closed in § subset W such that zeQ C W C 8—{J p;. Thus
W is a region-containing subcontinuum of 8, and so, by definition of §
a8 a connected set with n-fold set | J Z; of indecomposability, W must
contain some Zi; hence pse WC S—|Jp: is a contradiction. Therefore
zeT(|Jpi), and so SC T(|Jpe) CH. See [12], p. 127.

Lemma 2. Let py (6= 1,2, ...,n) be n distinct pointé of the cartesian
product S of two nondegenerate connected Hausdorff spaces V and W. Then
in any region B about any p e 8 there exists me 8 and © ¢ T(| po).
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Proof. We follow Jones’ proof of his Theorem 7 in [3], p. 406. Liet
8= {(v,w): veV, we W} and let pi= (vg, wy); it is known that S is
a Hausdort space ([17], p. 92). Since a finite subset in a Hausdorff space
is not connected, let (v, w'’) €8, where o' is not any s in R about
any p €8 let (v', w') = @, Where w’ is not any wg. Let V(wg) = {(v, w):
v eV, w=w. Since V (w;) is a closed subset of 8, |V (w:) is also a closed,
subset of 8, and so S contains an open subset ¢ such that s @ and
§ ~ (UV (wr)) = 9. Now let W)= {(v, w):.0= 10", we W}; then W(v"
is a continuum and p; ¢ W(v"’), for any 4. B

Let Hy= UV xw,) for all wye W guch that (V xwe) ~ @ %= 9.
The set H, is closed, contains @, but does not contain any pi, since
§AV(w)=0. Let H=Hyw W(v"). Then H is a continuum, since
each (V xw,) = V (w,) is connected and intersects W (v'’), which is con-
nected; and HDQ and Hn (UJp:)= 0. Hence @ eQCHCS—Ups,
and so « ¢ T(\Jps)- Thus the lemma is true. C :

TaroREM 1. Let S = BSw SE and let S be o compact semigroup
continuum with n-fold set \JZs of indecomposability. Then the minimal
ideal K contains some Zi; if 8 has a zero 0, then some Zy is 0. If m=1,
then KD Zy=Z. i

Proof. Tf § has a zero 0, then K = 0; if § is compact, then K is
known to exist. Suppose that K does not contain any Zs. Let pie Z;—K.
By Lemma 1, 8= T(Jpi). Let # ¢ K; then xeT(Jp:). But then,
by Corollary 1.1 of [11], p. 266, K n (U p1) = 9, contrary to the way p;
was taken above. Therefore K contains some Zj, and so the theorem
is true.

TrEoREM 2. Let 8 be a compact semigroup continuum with n-fold
set \JZ: of indecomposability. Then meither 8, nor K,—if KD Z, and
KD R a region of 8, —1is the cartesian product of two nondegenerate con-
tinua; and hence K then is either a group or, for all o, ye K, cither all
gy =z or all oy =v.

Proof. The case for 8 is true at once from Lemmas 1 and 2. Sup-
pose that K is the cartesian product of two non-degenerate continua.
By hypothesis, K contains some Z; and let KD |JZ; (i=1,2, s Ih
but KD Zs (j=f+1,f+2, ., n); let ps €2, (1=1,2,...,0), but Py ¢ K.
By hypothesis, £ D R C § and, by Lemma 2, there exists @ ¢ T (Upi, K),
weR; by definition, there exist region-containing continuum W in K
and open set Q such that # €@ C W C K —|Jps C 8—Ups. Since KD RCS,
© may be taken open in §; hénce @ ¢ T({Jps), and so # ¢ § by Lemma 1.
Hence K cannot be the cartesian produet of two nondegenerate con-
tinua, and so by Corollary 1 of [13], p. 278, either K is a group or, for
g,yeK, all zy =2 or all oy =y.
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COoROLLARY 2.1. Let § be a semigroup and compact contimuum awith
n-fold set \ Z: of indecomposability, each Zi be region-containing, S~ ES
v 8B, and E be countable. Then K is a group.

Proof. Since § is a compact continuum and 8= ES v 8E, K is
known to be a continuum. We note if X is a point, K = 0 and so XK is
a group. Suppose that K is not a group. By Theorem 1 and hypothesis,
K Dsome Z; DR a region of §; then, by Theorem 2, for all z,y e K,
all oy =@ or sy =1y, and so all 2o = @ ¢ B, which iy countable. Thus
K ig a continuum containing only countably many points, which is false
in a compact Hausdorff space.

Exswprie 2.0, Let D be the complex number unit dise, ¢ be the
Cantor ternary set, let 8" = D xC, with (0,¢)=(0,0)=2Z for all ce C
(i.e., 8" is a pile of dises with (0,0) in common); and (d, ¢)(d’, ¢)
= (dd’, min (¢, ¢')); in 8= US: (i=1,2,3,4) of Example 1.0, let now
8; (§ =2, 3,4) be homeomorphic to §'; let S, be a solenoid with multi-
plication such that §; is a group. Let otherwise the multiplication be as
in Example 1.0. Let Z;= 8; v Z,=8,. Then § is a continnum with
3-fold set |JZ; of indecomposability and § is a semigroup, as it was
in Example 1.0. Then K = 8, is region-containing and is a group as
in Theorem 2.

ExAMPLE 2.01. Let C be the Cantor ternary set, I' = {#: 0 <& <1}
and let 8’ = C'xI'. Let (1,1) of this be at (1,1,1) of the wyz-space
and let 8’ spiral down upon the square Z in the xy-plane with diag-
onal from (0, 0, 0) to (1,1, 0) so that Z is the limiting set of 8’ and &
projects onto Z; let § then be 8 v Z. For (w,y,2), (#,y,2) €8, let
(@,9,2)(«',y',#) = (x,y,0). Then § is a semigroup and a continuum
with set Z of indecomposability; and K = Z, which is the cartesian
product of two nondegenerate continua, but the conclnsion of Theorem 2
is not true here; nor is its hypothesis for K.

ExAMPLE 2.02. Let § be as in Example 2.01, but let (2, y, 2)(#', ¥, ')

= (zx’, yy', 0); then K =(0,0,0)pZ, contrary to the conclusion of
Theorem 1; but § s« ESu SH.

Lmvwma 3. Let 8 be a semigroup, cancellative in ¥ C S and let ¢ C 8.
If ye X, ceC and C is not region-containing at ¢, then yC is ot region-
containing at yo. If K =8 is a group and k¢ K, then k0 is Teqion-comn-
taining at ko if and only if T is region-containing at c.

Proof. Suppose that yC is region-containing at ye. Sinee multi-
plication m is continuous, for a region B Cy0C 8 and yeeR”, there
exist regions R, B’ of § such that y ¢ R, ¢ € B’ and yo e m(R xR') = RR' C
C B". Bince C is not region-containing at ¢, there exists s e B'—0 such
that ys e RR' C R C yC. Therefore there exists ¢’ ¢ 0 such that ys = yc'.
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Since § is cancellative in ¥, s= ¢’ ¢ 0, which is a contradiction. Hence
it ¢ is not region-containing at ¢, yU is not region-containing at ye.

The second conclusion, with 8= K a group, is well known, but
follows quickly from the above.

THEOREM 3. Let 8 be a semigroup connected set with n-fold set |\ JZ¢
of indecomposability, let the minimal ideal K exist and be closed and let
every nondegenerate region of K contain a region of 8; let XD Z,. Then
K = T(U#2:, K), for all i where z;e Zs and KD Z;. If there are m of
these 2i, then K is a connected set with m-fold set \ J(K ~ Zi) of indecom-
posability. (Also true for all K n Z; + @.)

Proof. Since K = 8z 8 for e X, K is connected. By definition
KD T(|J#i, K). Suppose T'((Jz, K)D K; by Lemma 1 of [12], p. 114,
T({J#, K) is closed. Hence there exist in K a region R of § and ¥ ¢ K—
—T'(J2¢, K) such that ke R and B ~ T({J#, K) = @. Then there exist
an open @ and a closed connected subset W such that keQC WC K—
—Usn C 88—z for all 25¢ Z;—K (j=1,2,..,n; i 5 §) and all 2;= 2.
Because K DO R of 8 then % ¢ T'({_#, 8), although by Lemma 1 T'(l_J25)
= 8. Hence T(|Jz, K)=EK.

Suppose now that there exists a connected subset W of K which
is region-containing, but does not contain any K ~ Z;; hence there exists
z ¢ T(U#z, K), e K. Since this is false, the theorem is true.

In Example 2.01, we see that K is not a connected set with set Z
of indecomposability, although the hypothesis of Theorem 3 is almost
satisfied.

NOTATION AND EXAMPLE. Below in Theorem 4 we say that § is a con-
nected set with n-fold set | JZ; of indecomposability, and with n min-
imal, each Z; maximal and | JZ; is unique. By this we mean that of
the possible ways to choose the Z;, we take one in which » has smallest
possible value, then we take each Z; maximal in size, and finally we
consider only those cases for § where the class of Z; thus can be taken
in only one way. Consider Example 3 of [12], p. 124, where S = I,
(j=1,2,3) and § is a simple chain of the indecomposable continua I.
As noted there § has 2-fold set | JZ; of indecomposability (it also has
3-fold set), and the Z; (i =1, 2) can be taken maximal in three different
ways. Thus the class {Z,, Z,} is not unique. If instead I; were a Cantor
triangle with its vertex ¢ not in I,, then 8= |JI; would have n-fold
set of indecomposability for » = 2, where n is minimal, the Z; can be
taken maximal and the class {Z, Z,} is unique (that is Z,= I, I,
and Z, = gq).

THEOREM 4. Let S be a connected set with n-fold set |\ JZ; of inde-
composability, the minimal tdeal KD Z; (j=1,2,..,n'; n' 21) and K
be a group and have n'-fold set | JZ; of indecomposability; n is minimal,
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each Zi'is magimal and {Z;} is unique‘. Thew K = Zy; if also Z, is region-
containing in 8, then K is either a point or an indecomposable connected set.

Proof. Let {U} be the class of region-containing subcontinua of K.
By Lemma 3, {kC} is the same class, for I ¢ K. We see that €D Z; implies

%0 D kZ; implies ¥ %C = 0D k~'kZy, because KD € v Zy; thus CDZ;is

equivalent to kC D kZ;. Hence {Z;} and {kZ;} are the same class, since
{Zs} (i=1,2,..,n) is unique in order that S have n-fold set (JZ; of
indecomposability. ’

It Z,;C K, then kZ;CK by definition of an ideal; also if %Z;C K,
then k~%Z;= Z;C K. Hence Z;C K is equivalent to kZ; C K; and by
hypothesis KD Z;. We wish to prove that{K = \UZ;. Since KD\ JZy,
1ot ke | JZ; and suppose k' e K—|JZ;. Then &' = (&% ")k, Thus % e Z;
implies ' e (k% ")kZys; but (k'k~")kZ; is itself some Z; contained in I
Therefore %’ e |JZ;, which is a contradiction. Hence UZ;2 K= UZ%;.

Let {0’} be the class of region-containing eonnected subset of 8.
We note that Z; = (1) {Ca: Cae {0’} and CuD Z;}, and since the C, are
closed in 8, Z; is closed in S. Hence the connected set K is the union
of m' closed subsets Z;. Thus, if we suppose o' >1, there exist two of
these which intersect; say Z; ~ Z, # @. Bach Ce{C'}, where either
0D Z, or 0D Z,, is such that O D Z; ~ Z,. Hence {Zy ~ Zy, Zyy 2y, ..y Zn}
is a class of n—1 elements such that every C contains at least one of
them: thus § is a connected set with (n—1)-fold set of indecomposability,
and s0 % is not minimal contrary to hypothesis. Therefore »’= 1, and
50 K= Z, and K is a connected set with set Z, of indecomposability.
Thus, by the definition of an indecomposable connected set, K is inde-
composable, which however includes the case when K is a point.

ExAMPLE 4.0. Let @ be the complex number group on the unit
circle and let 8’ be the clan with kernel &, irreducible from @ to the
unit of the example, following Wallace and Koch’s Corollary 1, in [13],
p. 286. Let C be the Cantor ternary set, form 8§’ x U, and shrink each
g X C to a point for g.e G. We are following here Hunter’s Example 2.2
in [1], p. 286. Thus we can get a semigreup S, which may be described
a8 a band of spirals winding down upon @, where there is a spiral for
each ¢ e ; and § is a continuum with set & of indecomposability, where
@ = K. Thus the first conclusion of Theorem 4 ig true; K is not an inde-
composable continuum as in the second conclusion, but the hypothesis
of Theorem 4 is not satisfied.

Examrrr 4.01. Let 8 be the union of an indecomposable contin-
uum and a Cantor ternary triangle of Example 1.0, where these have
intersection the point 2, which is the vertex of the triangle; let the multi-
plication on the indecomposable continuum I’ be that of a group and
on the triangle be as in Example 1.0, with # at the unit of I'. Then § si
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a continuum semigroup with set I' of indecomposability and K = I';
this illustrates Theorem 4.

ExAMPLE 4.1. This illustrates Theorem 3 and the second conclusion
of Theorem 4. Let N be a topological group G and an indecomposable
continuum.  Let I = {®: 0 <& <1}. Let C be a Cantor ternary subset
of N, where O is taken such that §= (0 xI)w N is a continuum with
set N of indecomposability. Let the multiplication in N be that of @,
and so for ¢,¢' e C, ¢c’ € G. For @, 2" eI, g, let (¢, 2)(¢,2') = e’ ¢ G,
(6,#)g = cg and g(¢, ) = ge. Thus § is the desired semigroup above.

COROLLARY 4.2. Let S be a nondegenerate compact semigroup contin-
wum with n-fold set \_JZ; of indecomposability, where n is minimal, each
Z¢ is mazimal and the class {Zi} is unique. If there ewists x € S such that
z8 and Sz are both region-containing and if 8 = I, then 8 is a topological
group and an indecomposable continuum.

Proof. Neither, for all @,y ¢S, is all 2y =« or all 4y =y, since
28 and Sz are region-containing and § is a nondegenerate compact con-
tinuum. Hence, by Theorem 2 above and by Corollary 1 of [13], p. 278,
8 is a group, and so, by Theorem 4, is an indecomposable continuum.
For a related result, see Koch and Wallace’s Corollary 1 in [13], p. 286.

'Lievwa 4. Let O, ¥ CS, where C is compact, let Z'C S and let
X=1{2: 2eY,aCDZ'}. Then X is closed in Y.

Proof. Suppose that X is not closed in ¥, and so let 2"« Y be
a limit point of X such that @' ¢ X. Then.#'C p Z', and since #'C is com-
pact, there exist an open set U #'C and a point 2’ € Z’ such that 2’ ¢ U.
By continuity, there exist open sets U’ and U such that #'¢ U’ and
CCU” and for which U'U"CU. But U' DweX; hence UD U'U”
D U'CD 20D Z' D¢, which is a contradiction. Thus the lemma is true.

DeriNiTION. For €, ¥ C S, we say that the right O-deflating subset
in Y is the set of all y ¢ ¥ such that yC is not region-containing in S.
(Or put left for right and Oy for yC.)

- Exawers. Let § be the closed plane unit square with diagonal from
(0, 0) to (1,1) and the multiplication be coordinate-wise. Let ¥ be a sub-
arc of § with a sequence y; (4 =1,2,...) on the #-axis: then each %8
is not region-containing. Here the right S - deflating subset in ¥ is closed
and is contained on the x and y axes. :

ExAwrre. It is of interest to note that yC can be region-containing
when € is not. On the #-axis, let § consists of the isolated point ¢ and
the sequence y; ( = 1, 2, ...) with sequential limit y,. Let ¢ = 4o, ¥ = %1
and Y= Jy: ((=0,1,2,..). Let g1y;= ¢ = ¢ = qys = Yeg. Then y0 is
region-containing, although € is not and the O-deflating subset in
Yis @.
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THEOREM 5. There ewists a compacl connected commutative semi-
group S, with ¥ C S, such that the vight S-deflating subset in Y is not
dlosed.

Proof. We first show the existence of a nonconnected semigroup &’
on the the #-axis with this property. We let o', 2] = {&: o' <o <2"}.
Let U be the Cantor ternary set on [0, 1], y¢ = 2 +1/6, ¥{ = [¥sa+ 35—
—9i11), 9il, Xi be the Cantor ternary set on ¥i, Y= JY: (i=1,2,..)
and let 8'=0u Y U2

Define Uy = [(j—1)/3%, §/3 1~ C, for i any natural number and § any
odd natural number: thus the Uy come from the nonomitted intervals
of the Cantor ternary set construction, and, for any 4, (JUpu= C and
only one Uy then contains any ¢ e C. Note that the sets Uy and X arve
open subsets in §'.

We now define for 8§ a multiplication m: 8 x8" =8 as follows:

(a) m(e,¢'y=1, for ¢, ¢’ e C;

(b) m(y,y')=max(y,y'), for ¥,y in the same XYy

() m(y,y")=1yx, for y e Xy, ¥’ ¢ ¥; and k=min(i, j), © #J;

(@) m(2,9)=yi=m(y,2), for ye ¥y

(e) m(c,y)=j/3"=m(y,ec), for ye¥s and ce Up;

(f) m(2,¢)=-c=m(e, 2), for ¢eC; and

(g) m(27 2)=2.

‘We remark: the above multiplication gives §'= HS' = §8'H, K =1
e C is the zero of 8§, 2 is a unit for O, and every element of ¥ is idem-
potent. It is easily seen that the operation m is commutative. (Here
we may use ¥;in place of ¥y, but then § below would not have a set 2
of indecomposability.)

We now show that §’ is associative. Consider fivst y(y'c) and (yy')e,
for y € ¥y, y' e Yx and ¢ ¢ 0. Take first the case ¢ > k. Then (yy’)c = yic;
sinee ¢ is in some Ug, say ¢ e Usp; then (yy’)e = yxe = §/3*. Then also
y(y'c) = y(j/3"); then §/3" ¢ C and so in some U, say §/3* € Up. Thus
y(y'/3" =n/3"; but note Uns A Uyij/Sk, and so their right end points
are equal, that is §/3% = n/3’. Therefore (yy"Ye=1y(y’c). A somewhat
similar proof shows this for the cases 4+ =% and i < %

We see that (yc)¢' =1 = y(ec'), for either ¥y = 2 or y e ¥. Consider
yy'e, for y = 2, y" € Y, ¢ e 0. Then (2y")¢ = yrc and 2(y'c) = 2(yx0) = yxo.

Since m is commutative, any other permutations of the elements
still is associative from the above arguments. Thus we conclude that
8’ is associative.

Consider now whether m is a continuous multiplication. We see
ﬁr_st t.hat m is continuous on ¢ X C and on ¥ x ¥, since then the multi-
plication is trivial. Let now ye ¥y, ¥’ ¢ ¥z, and suppose % > k; then
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yy = yg. Let U be an open subset of 8’ containing wr; now ¥; and ¥
are also open subsets of 8’ which contain y and y’, respectively, and
m(¥ix Xi) = yx € U; therefore m is continunous on Yi;x¥p for i>k.
A similar proof shows this, when ¢ <%.

Finally, let ¥ ¢ ¥z and consider 2y = yx. Let U be an open set con-
taining . There exists an open set V containing 2 such that V ~ (X
for 1=1,2,..,k)=0=V ~ 0. Then m(V xX¥z)=yre U, and so m is
continuous on 2 x ¥. Thus m is continuous on (¥ v 2) x (¥ v 2). Con-
sider now ¥ xC.

Consider ye for ce 0, y € ¥y; let ce U Let U be any open subset
of & containing ye = j/3°. Now Uy and Y; are open subsets of §' with
ceUx and ye Y, and m(¥ix Up)=j/8"« U. Hence m is continuous
at (v, ¢)-

Consider 2¢ and let ¢ >0 and let (¢—e, ¢+ ¢) be the open interval
of ¢ with these end points. There exist § and ¢ such that ¢e Uy C(c—s,
¢+e¢). The set 4 = 2 v (\UYs) (k=14,4+1,4+2,...) is open in 8’ about 2.
It follows that m(4d x Uy) C-UxC (6—e, c+¢), and so m is continuous
at (2,¢). Thus m is a continuous multiplication over 8’ x 8.

For all 4, the set 48’ consists of a finite subset of ¢ together with
the finite set {Jyr (k= 1,2,...,14), and so it has a null interior. How-
ever 28’ contains €, and so has a non-null interior. Thus the right (and
so the left) §'-deflating subset in ¥ is not closed; hence the right C-de-
flating subset in ¥ is also not closed. )

Let now 8= 8'xI, where I is the unit interval. Then define
m': 8" x 8" =+8" by w'((s,n), (s’ ) = (m(s, §’), v2'). We now form
a connected space S by identifying the points (s, 0)eS” as one point
and eall this point 2. Hence S i a connected set with set 2 of indecomposabil-
ity. Let 2i= (y¢,1) e ¥ and 2'= (2,1) e ¥. Then .S is not region-con-
taining, although #'S is, and so the right S-deflating subset in ¥ is
not closed.

Remark 5.0. In the definition of m in the proof of Theorem 5,
change now (b) and (¢) to (be) and (d) to (d') where

(bo) m(y',y)=y" = m(y,y’), where y’' = max(y,y’), for y,4"¢ ¥;

(d') m(y, 2) =m(2,y) =y, for ye X.

Then a similar proof to that of Theorem 5 gives that § s a con-
nected set with set z of indecomposability, S is a commutative semigroup
with unit at (2,1) e 8, K = #, the right S-deflating subset in ¥ is closed,
but the right C-deflating subset in Y 4s not closed.

THEOREM 6. Let S be a connected semigroup with n-fold set {JZ¢ of
indecomposability, where each Z; is region-containing, O and Y are con-
nected subset of 8, C is compact and O C S and the right C- deflating subset
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in Y is closed in Y. Then, for y ¢ ¥, either every yC is region-containing
or every yO is not region-containing.

Proof. Since € is connected, yO is connected. Let X;= {x: ze ¥
and «C D Z;). By the definition of § a connected set with set (JZ; of
indecomposability, if yC is region-containing, then yC contains some Zi;
thus ¥ is an element of some X;. By Lemma 4, each X; is closed in Y.
Let Y’ be the set of elements in ¥ such that yC is not region-containing.
By hypothesis, the right C-deflating subset in ¥-is closed in ¥, and
so ¥’ is closed in ¥. Also, if yC is not region-containing, ¥0 D Z; for
any 1, since each Z; is region-containing. Thus ¥’ ~ (|JX:) = @. Hence
the connected set ¥ is the union of the disjoint, closed in ¥, subsets
¥’ and [ JX;. This is a contradiction. unless one of these subsets is null,
and so the theorem is true.

COROLLARY 6.1. Let 8 be a compact continuum and semigroup with
n-fold set \JZ: of indecomposability, where each Z; is region-containing.
If the right S-deflating subset in 8 s closed and s e S, then either s8 is
region-containing for all s or every s8 is mot; then, if zero 0 ¢ S, no s8 s
region-containing, but if unit u e 8, every sS is region-containing; and 8§
does not have both a zero and a unit. '

The proof follows from Theorem 6.

QOROI}LARfWé.Z‘. et 8 be as in Corollary 6.1, and both the left and
right 8-deflating subset in S be closed; let unit u € ~ Z;. Then S is a topo-
logical group and an indecomposable continuum.

Proof. By Corollary 6.1, for se§, s8 is region-containing and so
$82 Z;Jw for some 4. Hence there exists s~1e § such that ss—!= .
Similarly SsD Z;D u for some 4, and so there exists s’ ¢S such that
s's = 4. Hence it follows that § is a topological group.

Since u e (JZ;, each region-containing continuwum containg u, and
s0 T(u)= 8. Suppose that there exist z,y e 8 such that y ¢ T'(2). Then
there exist open @ and continuum W such that yeQC WC & —o; hence
Y ' =yrleQuC WoiC S t—aw~t= §—u. Since § is a topological
group, Qo' is open and Wa~! is a continuum, and so y” ¢ T(u) = 8.
Hence T'(x) = 8§ for all # ¢ 8, and by Corollary 14.3 of [12], p. 128, § is
an indecomposable continuum.

THEOREM 7. If 8= A8, 8 is closed and compact, and 8D A4, where
A is countable, then there ewists ae A such that ad is region-containing
in 8. If further 8 is a continwum with n-fold set U Ui of indecomposability,
each Zy is region-containing, A = E and the right 8-deflating subset in 8
18 closed, then every sS is region-containing and, for n =1, each ¢ ¢ B is
o left unit for Z = 7,.

Proof. Since §=A8=48, §= Jal (a €A). Since ¢ and S are
compact, a8 is closed. Suppose that no a§ is region-containing in S.

icm°
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Then the closure of §—af is 8. Since 4 is countable, this is contrary
to Theorem 15 of [6], p. 11. Hence a8 is region-containing in §. Hence,
by use of Corollary 6.1, the theorem follows without difficulty.

Notation. If § is a semigroup and I is an ideal of §, then the Rees
Quotient S/I = 8—1I v {I}, with @ {I} = {I} = {I}-» and oy the ordinary
multiplication of § if @,y ¢I. Let 8: §—>8/I be the natural mapping
which is the identity on S—I and sends any element of I into the
point {I}. If § is a topological space, then the topology on S/I is defined
as follows: a set U C S/I is open if and only if 67*(T) is open in §. If T is
closed, then S/I is compact Hausdorff, if § is.

TrEOREM 8. Let S be o conmected semigroup with n-fold set \JZi of
indecomposability; if I is an ideal in S, then S/I is a connected sei with
n'-fold set of indecomposability \_j0(Z:) v 6(I).

Proof. Suppose that M is a region-containing subcontinnum of S/I
which does not contain 6(I); then 0HM) is a region-containing sub-
continuum of 8, and thus contains a Z;. Thus M contains a 0(Z;).

COROLLARY 8.1. Let S = ES v SE be a compact continuum semigroup
with n-fold set \ JZi of indecomposability. Then S/K is a compact con-
tinuum with n'-fold set \_J6(Zy) of indecomposability (n' < n-+1).

9.0. MoDIFIED WADA CONNECTED SET EXAMPLES. We now give a brief
description of the construction of the continua, either with n-fold set
or with cluster pair of indecomposability, of our ¢Clusters of indecom-
posability’’ [4]: we assume knowledge of the (C. 4) Network Construction
of [9], pp- 84-88, which is based upon Wilder’s construction for his Theo-
rem 8 in [15], pp. 290-291. (We hope a more complete description of [4]
will be published later.) )

9.0.1. SETS OF INDECOMPOSARBILITY CASE. In [9], pp. 84-85, filling up
a connected domain D, we have a class of disjoint nettings {N¢} (¢ =1, 2, ...)
with various properties there described: with each Ny is associated an
opening @; and a connection Ty. Here disregard the T, but associate
with each Ny two disjoint openings @; and @; let also Z and Z’ be Z' of [9],
P. 87; let {H;} be the class of regions, as in [9], p. 86, that close down
on the points of Z and let {H;} be the similar class from Z’. The class
of nettings {N;} is taken so that an Hj contains @ and H} contains @7
(i=1,2,..) as in [9], p. 86. With this modification in construction,
a similar argument to that of Sections 6 and 9 of [9], pp. 84-85, 87-88,
gives that F(D;) = 8§ of Theorem 1 [9], p. 87 is a continuum with 2-fold
set | JZ: of indecomposability, where ZD Z, and Z'D Z,; an obvious
modification gives n-fold sets (n=1,2,...). .

9.0.2. CLUSTER PATR OF INDECOMPOSABILITY CASE. Let now Z = |JZ;
and Z'= | JZ{ (i=1, 2, ..), where {Z;} and {Z;} are disjoint classes
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of disjoint closed subsets. Let {Hy} be a class of regions closing down
on Z; in the perfectly separable manner and {Hj;} be a similar class
closing down on Z; (1 =1, 2,...). Let NV, with its two openings @; and @;
be as above in 9.0.1. Take now N; with its opening @, in Hy,, N, with
Q.C Hy, N, with @; C Hy,, N, with Q,C Hy,, N; with @ C Hy,, Ny with
@ C Hg, and continue by the diagonal process (but modify as in line 12,
p. 86 of [9]); and each Ny is also taken so that @f is contained in cor-
responding H;; by the diagonal process. A similar proof to that of Theo-
rem 1 of [9], p. 87, now will show that F(D,) = § there is now a con-
tinuum with cluster pair (Z, Z') of indecomposability, where each region-
containing subcontinuum W of § must now contain either Z; or Z; for each ¢.

A trivial example of a continuum with cluster pair (Z, Z’) of inde-
composability would be; let S be an indecomposable continuum in the
oy-plane, which is bisected by the y-axis; let Z; be the points of § on
o= —1/i and Z; those on x=1/i.

SEMIGROUP EXAMPLE 9.0.3. We follow the method of Example 4.0.
Let N be the continuum with cluster pair (Z, Z’) of 9.0.2, let I be the
unit interval, ¢ be a Cantor ternary set on N, where C is taken such
that 8= (CxI)uw N is still a continuum with cluster pair (Z, Z’) of
indecomposability, and let @ be the semigroup N where zy = », for
@,y e N. Let the multiplication on § be as in Example 4, that is ay
= @pYp, Where @p is the projection of # ¢ S onto ¢ and similarly y, for 4.
Here K= N = @G. In a similar manner we can take N = K of a semi-
group continuum with n-fold set of indecomposability.

TEEOREM 10. Let 8 be ¢ comnecled set with cluster pair (Z,Z') of
indecomposability, where Z =1\ JZ; and Z' = \JZ; (i=1,2, ...). Then, jor
i==f, 8 is a connected set with 2-fold set (Z;w Z}) of indecomposability;
if peZ; and p'eZ;, then S= T(p v p'); if also § is a closed compact
semigroup and 8 = BS u SE, then the minimal ideal K contains either
Zy or Zi for every 1.

Proof. Let W be a region-containing connected subset of . By detf-
inition of § with cluster pair of indecomposability, we see that W con-
tains either Z; or Zj; hence, by definition, § is a connected set with 2 -fold
seti (Z; v Zj) of indecomposability. That § = T(p u p') then follows by
Lemma 1, and the rest of the theorem by Theorem 1.

Remark 10.0. If § is a compact continuum semigroup with cluster
pair (Z, Z') of indecomposability and § = BS u SE, and Z can be taken
so that | JZ; is dense in §, then § = K; for then K exists and is closed.
See the trivial example at the end of 9.0.9.

CorOLLARY 10.1. Let 8= ES v 8E and 8§ be a compact semigroup

continvum with dluster pair (%, Z') of indecomposability. Then 8 does not
have a zero.
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Proof. By definition the Z; are disjoint and by Theorem 10 K con-
tains Zg or Z; for every ¢; hence K = 0 cannot have this property.

Remark 10.2. Obviously one can restate Theorem 6 and Corollary 6.1
for 8 a connected set with cluster pair (Z, Z') of indecomeosability.
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