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On quasi-translations in 3-space

by

S. Kinoshita* (Saskatoon, Canada)

The topological translation (1) of the plane was characterized by
Kerékjarté [1] and Sperner [2] independently by apparently different
conditions. To show that their conditions do not characterize the topo-
logical translation in 3-space is the purpose of the paper. Our example
is naturally constructed from Fox-Artin’s pathological one [3] (§ 3).

The notion of quasi-translation is due to Terasaka [4]. His condi-
tion is also apparently different from those of Kérekjarté and Sperner,
but we shall prove that their three conditions are equivalent to each
other for any m-sphere (n >1) (§1).

In § 2 we shall be concerned with locally polyhedral 2-spheres with
one singularity in 8-sphere; this may be of independent interest, even
though it appears in the paper only ag a preliminary to § 3.

The paper has an appendix, in which we shall prove that if an auto-
homeomorphism of a eertain kind that includes quasi-translations oper-
ates on a manifold, then that manifold must be an n-sphere.

The author of the paper acknowledges with great pleasure his gra-
titude to Professors R. H. Fox and D. Montgomery for their valuable
advices.

§ 1. Let % be an auto-homeomorphism of a compact metric space X.
Then % is said to have equi-continuous powers at » ¢ X, if for each ¢ >0
there exists &> 0 such that whenever d(z,y) <6, d(A™(z),A"(y)} <s
for every integer m. First we prove the following:

* The paper was completed when the autor was at the Institute for Advanced
Study, being supported by the National Science Foundation of U.S.A. It was announced
in the University of Georgia Institute 1961. See Topology of 3-manifolds and related
topics, Proe. The Univ. of Georgia Imstitute, 1961, pp. 223-226, Prentice Hall, Engle-
wood Cliffs, N. J. 1962.

(*) Let g and k be two auto-homeomorphisms of a topological space X. Then g
and  are said to be topologically equivalent, if there exists an auto-homeomorphism f
of X such that g = fhf™*. A topological translation means a transformation that is topo-
logically equivalent to the ordinary translation.
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LevyA 1. Let X be o compact metric space such that X— P is con-
nect‘ed, where p is a point of X. Then an auto- homeomorphism h of X has
equi-continuous powers at every e X—p and does not have them at
if and only if nglfwhm(a) =p for every compact subset C of X —p, b

Proof. Suppose that h has equi-continuous powers at every e X —
and does not have them at p. Clearly #(p) = p. Then it has been proveg
that for each e X the sequence {A™(x)} converges to p when m 0o
or m—>—00 (see Homma and Kinoshita [5] (%) Theorem 4, p. 36). Then
h is not almost periodic at # ¢ X—p (see [5] Lemmas 1 and 1’ p. 30)
From this it follows that Lm A™#)=p (see [6] Theorem 1,, P- 32):

Mm—>koo
Further,

m 2™2) #@ and  Tim 2"(2) # 0.
m—oo m—»—00

Therefore,
lim B™@) =p and  lm A™@)=p.

m~»0 M—>+—00

Now let O be a compact subset of X —p. Let > 0 be given and
let U(p) = {yld(p, y) <e}. For each 2 ¢ € there exists a natural number
Jl_Iz such that d(h™(w), p) < &/2 whenever |m|> M,. From the assump-
tion that % has equi-continnous powers at @ it follows that there exists
9 > 0 such that @(k"™(w), A™(y)) < ¢/2 for every m, whenever d (%, ¥) < 8.
Therefore, d(k™(y), p) < & whenever |m| > M, and d(w, y) < 8. The fam-
le.of open sets Uwz), where Uyz)= {y|d(=, y) < 8z} covers CO. Since
C is compact, we can choose a finite number of points #, ..., #x such
that Us(a;) (i=1,...,%) covers C. Then, if we put M—:—Max(zfx ’ M)
for each ze(C ¥™x) e U(p) whenever |m| > M. Thus Iim 7;;”‘(?3‘,) =z;>,

— —>=00

Conversely assume that hzl W0y = p for every Zompact- subset
m—++00

er of X—p. Now we shall prove that % hag equi-continuous powers at

Fuil;i a‘oelX—;p. Let e >0 bg given and let U(p) = {y|d(p,y) < &2}

er let U(z) be a sufficiently small neighborhood of x. Then

P 3Mm
ml_l)immh U(2)) = p. Therefore there exists a natural number M such

?hat W™ () C U(p) whenever |m} > M. There exists 6 > 0 such that
if d(»,9) <4, then ye U(z) and a (k" (@), K" (y))
Then, it d(z,y) <4, d(K™(v), B (y))
proof is complete.

Let X be a compact metric
homeomorphism % of X ig

< ¢ for every |m| < II.
<e¢ for every integer m. Thus our

ric space 'and P a point of X. Then an auto-
said to satisfy Sperner’s condition, if for each

(*) Instead of the terminology equs.

our papers [5] and [0, ~continuous powers”, “regular was used in

®
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compact subset ¢ of X—p there exists a natural number M such that
0 A K™C) =@ whenever |m| > M.

LEMva 2. Let X be a compact metric space and p a point of X. Then
an auto-homeomorphism h of X satisfies Sperner’s condition if and only if
fim A™C)=p for every compact subset C of X—p.

Mm—rke0

Proof. Suppose that h satisties Sperner’s condition. If Iim A™(C)

Mme—t00
> g # p for some compact subset ¢ of X—p, then h_does not satisfy
Sperner’s condition for the compact subset D= 0w U(g), where Ul(q)
is a sufficiently small neighborhood of ¢. Therefore lim ™) = p for
+

Mmoo
every compact subset ¢ of X—p. The converse is clear.

Topological translation in §? was characterized by Kerékjérté [1]
as an orientation preserving auto-homeomorphism of §* which has equi-
continuous powers at every # e §2—p but not at p, where p is a point
of 82 An orientation preserving auto-homeomorphism of 8* which satis-
fies Sperner’s condition is also a topological translation, as was proved
by Sperner [2]. Terasaka [4] defined a quasi-translation of 8™ as an orien-
tation preserving auto-homeomorphism of S" such that for each compact
subset ¢ of 8"—p Iim A™(0) = p. Lemmas 1 and 2 imply that

m—>=+00
Kerékjdrid’s and Sperner’s condition for 8° and Tarasaka’s condition
jor quasi-translations are equivalent to each other for amy S* (n =1).

§2. A subset H of a polyhedron K with a triangulation will be
said to be locally polyhedral at z < H, if there exists a neighborhood U
of @ such that U ~ H is polyhedral by a subdivision of XK.

TaEorEM 1. Let K be a 3-cell with a triangulation. Let 82 be a 2-sphere
in K such that 82 ~ (bdry K) = p and that §* is locally polyhedral at every
point z e 82—p. Let C be the complementary domain of §* in K such that
the boundary of C consists of only 8. Then 0 is a 3-cell.

Proof. Let g be a point of §* which is different from p. First we
ghall prove the following proposition:

(*) For each ¢ > 0 there exists a polygonal simple closed curve ¢ on
S2—(p v q) such that ¢ does not bound a disk on §2—(p v g), ¢ bounds
a polyhedral disk D in &, where D ~ §2= ¢, and that D is contained
in the e-neighborhood of p.

To prove (s): We may suppose that ¢ < d(p,q). Let 4 be a disk
on 82 such that 4 is contained in the e-neighborhood of p and that A
contains p as an -inner point. There exists a polyhedral disk B in K
satisfying the following conditions:

(i) B is contained in the e-neighborhood of p,
(ii) bdryBC bdry K,
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(il) Int BCInt K,
(iv) B separates p and q in K,
(V) BAS2=Bn 4,

(vi) B~ A consists of at most a finite number of polyeo i
closed curves. FOeonal simple

. Let d be one of the innermost simple closed curve of B A 4 in the
disk A. Further, suppose that d bounds a disk ¥ on Ad—p, where
IntE ~ B=@. Since d bounds disk F in B, we can modify 1’3 to B
= (.B.—If') v B. We may suppose that B,, the small deformation of B X
satisfies the conditions (i)-(v) for B and further, the condition B n§1’
C (?m A)—d. Repeating this brocess, as far as possible, finally welhwe
a dls.k B, which satisties the conditiong (i)-(v) for B and in which B, r:A’
consists of at most a finite number of polygonal simple cloged elzn'ves
that do not bound disks in A —p, respectively. The cage BinA=0
fioes not ocenr, since B, separates P and ¢ in K. Now let ¢ be one of the
Innermost simple closed curves of B;~ 4 in B,. Then ¢ bounds a disk D
in B,, yhere (Int D) ~ 82 =@. D is contained in the &-neighborhood
?f p. It is clear that ¢ does not bound a digk in #—(p o g) and that D
is contamgd ‘in C. Thus the proof of the proposition () is complete

Now it i easy to prove our theorem. For each 1/n (n=1,2 . )
construet a disk D, as shown in the proposition (x). We may" ;up
pose that Dy, ~A D, = g, if m = a. Put s = bdry D,. Then ¢; bounds

a disk M on 82, where I containg
s N o T,hen ¢ ¢n and cyy; bound an an-

M’uDl,DluN]_u_Dz, vy Dy UNp U D

N4-1g oo

are palyhedral 2-spheres, which bound closed 3-cells T, C O (n=1,2,..).
Further, I, ~ I, = Dy and il;rﬂl" = p. Since Lej Inwp =0,it is easy
n=1 ’

to see that C is a 3-cell, Thus the proof is complete.

" aAichImgl.c;mﬁnb%[ry domain (¢ o.f 82 in 88 will pe called trivial,

locally puions 4;131 .a%r]fold and Mms.e [6] proved that it S in & iy

oo Wit ‘ one singularity, tﬁ_len at least ore of the two
h) ntary domains of 82 must be trivial. Thig theorem will not

be used explicitly bel i i
b djscﬁssmny'r ow, but will be convenient for the understanding

THEOREM 2. Let & and & 3
' ‘ 2 be two locall , ; s dn 8
with one singularity at p €8T~ 8% such thata Y POumedrel spheres in S

(i) S;z. g Sg =P,
‘(Iu) Sff ‘_p 8 coeftained in the trivial complementary domain of 8.
7 81 is tamely imbedded i S, then S is tamely imbedded in S°.

@
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Proof. Let 0, be the complementary domain of S} which contains
a point of S—p and let C, be that of S which does not contain any
point of Si—p. Clearly 0, O,. Since T, is a §-cell, from Theorem 1 (%)
it follows that O, is a closed 3-cell. Since another complementary do-
main of 8% is trivial by our assumption, &3 is tamely imbedded in S°.

THEOREM 3. Zat S be a locally polyhedral 2-sphere in 8 with one
singularity af p eS8 and let S5 be a polyhedral 2-sphere in & such that
83 ~ 8% = p. Suppose that U is the complementary domain of S5 such that
Si—p is contained in U. Further, let f be a homeomorphism of the 3-cell
U into another S5 such that f(S3) and f(S3) are two locally polyhedral
2-spheres with one singularity ot f(p), respectively. If 8 is not tamely
imbedded in 8°, then f(87) is also not tamely imbedded in S5.

Proof. (&) is contained in the trivial complementary domain of
7(83). Therefore, if £(83) is not tamely imbedded in §3, then by Theorem 2
7(8%) is not tamely imbedded in S5. If 7(8%) is tamely imbedded, then
f can be extended to a homeomorphism of §° onto S5. Since 8} is not
tamely imbedded, f(S}) is not tamely imbedded.

Theorem 2 can be generalized to the following:

TeworEM 4. Let 8§ be a tamely imbedded 2-sphere in 8° and S5 a locally
polyhedral 2-sphere in 8% with one singularity at p such that

(i) 8in S5=0p,

(ii) 8% is contained in the trivial complementary domain of S3.

Then S is tamely imbedded in 82

Proof. (8 w 85)—p is locally tame in 8°—p. Therefore there exists
a triangulation of §°—p, in which (8} v S3)—p is an open polyhedron
(cf. Bing [7]). This means that both & and S5 are two locally polyhedral
9-spheres in 8° with one singularity at p, respectively. Since S is tamely
imbedded in &%, by Theovem 2, S is tamely imbedded in S°

Similarly we have the following:

THEOREM 5. Let A be an arc in 8% and 82 a locally polyhedral 2-sphere
with one singularity ot p such that

(i) 4~ 8 =p,

(i) A—p is contained in the trivial complementary domain of S

If A is tamely imbedded in S°, then S2 is tamely imbedded in S°.

§ 3. Now we construct a quasi-translation % in S8 which is not equiv-
alent to a topological translation.

Put

I={&,y,2) -1<o<1, p*+<1}.

(*) Theorem 1 holds whenever the triangulation of K —p is locally finite.
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Let 4 and B be two cubes in I such that
A={@my 2 —r<ov<L, P+£ <),
B={a,5,9 0<a<1, 4P <))
i@,y o) @—aP+r+(z—bP =0 @+ =4 —4<a<0}.
Put 0=1—(4JB).
Let T be the dilation of 3-space defined by
T(w, y,2) = (T2, Ty, T2).

Let us consider T'(B). In T'(B) we construct three cubes B; (5= 1, 2,38)
such that

Bi={(#,9,2)] 0<o<T, ¥+ L4+ <))
V@9, 2) (@—aP+yR+(2—b < (H2 6?45 = (4 +4),
-4+ <a< 0},
By={{@,y,2)] 0 <o <7, 12+ (2:4) < (3))
Vi@ Y, 2| (@—aP+y2+ (e—bP < (BATa+ b = 42, —4<a <0},
Bi={(#,9,9)] 0<s<T, P+ (4~ 42 <)}
Cll@, 9, 2)] (@—aP Ly (e—DbP < (DR, a2F b= (4— 4

—(d—4) <a<0).
Put ( H<a<0

~— —
———

We can I‘epeat this Process as shown 1720041
§ W in Fig. 1 nd define B 3
g, & O URREY

Co=T(Cr-)v U (TB: . )—||B.
for m =2, il"'i"‘l( Bt 1L=Jl h'"i""ﬁ)

- ©
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Now let J be the cube
{myy,2)] 1<a<<T, P*+2¢=

3
I
In J we construct three cubes D; (¢=1,2,3) as shown in Fig. 2.
Suppose that

blryd A Dy = {(&, y,2)| @=1, y*+{#—3 <{})*}
vilw, g2 2=7, PP+ <H),
bdryd ~Dy= {(#,%,2)] s =1, ¥*+2 <(F? or ¥+ (+4P <)}
baryd n Dy = {(@, 9, 2)] =T, PP+ EEN<E1}-
Put 3
By=J— (D, o Dy D).

AY /\\
b ﬁ !/i) \Ds
t .
T G 1D
02 C ‘l [\5 \ ll 1
n\ T KO /0
7 N/
J
Fig. 2

In each 7T'(D:) construct three cubes Dy (j=1,2,3) as shown in
Fig. 3. Wo may suppose that By, B,, B, Dy and D, are connected smoothly
to Du, Dy, Dy, Dy and Dy in a suitable choice as shown in Fig. 3. Put

oy ez s
== =k
Diz > 2 \
|
£ / \Diz |
Z;CE,_——_A§E( = %/;gg }
] ] \ /’

4

//
T()
Fig. 3

We can repeat this process and define Diy,.i, and En, where

By=T(B,)o U (T (Dﬁ...fn_,)—jg (Biswinea) -

fgendin-1
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Put
F= O'vGC’,.uOEnvp,
n=1 n=1

G =AuBu U Bil...fﬂ () U -Dﬁ.“t,, vp y
Tlendln T1.0ein

where p is the point at infinity. Clearly @ is a 3- cell and IntJF and Int@
are two complementary domains of the 2-sphere H = F' ~ G.

Now let us define a guasi-translation h, which will be seen to be
inequivalent to the topological translation. First put

hip)=p.
For each geT(F) we define

hg)=T""g),

which is a homeomorphism of T(F) onto F. T(@) is a 3-cell and @ is
a 3-cell in T(@). It is easy to see that there is a homeomorphism g, of
T(@) onto & such that gy(p) = p, golq) = T7q), whenever ¢ e T(H) and
that 2*--42+22 > 1, whenever (#, 7, 2) € go(@F). For each point qeT(})—@
we define

h(g) = gu(q) .

Since G is a 3-cell and 9(G) is a 3-cell in ¢, there is a homeomorphism

¢ of G onto g,(@) such that 9(P) = 1, g:(0) = go{q) whenever geH and
@32 +22 > 7 whenever (%, 9, 2) e g,00(@). Put

h(g) = g:(q)

for each geG—gy (@) Similarly, since 9(@) is a 3-cell and 0194(@) is
& 3-cell in g,(@), there exists a homeomorphism ¢, of 9o(G) onto g,04(G)
such that g,(q) = g,(q) whenever g€ go(H) and that a®-+12 422 > 72 when-
ever (2,9, 2) € a1 9o(@). Put

h(g) = gi(q)

f(_)r each qeg(@)— 919:(G). We can repeat this process infinitely many
1;111}63. Then % is defined as an orientation preserving auto-homeomor-
phism of 8. It is easy to see that % has equi-continuous powers at
g <8 —p but not at . Therefore h is a quasi-translation of 88

It remains to prove that 7 is not topologically equivalent to a trans-
lation of g,

First we remark that the 2-sphere H is not tamely imbedded in &°.
We may suppose that, for each integer m, K™(H) is locally polyhedral
With one singularity p. One of the simple examples of locally polyhedral

. © . s 3 7}'
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2-ypheres K with one singularity, where K is not tamely imbedded in
3-space, is reproduced below from Fox-Artin [3].

Let K be the 2-sphere in question and I a polyhedral 2-sphere
as shown in Fig. 4. Let M be the closure of the complementary domain
of L which contains K —p. Therefore M is a 3-cell. It is easy to see that
there is a homeomorphism f of M onto T'(G) such that f(K) = H. Then,
by Theorem 3, H is not tamely imbedded in S5

Tig. 4

Now let k¥ be an arbitrary quasi-translation of §3. An are @ where
ge8—p, will be called the positive translation ave of k, if %(gp) C gp.
We shall prove that if gp is a positive translation arc of &, constructefi
as above, then gp is not tamely imbedded in §% This proves that h is
not topologically equivalent to a translation of 8% because if h were
& topological translation, then for each ¢ € 82 —p there would exist a pos-
itive translation arc §p tamely imbedded in S°.

Let e 8 —p and gp be a positive translation arc of k. Let gh(q)
be the subare of gp. It is easy to see that there exists a positive integer N

such that IntZ™(@)Dgh{g). Then Inth “*™@) contains the subarc

KY(@)8"*'(q) of gp for each natural number #. Since K™(G)D K™(@) for
each integer m, Inth™(@) D gp —p. Since H is not tamely imbedded
in &, so is A~Y(H). 7Y(@) is the closure of one of the complementary
domains of A V(H). Further A™¥(@) is a 3-cell and h~~(H) is locally
polyhedral with one singularity p. Then, by Theorem 5, gp is not tamely
imbedded in 8% Thus our proof is complete.
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Appendix. Let X be a compact metric space and 4 a finite subset
of X such that X —4 is connected. If & is an auto-homeomorphism of X
which has equi-continuous powers at every xe X—4 but not at any
x € 4, then the number of points of 4 is at most two (see [5]). There-
fore, there are three types of such auto-homeomorphisms.

Let X be compact and & an auto-homeomorphism of X which hag
equi-continuous powers at every point. Then it seems to be well known
that there exists a compact transformation group & of X which con-
tains % as an element and in which {#™} is dense, where m is an integer,
Thus the study of this ease will be reduced to that of compact trans-
formation groups.

The purpose of this appendix is to prove that if X is a compact
connected closed topological manifold, then other types of these auto-
homeomorphisms ean operate only on an #-sphere.

TrEEOREM 6. Let X be a compact connected closed topological manifold
and T an awto-homeomorphism of X which has equi-continuous powers
at every e X —p but not at p. Then X is an n-sphere.

Proof. Let U(p) be a Euclidean neighborhood of p. Then X—-Ul(p)
is compact and contained in X —p. Therefore, by Lemma 1, there exists
& natwal number ¥ such that A¥(X—U(p)) C U(p). Then (U (p)
2 X—U(p). Therefore X is a sum of two open cells. Thus X is an n - 8phere
by the generalized Schoenflies theorem (see Brown [8]).

TEEOREM 7. Let X be a compact connected closed topological manifold
and h an auto-homeomorphism of X which has equi-continuous powers al every
weX—(puq) and does not have it at both p and q. Then X is an n-sphere.

Proof. If X is 1-dimensional, then X is a 1-sphere. Therefore,
We may suppose that the dimension of X i equal o or greater than two.
Then X—(p v g) is connected. Then one of P oOr g, say p, is the attractive
point of A, i.e., for each ¢ X—¢q {W™(%)} converges to P when m-—>oo
and the other ¢ is repulsive, i.e., for each s ¢ X— p {h™(2)} converges to ¢
when m——co (see [5]). Further, it is known that for each compact
subset ¢ of X —g'"]jil;hm(O)= p and for each compact subset ¢ of

Xp ""1.1;111oo E™(C) = q (see Homma and Kinoshita [91).

Let U(p) and ?(q) be mutually disjoint Euclidean neighborhoods
of p a;l]lvd ¢, respectively. Then there exists a natural number N such
that E"(X—V(¢)) C U(p). Therefore X—-1"(V(g) C U(p). This means
that X is t}m sum of two open cells U(p) and K™V (g)). Thus, again by
the generalized Schoenflies theorem, X is an n-sphere.

I.eema,rk. In the case of Theorem 7 it was known that if the di-
mension of X is equal to 2 or 3, then % is a topological dilation of 8%
or 8% respectively (see [10] and [11]).

* ©
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