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Incompressible transformations
by
D. Maharam * (Rochester, N. Y.)

1. Introduction. This paper is concerned with the study of a 1-1
measurable non-gsingular transformation T of a o-finite measure space
(X, u) onto itself, and of the sequence {w,} of Radon-Nikodym deriva-
tives of the powers of 7. Our starting point is the observation that one
can imbed X in a larger measure space (X*, u*) and (in a sense) extend 7
to a 1-1 transformation T* of X* onto itself in such a way that T* is
measure-preserving (Theorem 1, 3.2). Thus, in a sense, the theory of 1-1
measurable non-singular transformations can be reduced to the theory
of measure-preserving transformations.

For this to be useful, one must be able to interpret further prop-
erties of 7' in terms of T*; and our main theorem (Theorem 2, 5.1) is
that the 7% which we construct will be incompressible (on X*) if and
only if T is incompressible (on X). This leads fairly immediately to ergodic
theorems for incompressible 7'; by applying an ergodic theorem of Halmos
to I'*, we obtain variants of the theorems of Halmos, Hopf and Hurewicz
(Theorem 3, 7.4). Another application of Theorem 2 (or rather of one
of the lemmas leading to it) gives the following result (a special case
of Theorem 4, 8.2): if ws(®)—0 on a set of positive measure then 7' ig
compressible. As a corollary we have (8.3) that if p is finite, then 3 wa(x)
converges almost everywhere where ws(#)->0. We also obtain some re-
sults related to these, and study the case in which uX = oo (Theorem 5, 8.4).
The method can also be applied to give relative density properties of {wn},
and the author hopes to deal with this in a subsequent paper.

2. Preliminaries; notation.

2.1. We make the standing hypothesis, throughout this paper, that
(X, u) denotes a o-finite complete measure space, and that 7 is a 1-1
mapping of X onto itself such that, for all 4 C X, (i) if 4 is measurable,
80 are T'4 and T4, (ii) if 4 is null, so are TA and T4 (1). We some-

* The preparation of this paper was supported by the National Science Foundation.
(') We often omit brackets to simplify the notation, writing 74 for T(4), etc.
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times consider other measures on X; thege are always assumed to be
o-finite and equivalent to au.

Throughout what follows, all subsets of X referred to are under-
stood to be measurable. A function on X is a measurable extended-real
function (the values i oo being allowed); letters like f, g, by H ave under-
stood to refer to functions. The letters m, n,4,j are understood to run
over all integers (0, 1, --2,...) in the absence of qualifying phrages.

The iterates I™ of T' also have the properties (i) and (i) above;
hence each null set # is contained in the invariant null et e We;
shall often discard invariant null sets from X without further warning.

2.2. Bach T™ has a Radon-Nikodym derivative op( ; '), unique
(modulo null sets), such that

) WA = [ walw; T)au(w) for all  AC X,
A

usually the transformation 7' intended is clear, and we omit it, writing
on( 3 T) and w4(w; T) simply as w, and on(®). We nsually write w; as w;
of course, wo(2) = 1. The following known properties ([2], p. 750) follmwi
easily; in the first instance they are true only “almost everywhere”,

but by discarding an invariant null set from X we engure t
exactly, for all v e X, e fht they hold

(2) 0 < wa(w) < 00,

(3) @i45() = wy(@) 0 T's) ;

in particular,

(4) On41(2) = 0 (0) (1) = () (1),
(5) Oon(®) (T "0) = 1.

From (4) we obtain:
(6) ITn>0, wiz)=a0@o(ls).. (T ).
Finally we note:

(7) If f > 0, jj(‘”)dﬂ(m) - J‘]'(Tnm) (J)n(ll:‘)d/.l,(m)
X X

=ic[ (17" ) jon( T "2)} dp(a) .

2.3. A set 4 C X such that 774
(ynder T), and the set | JT™4 is th
tion 7' is compressible if there e
#(B—TRB) > 0. Clearly B—TB is

AT"A=@ it m%n is wandering
en called dissipative. The transforma-
xists BC X such that TBC B and
then wandering, whence:

icm°®

Incompressible transformations ‘ 37

(1) The following statements are equivalent (2):

(i) T is compressible,

(ii) There exists a non-null wandering set,

(iii) There exists a non-null dissipative set,

(iv) T~ is compressible.

2.4, If AC X ig invariant under T, then the restriction 7|4 of T
to A is a transformation of the measure space (4, u) satisfying our
assumptions. It is easy to see that, if xed, wu(w; T|4A) = wulz; T).
Accordingly we shall usually not bother to distinguish between 7' and T'|A4.

3. The space X*.

31, Let (¥,») denote the measuré space consisting of the half-
line ¥ > 0, with Lebesgue measure ». We take (X*, u*) to be the measure-
theoretic product (X, u)x(Y,»), and define 7* on X* by: for each
(,9) e X,

1) I*w,y) = (Tw, ylo(@)) .

Because of 2.2 (2), T* is a well-defined 1-1 map of X* onto itself;
and 7'* is an extension of 7' in the sense that, for each x e X, T* maps
the “@-fiber” @ x ¥ onto the “Tx-fiber” T x Y (scaling it down by the
factor w(x)). We easily verify (using 2.2 (4) and (5)) that

() T, y) = (T, ylo(@)) = (T2, yo_(T"5)) .

We shall later verify that 7™ is measurable (and in fact measure-
preserving); but before doing so it is convenient to introduce some further
notation. Let h be any non-negative funetion on X; that is, 0 < h(z) < oo
for all # e X (and h i3 measurable). We define its “upper” and “lower”
ordinate sets by:

) 8h = {(@, p)| v e X, 0 <y <ha},

Soh = {(z,y)we X, 0 <y <ha},
and say that an ordinate set of h iz any set Sh between them (that is,
8,k C Sk C 8°%). From Fubini’s theorem, 8% — S,k is null; thus each Sk

is measurable, two different ordinate sets of & differ by at most a null
set, and further

4) w*(Sh) = [ h(@)du ().
p.q

For each n we define a function ks on X by
(5) ha(@) = B(T"2) w-_n(T"%) = h(T"®) ws(z) (veX).

(*) By a theorem of Halmos ([2], p. 738) these properties are also equivalent to
saying that T™ is compressible for some n, or for all n # 0.
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Note that hy==h, that
(6) haa(@) = T Tw) 0 (@)
and that (from 2.2 (7))

) S (@) (@) = [ 1(o)du (o).
X P

It is also easy to verify that 7%"(8°%) = S%_, and ISy h)

) t = Syh..
so that, in an obvious sense, we may say "

{8) T(8h) = 8 (h.p) .

3.2, ToEOREM 1. T* is a measure-preserving tramsformation of (X*, W),

XV*e first observe ‘rihat, from 3.1 (8), (4) and (7 ), the transforms 787,
and T*-18h of an arbitrary ordinate set Sh are always measnrable and
satisfy . ’

(1) w(I*8h) = w*(8h) = pH(T*8h) .

Since the family of all ordinate sets generates the family of all
measgrable subsets of X* (modulo null sets), it follows by standard
techniques (*) that, for each (measurable) B*C X*, T*B* and 7B+ are
measurable and p*(T*B*) = u*B* = u¥(T™B¥), proving the theorem.

3.3. For later use we derive some further pr i i
d roperties of I, st
for (measurable) 4*C X* and » e X, write o o

@) A*(@) = {y| (@, y) e 4%} ;
this is measurable for almost all » X , &

. nd we define a measurable -
tion (4% ) on X by setting able fune

2) v(4% @) =9(4d%®)) (ae. in xXy.
We have (I%7"4*)(2) = {yo (z)| y ¢ A*(Tz)}, whenee

(3) w(TF A% ) = o(z)v(4*; Tw),
and therefore
(4) v (T*A¥ Tw) o () = v(d*; ).

}‘Text we derive an extension of 3.1 (8).
negatlvta (possibly infinite) function on
We define the (measurable) non-negative

As before, let % be any non-
X, and let n be any integer.
funetion H, on X by:
(5) Hy(z) = = J

‘ n(2) 18;15) hi(2) = sup h(T%n) o4(x)

i>n ’

(*) See, for example, [6
situation, ple, [6], p. 235, for a treatment of a similar but move general
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from 3.1 (5). A routine verification shows that

(6) Hu(2) = Hya(2) = Ho(T) 0 ()
and that
@) Hy(x) = max {ha(), Ho(L5)w ()} .
From 3.1 (8) (applied to T*' and H,) we now obtain
(8) TS (Hp) = 8 (Hys1) C S(Hz) .
Turther, we have
(9) S(Hy) = | T %8h) modulo null sets,
2N

since when S = 8, the two are easily verified to be equal.

One final remark will be useful in the next section. If h satisfies
W) = h(Tx)w (@) (@eX), one easily sees that h(w)=h(T"r)wa(w), and
50 Hyu(x) = h(x) in this case.

4, T-invariant measures and ergodicity of T*. )

41. Let 1 be another measure on X (o-finite and equivalent to u),
with Radon-Nikodym derivative ¢ with respect to u. By altering ¢ on
a null set, if necessary, we may assume @ everywhere positive and finite.
The measure 4, on X defined by 4(4)= A(T4) (4 C X) is also o-finite
and equivalent to w; an elementary caleculation shows that its Radon-
Nikodym derivative @, with respect to u is given by

@ @) = p(To)w(®) (zeX);
this is of course also finite and strictly positive. Thus
) Sp, = T*—I(Sl}") .

The measure / will clearly be invariant under 7' if and only if ¢ = ¢,
(almost everywhere), or equivalently 7* “Sp = Sp. The following well-

- known result of Halmos ([2], p. 751), which we state as a lemma, is an

immediate consequence. .

4.2. LEMMA. A necessary and sufficient condition for T to admit an
invariant measure (c-finite and equivalent to u) is that there exist a func-
tion ¢ on X such that (almost everywhere)

1) 0 <p®) < oo,
@) o) =p(T2)w(x), or equivalently

Sg is invariant under T* (4).

(*) Here ¢ is 1/f in Halmos’s notation.
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We note that, together, conditions (1) and (2) here are also equiv-
alent to each of the following:

(8) There emists a T*-imvariant A*C X* such that, for all »e X,
0 <v(d*; o) < oo
(If (3) holds, 3.3 (4) shows that »(A*; ) fulfils the above require-

ments on ¢; conversely, take A* = Sp.)

(4) There ewists a funciion h on X such that 0 < h(x) < co and Hy(x)
= H,(#) < co (#eX).

(If (4) bolds, 3.3 (6) shows that H, fulfils the requirements on ¢;
conversely, take h = ¢, which satisfies (4) in view of the remark at the
end of 3.3.)

Remark. It follows from a later result that in (2) the equality can
be replaced by either inequality. In fact, if ¢(2) < ¢(T2)w(z) (v eX),

Lemma 5.8 below shows that on the non-dissipative part of X we have.

equality, and so have an invariant measure (on this part and thence
on all X); while if instead ¢ () > ¢(T%)w(2) (z ¢ X), we apply the pre-
,vious reasoning to the function 1/p.

We shall also see (Lemma 5.4) that a weakened form of (4) is suf-
ficient for X to have a non-null invariant subset admitting a T-inva-
riant measure. Though apparently irrelevant, these considerations are
needed for our study of the ineompressibility of T*,

The following elementary remark will also be useful:

(8) If a is a positive real nwmber, and if the ordinate set Sh is imvariant
under T*, then so is S(ah).

4.3. It should be noted that it will happen only rather rarely that
T* will be ergodic on X*. Of course, T* cannot be ergodic on X* unless
T is ergodic on X; but moreover, whenever T' admits an invariant meas-
ure (o-finite and equivalent to u), T* cannot be ergodic. To see this,
apply Lemma 4.2; the set Sp is invariant under T*, and both Sp and
X*—8p are non-null. It would be interesting to know whether, con-
versely, if T' is ergodic on X and admits no invariant meagure then 7*
is ergodic on X*. One can obtain a further necessary condition for ergo-
dicity of T*, in terms of the sequence {wa}, but this condition may per-
haps be a consequence of the other two; the author hopes to deal with
this elsewhere.

5. Compressibility.

5.1. THEOREM 2. A necessary and sufficient condition for T* {o be
compressible (on X*) is that T be compressible (on X).

The sufficiency is trivial; for if 4 C X is a non-null wandering set
under 7', then A xY is a non-null wandering set under T*. We prove

icm
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the converse in the next section, after deriving a sequence of lemmas,
the first of which is a restatement of a result of Halmos and Ornstein
([3), pp-. 89, 90).

52, Levma. If uTE < uE for al ECX, and if pI'F <uF for
some FC X, then T is compressible.

In other words, if w(x) <1 for almost all ¢ X, and if p{z| o(2)
<1} >0, then 7T is compressible.

5.3. LeMMA. Suppose that there ewists a non-negative function g on X
such that (i) g(T2) (@) < g(x) (x e X), (ii) there exists a fn,o.n-null ZCX
such that g(Te)w(?) < g(2) for all ¢ Z; then T is compressible (%).

Remark. When g =1, this reduces to the previous lemma.

Proof. Sﬁppose not, and put M = {x|g(z) = 0}; then (i). gives
TMC M, and since T is incompressible, it follows that M —TM is null.
Put M= J{T M| n > 0}; then M is an invariant set containing I,
and M—M is null. Now, from (i), Z ~ M = & and therefore ,u(Z—lI{ )
+#0, whence u(TZ—M)= p(T(Z—H))>0. Let A= {a|weX—M,
0 < g(w) < oo}; then ADTZ— M, from (i), a,r‘u} so is also not null. Also,
from (i), TACA, so (from incompressibility) u(4 —TA4)=0. Let
B=[{T"4| n>>1}; B is invariant, BC 4, and px(4—B)=0. Thus B
likewise is not null.

Since A contains TZ except for a mull set, B does the same; but
B is invariant, and therefore B contains Z except for_a_, null'set. Noﬁe
that, on restricting ¢ and 7' to B, we still have conditions (i) and' '(11)
satisfied (with Z replaced by Z ~ B), together with the further condition

0<gl@)<oco (weB).
Tt follows that for some @, b > 0 the set D = {#| #¢Z ~ B, a < g(#)
< b} has positive u-measure.

We define a measure A (equivalent to u) on B by setting, for CC B,
A0 = J g(#)du(x). Then, by (i):

(i)

MT0) = [ gl@)du(o) = [ 9(To)o(@)du(@) < AC;
rc o

and a similar caleulation shows that A(TD) < AD. By Lema 5.2 applied
to the measure space (B, 1), T|B is compressible (with respect to A

(%) Conversely, if T is compressible it is easy to construc!; such a g, so that 5.3
gives a necessary and sufficient condition. However, 5.2 (as it stands) do‘eg not, as
when uX < oo the hypotheses in 5.2 can never be satisfied. A fu_rther su:f:.hclent con-
dition for compressibility, which neither includes nor is included in 5.2, will be given
later (Theorem 4, 8.2).
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and so with respect to x); @ fortiors so is T giving the desired con-
tradiction.

5.4. LevMmA. Suppose that the only T -invariant sets D C X admitting
- inwariant measures are null, and let b be a function on X such that
0 <h(®w) < oo (e X). Then, for (almost) all meX, Hyw)= oo; that is
(3.3 (9)) U{T*"8h] n = 0} = X* (modulo null sets).

Proof. Put 4 = {#]| Hyx) = co}; we first show that A is invariant.
In fact (from 8.3 (7) and 3.1 (5)), Hy(@) = max {h(x), Ho(Tw)w(w)}; since
both % and  are positive and finite, it follows that Hy(@)= oco<=>Hy(Tx)
= ooj that is, A is invariant. Thus B = X—A ig an invariant set on
which 0 < k() < Hy(®) < co; and in any case Hy(w) = Ho(To) o (2).

Put Z = {w| 2 eB, Hy®) > Hy(Tx)w(x)}; we show that 7 is null.
If not, Lemma 5.3 (applied to T|B, with g = H,) would prove that 7' is
compressible; but then X contains a non-null dissipative set D, necessarily
invariant, on which T trivially admits an invariant measure, contrary
to hypothesis. Thus Z is null, and we have Hyw) = Hy(To)w(x) almost
everywhere on B. By Lemma 4.2, T|B admits an invariant measure;
thus by hypothesis, B is pull, g.e.d.

55, LeMmA. Suppose that T is measure-preserving, ond that there
ewists @ subset A of X satisfying (1) 0 < pA < oo, (if) w(X—1J (TPA} i3> 0))
= 0. Then T is incompressible.

Proof. We may assume X = U{T*4] i3> 0} (by removing an in-
variant null set). In the present argument, we restrict ¢ to run over the
non-negative integers only; n runs over all integers, as usual.

Suppose that the lemma is false; then, from 2.3 (1), there exist dis-
joint non-null sets B, such that T'Bs= Bpy1. The set €= | B, is in-
variant, and can be written C= ¢~ JT'4 = | (T°C ~ T"A) (since
¢ = T°0) = | JT'D where D= A ~ C= {J(D ~ By). Note that D is not
null (else ¢ and B, are). Thus 0 < uD= > u(D ~ By) < pd < oo, and
hence there exists (large negative) n, such that

(1) pD AU B) =D u(D~B) <u(B).

i<mno j<ng

On the other hand,

Bn,C O =\ IT'D=JTD ~ Ba),
1,

where TYD ~ By) C T'By = Byy; which is disjoint from B,, unless n -4

= n,. Thus By, C UTD A Bryi)y giving p(By,) < 2 pT(D A Bnpi)

= S u(D A By (becanse T is measure-preserving) = D, u(D ~ Bj)
i<ne

< u(By), from (1). But 7 is measure-preserving, 0 u(Ba,) = p(B1), giving

a confradiction.

* ©
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6. Proof of Theorem 2.

6.1. We assume that T™ is compressible (on X*), and have to show
that T is compressible (on X). We first consider two special cases
separately (6.2, 6.3), and then combine them to cover the general
case in 6.4.

6.2. Assume first that X admits a T-invariant measure.

Trom Lemma 4.2, theve exists a function ¢ on X such that 0 < (o)
< oo and @) =g¢(Tr)o(@) (©eX). Thus Sp is invariant under T*.
By 4.2 (5), so is S(ng) for each n > 0.

By hypothesis, there is a non-null D*C X* which is dissipative
under T* Since clearly |J{S(ip)} i > 0} = X*, there is a positive j such
that D* ~ S(jp) = B* say, is not null. Being the intersection of a dis-
gipative set and an invariant set, B* is also dissipative; thus we may
write B* as the union of disjoint sets 4. (n =0, £1, ...) such that
T*Ay = Anr1 and p*(da) # 0. Write B= U{4d-x| n = 0}; then ™'B
= J{dal n=213CBCEC Sh, where &= jp. Thus, for (almost) all
weX, »(T*'B; x) <»(Bj @) < h(z) < oo. From 3.3 (3) we therefore have
o (2)v(B; Tw) = »(T*7'B; ) < v(B; ) < oo.

Now B—T+"'B = A,; and since u*4,>0, there exists Z C X such
hat uZ>0 and all the ugections” Ag~ (2xY), #eZ, are of positive
y-measure. For all zeZ we have p(T* 7 B; &) 41 (d,; 2) = v(Bj 2) < 00,
giving »(T*'B; 2) < »(B; #) (e Z). Thus the hypotheses of Lemma 5.3
hold (with g= »(T*'B; )), and T is therefore compressible.

6.3. Now assume instead that there is no T - invariant measure o
any non-null invariant subset of X.

We take a function B on X such that (i) 0 < h(#) < oo (x e X),
(ii)th(m)dy(m) < ooj such an h is easily constructed. By Lemma 5.4,

we have |J{I* "Sh| n > 0} = X* But u*(8h) < oo; thus, from Lemma 5.5
(applied to X* and T+, with A = 8h), T* is compressible, and the pre-
sent case cannot arise.

6.4. In the general case, consider the family of all (measurable)
invariant subsets F of X which admit 7'-invariant measures (o-finite
and equivalent to u[F). The algebra of measurable sets modulo null sets
being complete, there exists ZC X which is (modulo null sets) a least
upper bound for F; further, we may suppose Z = \J{Fs| n = 1} where
Fped. Clearly Z is T-invariant; and a T-invariant measure on Z is
easily constructed by combining such measures on the sets Fp— (Fy v ... v
o F,_y). Of course, Z xY is a T*-invariant subspace of X*; and the
construction (of X* from X) in § 3, if applied to (Z, u), yields just the
subspace (Z x ¥, u*) of X*. In other words, we may consistently write
Z* =7 «Y; and similarly we have (X—Zp} = (X—Z) =X = X*—7Z*.
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The argument in 6.3 now shows that T* is incompressible on X*—Z¥,
and the argument in 6.2 shows that if I’ is incompressible (on X and
hence on Z) then T* is incompressible on Z*. It follows at once that
T* iy incompressible on X*.

7. Ergodic theorems.

7.1, Assuming that T is incompressible on X, we have seen (Theo-
rems 1 and 2) that 7* will be both measure-preserving and incompress-
ible on X*. By applying standard ergodic theorems to 7™ we can readily
obtain information about 7. We illustrate the method by giving 3 closely
velated results (Theorem 3 below). The firgt two of these are similar
to Hopf’s theorem. ([4], p. 49), and constitute generalizations of it to
the case of transformations which need not preserve measure. The third
resembles a theorem of Hurewicz ([5]; see also [1]), but does not seem
to contain or be contained in it. Our starting point is a slight sharpen-
ing of a sharpened form, due to Halmos ([1], Th. 5), of the Hopf theorem.
Before stating it, we develop the necessary notation.

Let b be a (measurable) funetion on X; we write

(1)  Ph={g| hie) #0}, Qh=T"Ph) (n=0, +1,..).

Thus @Qh is invariant, and X—Qh is the largest invariant set on which
h vanishes identically. Following Halmos, we call h invariantly positive
if >0 and u(X—Qh)=0.

If f, g are (almost everywhere) finite functions on X, if n is a pos-
itive integer, and if z ¢ X, we write

@) T3 0) = ) {(T'0)] 0 <i<n—1},
(3) La(T; 1, g5 @) = fo( T @)/gn(T; ),

with the conventions (here and in similar expressions) that /0= co
if g is positive, —oo if @ is negative, and that 0/0 = 0. We simplify the
notation by omitting the symbols 7,f,y when the intention is clear,
writing for example fu for fu(T; ), and Ln(s) for Lu(T; f, g; ). From
these conventions it results that

(4) La(@)=0 if and only if fu(@)=0.
It is clear that if # ¢ X —@f then fu(w) = 0 (n > 0), and consequently
(5) La(r) =0 (veX—Qf).

Conversely, if T is incompressible and f > 0, one sees that for almost
all x €Qf we have fu(#) >0 for all large enough #.

We can now state Halmos’s extension of Hopf’s theorem in the
following form. .
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7.2. LEMMA. Suppose that T' is measure-preserving and incompressible,
that | 1s finite and summable, that 0 < g(x) < co (v € X), and that Qf C Qg.
Then, for almost all ® € X, Lu(x) converges to o finite limit as n —>co.

Remark. This differs from Halmos’s formulation in that he re-
quirves g to be invariantly positive—that is, in effect, Qy = X. The exfra
generality in 7.2 is trivial, from 7.1 (3), but is convenient for our appli-
cations. In applying the Lemma we shall assume Pf C Py, which of course
implies @f C Qg. Hopf himself had required ¢(z) > 0 almost everywhere—
that is, in effect, Pg= X.

7.3. For our modified ergodic theorems we need still further nota-
tion. As before, let f, g be finite functions on X, and # a positive integer;
further, let J be any set of real numbers (usually an interval). We define,
for each # e X and each >0,

= g 2 {(T)] 0 <i <, oiw) 1)

W el =Bl 1 0500 = Sy @ 0 <o <y o) 51
(T wd@)] 0 <i<n, o) e I}
T (T oyo@)] 0<i<n,oio) e}

(2)  Mu(w,J) = Mu(L; fy g5 @, J)

with the convention 0/0 = 0 as before.

7.4, TEEOREM 3. Let T be incompressible on X, let f and g be finite
(measurable) functions on X, and suppose that f is summable, that g is
non-negative, and that (i) g(») =0 implies f(x) = 0 (v X). Then

(a) for almost all © € X, and for almost all t>0 (depending on x)
Ka(z, t) tends to o finite limit as n—co;

(b) for almost all ® € X, and for all t in o fived set D of positive real
numbers, dense in [0, co) (and not depending on ) Knu(w, ) tends to a finite
limit as n—>oco;

(¢) there ewisis a sequence {Tm} (m=1,2,..) of closed intervals such
that J,C I3 C ... and | Jpm = (0, o), such that, for each m and for almost
all e X, My(x,Jn) tends to a finite limit as n—>oco.

Proof of (a) and (b). Let ¢* = X x[0,1]C X* and let y* denote
the characteristic function of C*. We define finite measurable functions
* g* on X* by: fH@,y)=f@ @, y), g*,y)=g(@)2*e,y). Clearly
f* is summable (on X*). In analogy with 7.1 (1) we use the notation
P*h* = {(x, y)| W@, y) # 0} (where h* is a function on X*), and simi-
larly @*h* = | JTI*"P*h. Then clearly P**= (Pfx¥)~ C*C(PgxXY)n O*
= P*¢*, and therefore Q*f* C Q*¢*. By Theorems 1 and 2, T* is meas-
ure-preserving and incompressible on X*. Hence, from Lemma 7.2,
we have that IL.{T*; /*, ¢*; (¢, y)) tends, for all (®,y)e X*—N* where
u*N*=0, to a finite limit a8 n~-<o. On applying 3.1 (2) to the definitions
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of Kn and Ls, we readily find Lu(T*; /%, ¢*; (@, 9)) = Ku(L; |, g; @, y)
and (a) follows immediately by an application of Fubini’s theorem to N,

To derive (b), we note that there is a null set ¥,C ¥ such that,
for all y e Y—¥,, we have u{z| (x,y) e N*} = 0. We merely pick a denge
sequence D= {dy| m=1,2,..3C Y-X,.

7.5. The proof of Theorem 3 (c) uses a different but similar con-

struction. For each & >1, put O%a)= X ~ [a%, 4] C X*, and let 72 be
the characteristic function of C*(a). Define f} by: fi(x, y) = y=f (2) y¥@ oY),
and similarly for gi; we see that %, gk are finite and measurable, that
a is summable and ¢4 non-negative, and that P**C P*¢*, so that
@*f*C @*¢*. Thus, for each @ > 1, Lemma 7.2 gives a null set N*C X*
such that, for all (s, y)e X*—N%, L,,(T“; fa, 953 (2, y)) converges to
a finite limit as n->co. We let & run over the integers 2, 3, ...y and put
N*= |JN;. Since N* is null, we can choose %, > 0 such that, for almost
all weX, (,90)¢ N*; in fact y, is “almost arbitrary”. We take Jy
=[yom™, yom] and easily verify that, for m =2, 3, ..,

La(T% [, 03 @, yo)) = Mal T3 7, g5 @, Tm),

whence (¢) follows.

7.6. Remarks. When T is measure-preserving, we have wi(w)=1
for all ¢ and w; thus Ka(z, t) = Ku(w, 0) = La(z) whenever ¢ < 1. That i,
we may in this case simplify parts (a) and (b) of Theorem 3 by putting
=0, and we then recover Hopf's theorem. We do not quite, however,
recover Halmos’s extension of Hopf's theorem, our starting point (7.2),
because of the assumption labelled (i) in Theorem 3—that PfC Py.
It would be desirable to weaken this to Qf C Qg (compare 7.2); but I do
not know whether this is possible. If it can be done, Theorem 3 (a) will
include Halmos’s theorem.

Again, as was remarked in 7.1, part (¢) of Theorem 3 is similar to
the Hurewicz theorem. In fact, if we could replace the intervals J, by

their union, the whole half-line (0, 00), (¢) would then assert that the
sequence :

n—1 n-1
X f(l"w)w«(w)/ D 9(Tia)oula)
=0

1=0

converges (as 5 -»oo) to a finite Limit almost everywhere. This is just
the assertion of the theorem of Hurewicz (%), though of course thig is
not & proof of that theovem (nor does that theorem appear to imply
Theorem 3 (c) immediately). We remark further that, as the proof shows,

(*) As improved by Halmos ([1], Th. 4) — and except for our restriction PfcPy.
Halmos requires Qg = X, which trivially generalizes to Qf cQg.
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the intervals Jn can be taken to be of the form [yo/dm, Yoanm], x'vhere
{ap} is any sequence we please tending to oo, and y, is an almost arbltr'ary
p(;gitive real number. It would be easy to enlarge the family of possible
Ju's still further.

8. Convergence of > wy.

8.1. We shall say that a sequence {fz} (n=0, £+1,...) of fm%utions
on X “steps down’at © ¢ X if, for some n, we have fn(m)_> sup {fu()] ¢ > n}.

Clearly if the sequence fu(z) is strwtly‘decl'easmg then {f,} steps
down at 2. Again, if fa(w) > 0 for all # and lim fu(a) = 0, then {f»} steps

~+00

down at a.
We write i
X, = {z| wa(x)>0 as n—>oc0}C X,

X, = {a] {wn} steps down ab ) CX.

Thus X,C Xy; from 2.2 (4), both sets ave invariant under T.
82. THEoREM 4. If pX,>0, then T is compressible, and X, is
dissipative (modulo null sets). If further uX; < oo, then X;= X, (modulo

o0
i, g S 9 19 o % 7
null seis), and moreover > wn(m) 48 convergent almost everywhere on X (V)

-—00

Before giving the proof, we remark that the theorfam' wi]lla,rpply
to any invariant subset of X (merely consider the restriction of T' t(f
this invariant subset). In particular, if uX, < co, then 2 on(®) cf)n‘vergeb'
almost everywhere on X,. We shall show later (8.6) that the finiteness
restrietions on u here cannot be removed.

Proof of Theorem 4. Sinee X is invarviant, it is enou'gh to con-
sider the restriction of 7' to the measure space (X, u); that is, we may
assume X = X, throughout, and have therefore

1) {wn} steps down at @ for all we X .

To prove that 7' is compressible, we apply 3.3 (5) to the constant
funetion h =1; then

Hy(z) = sup {h(l‘iw) wi(@)] i >=n} = sup {oyw)| ¢ > n},

and consequently, from (1), there exists for each # an n (@) sugl thag
Homys1(@) < Hpm(®). For some integer m, the set Hm= {2l 3,,;1((:;
< Hy(w)} is thus of positive measure. We mnote that, fromT. ((m;
Hu(To)o(#) = Hup(@) < Huls) (@ ¢ X), and moreover Hy(Tx)o

0
(") This is a sharpening of the known result that the set where E{a;,],l(m]3| Iv:n zw‘i
converges is dissipative. The last part of the theorem is a restatement rsfta.noer el e
result: if uX < oo and X is dissipative then 3 wn(z) converges almost everyw
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< Hp(w) if & ¢ By. The hypotheses of Lemma 5.3 are therefore satisfieq
(with Z = By, and g=Hy), and T' iy therefore compressible.

To prove X (= X,) dissipative, we note that, by the same argument
as in 6.4, X has a maximal dissipative subset 4 (modulo null sets),
necessarily invariant. If u(X—A)> 0, the preceding argument applies
to X—A to prove that T|X—A4 iy compressible, so that X —4 containg
& non-null dissipative set B. But then 4 U B is dissipative, contradicting
the maximality of 4. Thus, modulo null sets, X = A and is dissipative.

We may therefore write X = | JI"W (n =0, 41, ...) where the gets
I"W are pairwise disjoint. Assume now that uX < oo; then for each
integer ¥ we have

[ Y osap@ =) | oaw)du()= 3 p(IT*"W) = pX < oo,
T¥W —co n TEW n

sok that the series ) wa(z) has a finite sum almost everywhere on each
T"W, and therefore on X. A fortiori, wa(®) >0, 50 @ ¢ X,, for almost all
# e X (=X,), completing the proof.

8.3, COoROLLARY. If uX < oo, then for almost all we X all five of
the following assertions are equivalemt:

(1Y {on} steps down at x, (17 {w-s} steps down at »,
2)* ],;'.l',; (@) =0, @) Erioco,.(m) =0,
(3) Zw,.(w) s convergent.

This follows fr(_nln the preceding plus the remark that (from 2.1 (1))
wn(2; T) = w_y(m; T7), so that Theorem 4 applied to T~* gives (1)"=(3)

00
8.4. Let O denote the set of all » € X for which Y ws(x) converges;

C i3, of course, a subset of X,, and we have just seen that if uX,; < oo
then €= X,= X, (modulo null sets). We now investigate the relation
between these sets when uX; = oo ®).

A familiar argumen.t (c?mpare 6.4 and 8.2) shows that X has a (possi-
bly null) subset ¥ which is (modulo null sets) the least upper bound

of the family of all invariant sets of finite measure. ‘We write X—V = U,
and have: ’

(1) U,_V a,re.disj(?int invariant sets, UuV=2X, V is a countable
union of invariant sets of finite measure; every non-null invariant
subset of U has infinite measure.

(*) Actually Theorem 5 below ap

0= X,= X, again. plies even if uX, < oo, but then gives only
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. These properties are easily seen to characterize U,V uniquely (mod-
ulo null sets). Further, they have a “hereditary” character, and there-
fore, for every invariant set ZC X, the sets Z U, Z~V constitute
the corresponding decomposition of Z.

8.5. We shall prove
THEOREM B. Modulo null sets, C =X~ V=X, V.

We disregard null sets freely in what follows.

As was just remarked, the decomposition of X; corresponding
to 84(1) is {X;n U, X; ~nV}; thus we may continue to restrict at-
tention to X;. That is, we may assume X = X;, and have to prove
¢=V.
Let Z be any invariant subset of X (= X,) of positive finite mea-
sure, Then, by 8.3 applied to the subspace Z, we see that > wu(®) cons-
verges on Z; that is, ZC 0. Hence V' C C.

To prove CCV, we note that 0C X (= X;)= |JT"W as at the
end of 8.2; thus 0= J{Cm| k=0, X1,..,m=1,2,..} where Cun
= T"W ~ {#] Y ou(@) < m}. Further, each Cin can be written as the
union of sets D(k, m,r) (r=1,2,...) of finite measure. Write E(%k, m, r)
= U{T"D(k, m,7)| n=10, +1,..}, an invariant subset of X, and note
that each D(k, m,r) is a wandering set (being contained in T*W). Thus,
by essentially the same argument as in 8.2, we have

uB(k, m,r) = 2@(1’”(17(7% m, 7)) = J D onl@)dua

Dikm,r) 1 -

<muD(k,m,r) < oco.

This proves that B(k,m,r)CV. Thus each D(k,m,r)CV, and so
finally CCV.

8.6. One might expect, by analogy with 8.3, that the series Z; wnl(®)
n>

and Y wa(z) might have the same convergence set ¢ as Y wa(w) even
n<o —0

when uX; = co; but this is not the case in general. It will be clear from
the following considerations that all three series can have different con-
vergence sets. The same reasoning also ghows that the restriction pX; < oo,
in the last part of Theorem 4, is essential.

Suppose that (X, 1) is any normal (and non-atomic) measure space,
and A .any non-null subset of X such that A(X—A4) # 0. Then, given
any (measurable) functions y, on A (n = 0, 41, ...) such that 0 < ¢, < 0o,
we can always find a compressible 1-1 measurable transformation T of X,
and a measure p on X (o-finite and equivalent to 1), agreeing with A on 4,
such that wn(®) = pa(2) for almost all w e A (and for all n). For we can
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easily arrange that the sets I™A are disjoint, of positive measure, and
cover X; and we define x4 on T"4 by
pB= [ yaw)id(@) (BCI"A).
"B
In other words, the functions w, can be preseribed arbitrarily on any
proper subset A of X, provided the tramsformation T' is allowed to be
compressible and the total measure uX is not required to be finite.

Thus, for example, we can arrange that ws,—0 bub 2 On = co
throughout any such A4; and so on.

.As another application of this construction, suppose we start with
an tnoompressible transformation T) on (X, ) as above; then we can
find a compressible transformation T, on (X, u) such that # and 1 agree
on 4, and further wa(w; T,) = wa(w; T,) on A for all (these w’s being
calculated in terms of u, 4, respectively). Thus, it is impossible to tell
solely from the behavior of the functions w, on a proper subset A4 of X’
whether or not the transformation 7 is compressible on X, ’

8.7. We conclude with one more corollary to Theorem 4 (8.2):
CoroLLARY. If T dis incompressible, then for almost all xe X

limsup w,(s) = lims =
o onl0) = Imsupon@) = sup waa) > 0.

For the set where %upwn(w) < Supw() is just X,, and so is
n

null from Theorem 4. This proves one equality; the other
the first applied to 7% 4 Vi other follows from
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On products of sets in a locally compact group
by
J. H. B. Kemperman* (Rochester, N. Y.)

Introduction. Let & be a locally compact group, u a left Haar
measure on @, u, the corresponding inner measure. The group @ is said
to be unimodular if the left invariant measure p is also right invariant;
this happens, for instance, when @ is either compact, or abelian, or
discrete, or a semi-simple Lie group.

Let further A and B be given non-empty subsets of & Then AB
will denote the set of all elements » ¢ G which admit at least one repre-
sentation as a product @ = ab with a e A and b < B.

TugoreM 1.1. Suppose that G is unimodular and connected. Them

(1.1) /h(AB) = /‘*(A) + ui(B),

unless p(@) < pa(d)+puy(B);, in which case G 18 compact and AB = G.

The special case, where @ is abelian, is due to Kneser [6]. The fur-
ther special case, that G is also compact and second countable, is due
to Shields [9]. It remains to determine the class of pairs (4, B) such
that (1.1) holds with the equality sign. For an abelian connected group,
this problem was solved by Kneser [6].

THEOREM 1.2. Suppose that G is unimodular, and further that there
ewists a pair of non-empty subsets A and B of @& such that

1.2) sl AB) < uy(A) +p(B) .

Assertion: @ contains at least ome open amd compact subgroup F
of sige p(F) < pis( AB).

More precisely, the set AB is both open and compact, and the open
and compact subgroup F can be chosen sn such & way that

1.3) aFb CAB whenever aeA and beB.
Finally, if a subgroup F satisfies (1.3) then AB = A,B, as soon a8

(1.4) A,CAF, B,CFB, puds)+pdB))> p(4dB).

* This research was supported in part by the National Science Foundation,
grant G-24470.
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