icm°®

STUDIA MATHEMATICA, T. XXIIL (1964)

On the differentiability of functions

by
E. M. STEIN and A. ZYGMUND (Chicago)

Dedicated to E. Hille
omn the occasion of his 70-th birthday

Chapter 1

1. In this paper* we extend and generalize the main results of our
paper [9]. The knowledge of [9], however, is not indispensable here.

In this echapter we formulate the main results of the paper. Their
proofs are given in Chapter IL. Chapter IIL contains some additional
results.

Let F(x) be a function defined in the neighborhood of the point
#, (in what follows we consider only measurable sets and functions).
The two functions

Py (2) = @z, (t3 F) = $[F(@+10)+F (w,— )],
W:co(t) = 7:%0('55 F) = §[F(zy+8)—~F(2,—1)]1,

whoge gum is equal to F(z,+¢), will be called respectively the even and
odd part of F(z,+t); we shall also use the expression the even and odd
part of F at x,.

These parts are of importance in certain problems of the Theory
of Funetions and, in particular, in Fourier series. Let S[F] denote the
Fourier series of a periodic function F (by “periodic” we shall always
mean “of period 2x”) and S[F] the conjugate series. By S™[F] and
S8™M[F] we shall mean the series S[F] and S[F] differentiated termwise
% times. It is a familiar fact that for the summability (and, in particular,
convergence) of S[F] at a given point @, decisive is the behavior of the
even part g, (t; F) near ¢ =0. The same holds for the summability of
S®[F] if % is even and the summability of S¥[F]if % is odd. Similarly,
the behavior of y, (#; F) near ¢ = 0 is decisive for the summability of
S®[F] if % is odd and of 8W[F] if % is even.

* Research resulting in this paper was parily supported by the Air Force con-
tract AF-AFOSR-62-118 and the NSF contract GP-574.
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In the present paper we are primarily interested in the problems of
the differentiability of the even and odd parts of a function. The pro-
blems belong essentially to Real Variable, but the methods we use lean
heavily on the theory of Fourier series and integrals and Complex Varia-
ble; in view of the remarks just made about Fourier series this is rather
natural.

2. To make the picture more clear we begin with the case of deri-
vatives of order 1.

The differentiability of the odd part Yuo (85 F) 2t £ =0 iy the same
thing as the existence of the first symmetric derivative

i F @)= F (2=
10 2t

of F ab z,. The differentiability of the even part @z (t; F) at ¢ =0 is
clearly equivalent to the relation

L B (4-1)+F (@— 1) — 2F () = o(t).

The latter relation is usually called the smoothness of the function
F at the point z, and was first considered by Riemann in his memoir
on trigonometric series. Functions which are continuous and smooth
at each point have a number of interesting properties (see [12] or [11,],
D. 42 8qq.). If (1) holds we shall also say that F satisfies condition A ot
@y. If we merely have

B (@y+ 1)+ F (w,— ) — 2F () = 0(t),
we shall say that F satisfies condition A at z, (2).

(*) The following reflexion upon the significance of smooth functions may be
not totally out of place. In view of the fact that smooth functions play important
ro%e m certain problems of the Theory of Functions one may ask about the origin of
t];u§ importance. The answer is not immediately obvious and one may be easily led
t? irrelevant notions and generalizations. For example, it may appear that the expres-
sion

wg(h) = Max |F(+ 1)+ F (z— t)— 2F ()|
x, [tj<h

is merely an analogue of the modulus of continuity

(k) = Max |F(z+t)—F ()|
x, jl<h
of F, and one is naturally led to considering expressions wy, (k) defined in a similar
way but using the k-th differences. Such expresgions are interesting and useful, but
after k = 1 only the ease k = 2 seems to be of real importance, the reagon being’that
the 'behtfvmr of o, (k) expresses a property of the even part of the function. Here, it
seems, l.1es the source of significance of smooth funetions. A good illustration ;re
applications of smooth functions to elliptic differential equations discussed in [1].
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It is obvious that the differentiability of F at x, implies the differen-
tiability of both g, () and v, (¢) at ¢ = 0. It is equally clear that neither
the differentiability of ¢, (t) at =0, nor that of Yz, (t) implies the exis-
tence of #"(x,). It is natural, however, to ask about theorems of the
“glmost everywhere” type. It turns out that the roles played here by the
even and odd parts of the function are completely different. We list a few
known results.

THEEOREM A. If F has a first symmetric derivative at each point of a set B,
then F s differentiable almost everywhere in E.

TusoREM B. There exist continuous functions whick satisfy condi-
tion (1) everywhere, even uniformly in =, and which are differentiable in sets
of measure 0 only (2).

If, however, we strengthen condition (1) somewhat, the function
becomes differentiable. The precise result is as follows:

THEOREM O. Let () be a function defined in some interval 0 <t < 5,
monotonically decreasing to O with t and such that the integral

V)
@) f =t
is finite. If for each = belonging to a set E we have
(3) F(at+t)+Fo—1)—2F (@) = O{te(t)} (t—0),

not necessarily uniformly in x, then F is differentiable almost everywhere in E.

(2) Theorems A and B clearly show the difference between g (f) and wx,(f)
as regards differentiability. The picture is a little different for the continuity of the
even and odd part of F. The problems here are eagier and we state a few facts.

The continuity at ¢ = 0 of the even and odd parts of ¥ (x,+t) means respectively

(a) F(wy+1)+F(m—t)—2F (z9) — 0,

(b) F(zy+1t)—F (zy—1t) -0
for ¢t — 0. It is not difficult to show (see Lemma 9 in Chapter II) that if we have either
(a) or (b) at each point of a set E, then F is continuous at almost all points of E.
Thus there is no difference between the continuity of the even and odd part of F.
(In particular, if ¥ satisfies condition A at each point of ¥, then F is continuous almost
everywhere in B).

The result just stated can be generalized as follows. Let a;, «,, ..., ax be a sequence
of real numbers all different, and let By, f,, ..., fx be another sequence such that
3'B: = 0. Suppose that at some point z, we have

(€) SBiF (zg+ ait) 0
or, what is the same thing, (¢) 3 fi{F @+ ait) —F (z)} — 0, as £ —0. We may then
say that F is conditionally continuous at x, (relative to the sequences {a;} and {fi}).
It can be shown that if (¢) holds for t — -+ 0 (or ¢ — — 0) at each x)<E, then F is
continuous almost everywhere in E. This stems from the fact that F is anyway appro-
ximately continuous almost everywhere in ¥ and this coupled with condition (c)
gives the desired result. Similarly, if at each z,¢E the left side of (¢) is ultimately
bounded as ¢ — + 0, then F is bounded in the neighborhood of almost all points of B.
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That this result is, in a sense, best possible is shown by the following

TagoreM D. Let &(t), 0 < t <7, be a function monotonically decreas-
ing with i, satisfying the condition

e(2t)[e(t) > 1

for t — 0 and such that the integral (2) diverges. Then there is a conlinuous
function F(z) satisfying for all  the condition

(4)

and differentiable in o set of measure 0 only.
Theorem A is an old result of Khintchin [3]. The function

|F(n-+8)+F(@—t)—2F (@) <te(t) (0 <t<7p)

Oy §in 2™
(5) F(z) = il

n=1

can be taken for the function of Theorem B (see e. g., [11;], p. 47-48).
It is known that continuous functions which are smooth at each point
must necessarily have points of differentiability so that the exceptional
set of measure 0 in Theorem B cannot be empty (see [11;], p. 43). The-
orem O is the main result of paper [1], and it is indicated there that if
£(#) satisfies the hypotheses of Theorem D, then the continuous function

o= 3

is differentiable in a set of measure 0 only and satisfies condition (4)
if multiplied by a suitable positive constant.

That the function (6) is differentiable in a set of measure 0 only fol-
lows from the fact that the divergence of the integral (2) is equivalent
to the divergence of }'¢2(27") so that the lacunary series Y's(27")cos2"»
obtained by the termwise differentiation of (6) is not in L2 and therefore,
as is well known (see [11;], p. 203) cannot be summable by any given
linear method of summation except, perhaps, in a set of measure 0 only;
in particular, F' can exist in a set of measure 0 only.

The remaining part of the conclugion of Theorem D is easy to verify
by a familiar argument. We have

(6)

F(m—-!—t) +F(m—t)— ZF((D) = —4 2 8(2—%)2—1lsm2nwsinz_%2ﬂt

= —42—42 P+g,

N+1

e ©
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say, where N is determined by the condition A P ‘)‘N N =
=1,2,... Clearly,
10l <4 e M2 < 4-27Ve(27V) < 8te(t),
N+1
N N
1P| < ) g2 "
Se e Sar

say. Sinee ()"s(27") < (3)"e(27"1) for n large enough, there is a con-
stant A4 independent of N such that (£)"(27") < A (}) Ne(2~¥) for n =
=1,2,...,N. I follows that |P| < O(P)e(2~")2" = O{ts(t)). Hence,
collecting results we see that P-4-@ = Ofts(¢)) and Theorem D follows.
(We easily see from the proof that the eondition &(2¢)/(t) -1 can Dbe
replaced by lim sup{s(2t)/s(f)} =y < 2; for y =2 the result is false.)
-0
It may be observed that (5) is essentially a special case of (6) with
-

&(t) = (log%) ”2), and that in this case the integral (2) diverges.

3. In what follows we shall sometimes say that the function &(f)
defined in a right-hand side neighborhood of ¢ = 0 satisfies condition
N if £2(¢)/t is integrable over some interval (0, 7).

If we have (3) and the integral (2) is finite, then the function

[F (@ 8) +F (2, —1) — 2F ()
)

()

is integrable near ¢ = 0. Conversely, the integrability of the funetion (7)
near ¢ = 0 implies that we have a relation (3) with £() satisfying condi-
tion N. But it is important to observe that in the latter case the fune-
tion &(t) may, first, depend on m, (bhat is, &(f) = e, (1)) and, second, that
it does not necessarily tend to 0 with ¢; and even if it does, it need not
tend to 0 monotonically.

Theorem B which follows clearly generalizes Theorem D; it is one
of the main results of the paper.

TurorEM B. If F(z) satisfies condition A at each point z, of a set
B, and if for each mye B the function (7) is integrable near t = 0, then F'(x)
emists almost everywhere in .

The integrability of the function (7) near ¢ = 0 was first considered
by Marcinkiewicz [4] who proved the following theorem:

TaroreM F. Suppose that T is differentioble at each point of a set H.
Then ai almost all moeB the function (7) is integrable near t = 0.

Since the differentiability of F at a point implies that F gatisfies
condition A (even, ) at that point, Theorems B and F can be combin-
ed in the following single theorem:
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THEOREM G. Suppose that F(x), defined in an interval, satisfies con-
dition A at each point of o set B. Then the necessary and sufficient condition
for F to be differentiable almost everywhere in E is that for almost all x,eB
the function

(8) ey (f) =

satisfies condition N.
The following result is merely a wvariant of Theorem G:
THEOREM G'. Suppose that Fel? (~—oo, +-oco) and satisfies condstion
A at each point of a set B. Then F is differentiable almost everywhere in E
if and only if for almost all zeB the expression

F (@ +1)+F (wy— 1) — 2F (,)
2t

o

@ (o) = o, F) = {f

0

[F(z+t)+F(0—1)—2F ()] dtl”ﬂ
£ |
if finite.
This is clear sinee, if Fel’(—oo, 4-00), the part of the integral in
(9) which extends over any interval # <t < oo (7 > 0) is always finite.
The integral (9) is sometimes called the integral of Marcinkicwicz.

4. The question naturally arises what are the necessary and suffi-
cient conditions for the existence of the integral (9) almost everywhere
in B if we no longer assume that ¥ satisfies condition 4 in . To answer
this question we must generalize the notion of derivative.

Let1 <p < oo and suppose that F belongs to I? in the neighborhood
of the point x,. Suppose further that there is a polynomial

k
P(t) = Zj—:ﬂ

F=0

(10)

of degree k such that

o f Pty —pya = o(h

h

(11)

a8 h — +0; the polynomial P, if it exists, is unique. We ghall then say
that F is differentiable of order & at m, in I”. The polynomial P (t) may be
called the k-th differential of F at @,, and the number ar, the k-th deri-
vative of F at x4, both in the metric I? (these notions were introduced
in [1]). It is clear that the existence of the %-th differential implies that
of the (k—1)-th differential. If p = co the left side of (11) means, of course,

ess sup [F(zy-1) —F (z,)] for |t <h , and modifying # in a set of meagure
0 we then have

Foy+1) = P(t)+o0(t%) (1 —0),

e ©
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so that F has at @, a k-th derivative, or k-th differential, in the classical
sense (of Peano). In this case, the coefficient a; of P we shall occasionally
denote by F ().

We can now answer the question raised above.

THEOREM H. Suppose that F(z) is defined in an interval. The neces-
sary and sufficient condition for

F (2o +1) +F (2, —1) — 2F ()

€z () = ot

to satisfy condition N almost everywhere in the set E is that F has a deriva-
tive in L? at almost all points of H.

TueorEM H'. Let Fel’(—oco, +-o0). The necessary amd sufficient
condition for u(x, ) to be finite for almost all z<F is that F be differentiable
in L* almost everywhere in E.

These two results do not differ essentially. Observe that the inte-
grability of e (1)t near ¢ = 0 implies the integrability of [F(z-1)+
4+ F(2,—1)—2F(x,)* near ¢ =0, and it can be shown without much
difficulty that the latter implies the integrability of F* near almost
every point xy,<H. The version H’ is useful in some cases.

5. Theorems G, G’, H, H' can be extended to higher derivatives.
Suppose that % is even and the even part of F has a k-th Peano derivative
at x,, or that % is odd and the odd part of F has a k-th derivative at 2.
In the former case,

1 1
Pay () = o+ —éTaztg—}—...—t—ﬁaktk—l—o(tk),
and in the latter,

1 1 .
gy () = oyt gi—asts—{- PN 7g!—azkt’q-o(i )y

as £ —> 0. In either case F has a symmetric k-th derivative at x, equal
to a;, that is

(13) lim {rk Zk’ (’;) (— 1) F (mo+ ( j-—%k)t)} = a.

i) o
For if, e. g., k is even, the sum J' here is equal to
k
k _j .
(5} 0
=0
and (13) is a consequence of the formula for g, (t) and the formulas for
the k-th differences of the funetion ¥. On the other hand, it is known
(see [7]) that if a function has a k-th symmetric derivative in a set B,
then it has a k-th differential almost everywhere in H. Hence we have
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the following analogue of Theorem A: If for each wx, in @ set B the even
part of I has a k-th differential at t = 0. of cven order k, or the odd par
has a k-th differential of odd order k, then almost everywhere in B the function
F dtself has a differential of order k.

The question is what happens if we interchange the roles of the even
and odd parts. We shall say that F is smooth of order k& at w, if k is even
and yy, (i; F') has a k-th differential at ¢ = 0, or if ¥ is odd and ¢ (¢; F)
has a k-th differential at ¢ = 0. In the former case,

1 1
(14) Ve (t) = ayt+ T APt e g T 0 (1),

(B—1)!
and in the latter,

1 1
(15) Fa(1) = Got S aaf' . = T o ().

(—1)!

Either of these conditions will also be called A;, and condition A,
will be defined by replacing here o by 0. Clearly, conditions A and 4
introduced previously correspond to the case &k = 1.

A function may satisfy condition A, even uniformly in x, and have
a k-th differential in a set of measure 0 only. A simple example i obtained
by integrating the series (5) term-by-term %—1 times. Since the fune-
tion (5) satisfies condition A uniformly in #, the sum of the integrated
series satisties, as one can easily verify, condition 1, uniformly in . Af
each point where the sum of the integrated series has a k-th differential,
the geries obtained by termwise differentiation ¥—1 times, that is, the
series Sn~("e0s2"s, is summable by a linear method of summation, and
this can occur only in a set of measure 0.

If at each point of a set B the function F satisfies condition My OF
even only A, then the last term in (14) or (15) (as the case may be) is
o(#*"*), and since the parity of k—1 is opposite to that of % the function
F has, by the result stated above, a (k—1)-th differential, that is,

k-1
Flatt) = Yot +o(t=

=0

(16)

at almost all points of ¥, and the problem is to find when F has a k-th

differential almost everywhere in H. The theorem which follows is an
extension of Theorem RE.

"I?EOREM 1 Suppose that at each point w B the function F satisfies
condition Ay, 4.e., we have either

A7)y (D)
1
= ay (1) 1+ ST ag(2) 34 .. . 4 . gy () Eall) 1

(k—1)! T (k—even)

e ©
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or

(18)  @g(®

1
= ay(@,)+ E oy (@) P+ ...+ '—_"‘“1 oz_1(Zo) ! + “8x;$t) 7 (k—o0dd)

(k—1)!
where &g () s bounded near t = 0. Suppose, moreover, that ey (f) satis-
fies condition N at each point of E. Then F has a k-th differential almost
everywhere in H.

That the result is best possible can be proved by means of the func-
tion obtained by integrating the series (6) termwise k—1 times, where
e(t) satisfies the hypotheses of Theorem D. The resulting function will
satisfy conditions (17) or (18) uniformly in @,, with |eg (f)] < Ae(?), and
will have a k-th differential in a set of measure 0 only. We shall not dwell
on this point.

6. The next theorem is an analogne of Theorem F.

THEOREM 2. Suppose that F(z) is defined in an inierval and at each
point of a set B has a k-th differentiol (and so, in particular, is smooth of
order k). Then at almost all poinis wee B the function e (t) in (17) or (18)
satisfies condition N.

This theorem is proved in [18]. It is included in Theorem 4 below
which asserts that it is enough to assume that at each point of B the fune-
tion F has & k-th differential in I

A corollary of Theorem 1 and 2 is the following Theorem 3:

TamorEy 3. If F(x) is defined in an interval and at each point of E
satisfies condition Ay (and, in particular, has a (k—1)-th differential almost
everywhere in B) then F has a k-th differential almost everywhere n B if
and only if the function e (f) in (17) or (18) satisfies condition N almost
everywhere in B

or

THEOREM 3. If FeLl?(—oo, +oo) and satisfies condition Ay at each
point me B, then T has a k-th differential almost everywhere in B if and only if

the expression
[ )
(o) = pr(o, F) = f—t—dt ’
0

where () is given by (17) or (18), is finite almost everywhere in H.

'We now pass to the case when F is no longer supposed to satisfy con-
dition 4, in B, so that s, (t) in (17) or (18) need no longer be bounded
as t — 0, x,eB. We want, of course, the developments (17) and (18) to
be unique, and conditions like, e.g.,

ey (f) = o0(1ft) (¢ —>0)
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are certainly sufficient. Another condition guaranteeing the same result
would be that F has at #, a (k—1)-differential in some sense, for example,
in the metric Z”, 1 < << co. On the other hand, theorems c¢an be for-
mulated in such a way that we do not need the assumption of the existence
of the (k—1)-th differential of F in any sense, and we will follow this
approach (®). '

THEOREM 4. Suppose that at each point m,cH we have (17) or (18).
Then a) if ey () satisfies condition N everywhere in B, the funciton F has
a T-th differential in L* almost everywhere in B. Ognversely, b) if at each

i

point zye B the function F has a k-th differential %’aj(wo)ﬂ/j! n L, then

the function e () defined by (17) or (18), as the case may be, satisfies con-
dition N almost everywhere in E.

TaEOREM 4. Suppose that Fel’(—oo, +oo0) and satisfies (17) or
(18) at each point x,cB. Then, a) if up(z, F) < co everywhere in H, the
Sunction T has a k-th differential in I’ almost everywhere in L?, and, con-
versely, b) if F' has a k-th differential in I? in B, then u(z, F) < oo almost
everywhere in B.

Chapter 1I

1. In this chapter we prove the theorems stated in Chapter I. All
the theorems are essentially of local character and in their proofs we
may assume that the functions under consideration are periodic of period
2n and use the properties of their Fourier series and Poisson integrals.

Given a periodic and integrable function ¥(8) we denote by F(o, 6)
its Poisson integral

l ki1
e, 6) = — [ F@)P(e, 0—t)a,
‘where
103 1 1— g2
Po, 0) =— eos vl = - —
(e, 6) 2+29 Y Ty T 200080+ &*

is the Poisson kernel.

) ®) Considgr, e. g., the case of Theorem 4’ below, and denote by Py—y the poly-
nomial on the right of (17) or (18). The hypothesis that ez, (t) satisiies condition N
implies that

3 n
{n J Doy () —Pi-1 (OPA or {2 [ [g, (60— Py ()] 1) M2
(]
is o (W*—1), as the case may be. It is known that this implies the existence of the (k— 1)-th

differential of ¥, in I% and at almost all points of B (see also Chapter II, Section 11)
but we prefer not to use this fact.
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Given any number 0 < o < 1, we shall denote by 2,(6) the convex
domain limited by the two tangents from ¢ = e to the circumference
{8} = o and the arc of this circumference between the points of contact;
if ¢ is fixed we shall write 2(8) for Q,(6).

LeMMA 1. Let k be a positive integer and suppose that a periodic and
quadratically integrable F(0) satisfies at the point 6, a relation

. _ O3 g1 1, &) 4
(1) Yoo (83 F) = eyt 31 ts+~--+mtk Tﬂ’t
if & 4s even, or

g B 1y o)
(2) @0, (85 F) = ag+ o .. —1)! #* -‘-‘Ftk
if k is odd, where, in either case, s(i) satisfies condition N. Then for any
0 < o<1 we have
grE+1 Pr+t 2
@ [[ [ e b0+ o e P, 0 )] odeas < .
2(0)

‘We shall denote, for brevity, the I-th derivative of P (g, 6) with res-
pect to § by Py(e, ). We shall also systematically write 6 for 1—p.
‘We need the following two inequalities, valid for I=0,1,...:

(4) \Pi(e, )] < 4,677,
{3) [Pi(os 0)] << 4,8)01722.

Here and in what follows (except when otherwise stated), 4 with
various subseripts will mean constants (not always the same) depending
only on parameters displayed in subseripts; 4 without subscripts will
mean an absolute constant.

The inequality (4) follows by differentiating the series 1 3 o’cos»h
termwise ! times and observing that Zg"vl = 0(6""Y. To prove (3),
we use the formula

fo=ilth—0f) (& =),
where f, = $(fe—if,), f5 = 3(fe+4,), if { = &+dn. If f is, say, a ratio-
nal function of £ and {, then f; is obtained by formal differentiation with

respect to ¢, treating { as constant, and similarly for fz. Hence, by obser-
ving that

1 1 1
2P(g, ) (1—o)* = f:(f‘_—g _1—:?)’

and that in the neighborhood of { =1 both | -—Zl and |1— ] majorize
A10], we obtain (5).

Studia Mathematica XXIIL.3 1w
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The proof of (3)is the same for k even and odd; for the sake of defi-
niteness we assume that % is even. Then
gl

90+

K+1

Y —g F (0, 8o— &)

(6) F(o, b6+ &)+ —pt

1
- —= f F(0g+1)[Prsa(e, 1— 8+ Prpa (o, 1+ &)t

1 ™
-—= [P0+ 9 Prsle, £+~ Priale, E—t)ar

T

2
— = | v Passle, E+D—Prale, E— 0.
0
By hypothesis, yq, () consists of an odd polynomial of degree <{k—1
in ¢ and a remainder a(t)t"/k' Integration by parts shows (see (5)) that
if 7 is odd and I <k, then

ft{Pk+1(g,5+t) Prya(e, E—t)}dt =

- j th+1 (g, £+t)di

-

= 0(8)+ (-1 ka+1,l(g, E4-t)dt = 0(9).

Hence the last term of (6) is

I f 0 (Prsale, £40)— Prnale, E—}dt+0(3).
In showing that the integral in (3) is finite, we may restrict our con-
giderations to that part of £,(0) which is in the neighborhood of the
point 2z = 1. If ge¥eQ,(0) and 6 = 1— o is small enough, we have |£ <
< %68, where » = x(¢). Let ' be the part of 2,(0) where |£] < x5, 6 <,
and 4, is so small that 2x5, <1—o.

In estimating the infegral of the square of the expression (7) over
2 we may omit the term O(6) whose contribution is finite. We split
the integral in (7) into two parts extended over 0 <t < 2x%8 and 2x6 <
<t <=, and denote the resulting expressions regpectively by S(8, £)
and T(4, £). We have, by (4),

18] <

2xd 2x8
A 57 [ (b)) dt < Agod2 [ le@tdt,
0 0

and, by (5),

# ; ¥

kg t ™
7| <Akazi (0] s @ < 4 fxs(t)g-———_(%t)m < Ays f le (t)] ¢-2d.
2ud 2x8
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It is enough to show that both §* and 7° are integrable over 2'.
Schwarz’s inequality gives
228

< Ay, 870 [ (),
[i]

=]

at
[2-
g b

82(8, &)

A, 60 f

238 2:

s, ) < e2(t)dt

Ay, f (1) -3,
2x3
so that
[2x8
f @028+ Ay, 53 f e2(t)di

ffsa(a £eddds < fda fm(a §as <

< A4, f 2 (t)dt f 5-2d8 <

2%

200y

A, | t8(t)di < oo,
(]

and
8 20y

[f 128, &) edodd <A, J 58 ft—ss"(t)dt A, [ 8@ [ is2(1)di+0(1)
pod [} 2x8

2u3
2%y H2x 25
=4, [ trer()de [ 886+0(1) < A, [ temd+0Qa) < oo
0 0 0
This completes the proof of Lemms 1.
2. Lemma 2. If Uz, y)-iV(z,y) is holomorphic in the interior of
a finite rectilinear triangle D, and U? is integrable over D, so is V.
This is a special cagse of a general theorem of Friedrichs [2] valid for
a much wider clags of domains D. If ¥, which contains an arbitrary addi-
tive constant, is suitably normalized we even have an inequality

fdewdy Apjf Trdzdy,

but the weaker statement of the lemma is sufficient for our purposes.

LemvA 3. Let D(2) = B(06®) be regular in |Z| <1, and suppose
that for each 0, belonging to a set B of positive measure there exists a o = o (6,),
0 < o <1, such that the integral

[[ 190 edead
aa("o)
is finite. Then @ (L) has a finile non-tangential limit almost everywhere in B.
For the proof gee, e.g., [11], p. 207.

LEMMA 4. If the iniegral df t1e2(t) @t is finite for some n >0, then
fls(t)ldt = o(u).
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The hypotheus implies that f 22(t)dt == o(u) and it is enough to apply
Schwarz’s inequality.
LEMMA 5. Suppose that a periodic and integradble ¥ (0) satisfies o

6 = B, the relation (1) or (2), where
(8) ' [le@ldt = o(w).

Then 8® [F]4s summable (C, k-+1) at 0, if and only if it is summable 4.

Let o5(6) be the (€, a) means of é[F] It is well known that if ¥
satisfies cond.ltlon A ab 0,5, that is, if () in (1) or (2), as the case may he,
tends to 0 with ¢, then

9) ga,;&’:,“(ao)—(—? f—s——i-dt) -0

(see [11y], p- 63), but a glance at the proof shows that the conclusion holds
under the weaker condition (8). The proof of (9) is exclusively based on

the following estimates for the eonjugate (0, k1) kernel K;.ﬁ"'l(o):

k41
< Apm™t

F228C

@ - ‘
l T3 { 00t26 K’ff‘l(e)}’ A0 (0TI 0 < w).
But the conjugate Poisson kernel

Q(g, 0) = D ¢’sinsb = gsin6/(1—2¢eo0s 6+ o)

satisfies amnalogous inequalities, with # replaced by 1/6. For,

i 4 o it clearly
QA" < Yo' < Ax67"', and from the formmila

8in 6

L smv 1—o¢
2(1—cosb)

—Q(e, 0) = 150

1
Plo, 9)(&0t§ 0,

using (5), we obtain
&1 1 ] . -
5 |2 cot 6—@Q (o, )l < Ay 00753 < Ay, 507,

where § < 6 <<=. Hence, if F (0, 6) is the harmonic function conjugate

F(q, 6), we have, under the hypotheses of the lemma, the following ana-
logue of (9):

d* 2\ 7 et
dokF(@; o) — (w;)f%dt%@ (5=1~—Q.+0)
8
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1yn
Observing that (8) implies the relation [ ¢|e(®)|di -0, we
obtain from (9) and (10) 1jn+1)

5 1
dﬂ’" a}‘+1(60) -0 (ﬂ = [T:?]),

aeF
which completes the proof of the lemma.

LevvA 6. If a trigonometric series S with coefficients oy (=
=0,1,2,...) is summable (C,1) at & point 8, to sum s, and if F(0) is
the sum of the series oblaimed by integrating S termwise 12 times, then
L{F(0y+1)+(—1)F(8,—1)} has at t =0 an (I+2)-nd Peano derivaiive
equal to s.

For a proof, see [3], p. 66.

LeMMA 7. If a trigonometric series S is summable (C, a), a > —1,
in a set B, then the conjugate series 8 is summable (O, a) almost everywhere
n H.

The proof may be found in [8]. Only the case « = 0,1,2, ...
here.

3. In the preceding sections of this chapter we gave a number of
lemmas pertaining to trigonometric series and harmonic and analytic
functions. We are now going to give lemmas about functions of real
variables. While most of these lemmas are known, and we shall be satis-
fied with giving references, the lemma which follows is essentially new
and is basic for the proofs of theorems of Chapter I.

Lemma 8. Let f(z,y) be defined and real-volued in the open half-
plane y >0, and be in L* near each point of this open half-plane. Suppose
also, for simplicity, that f = 0 for y > w > 0. Then, if there is a set P on
the amis y = 0 such that, for each zeP,

F(Q; o) —

is needed

oo

(1) [ ufr@, y)dy < o

and, with some o = ay >0,

[f U@+, y)+flo—t, y)Pdyds < oo,

yz=zall]

(12)

then for almost all weP we have

[f Platt,pitdy < oo

v=2plt

(13)

no matter how small 48 f > 0.
It is easy to see that for each fixed o the integral in (12) is a lower-
continuous, possibly infinite, funetion of #, and so is certainly measurable.
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Also measurable, as a function of @, is the integral in (11). The domain
of integration in (12) decreases as a increases, and' so, by considering the
sequence of values ¢ =1,2,3,... and the corresponding subsets of P
we may suppose that 1° « is fixed troughout P; 2° the integrals in (11)
and (12) are bounded on P:

) [yf@niy<d; [[ {fott, )+t gl @< (o)

yafi]

30 P ig closed, bounded and of positive measure. It is enough to prove
that (13) holds almost everywhere in P.
Integrating the second inequality (14) over P we have

[do [[{fl@+t,v)+f—t, )Y dydt < M|P),
P v=all ) )
or, making the change of variables »--¢ =u, 2—1 =0,

yOff amdv [ {fu,9)+f0, w)fdy < MIPL.

Hu+v)eP © Y=haju—v|

If we reduce the domain of integration by restricting the variable
v to P we have, a forfiori,

as) (]

Hu4v)eP, veP

dudo [ {f(u,y)+f(v, n)fdy <2M|P|.
v>jalu—v|
The main idea of the proof of the lemma consists a) in showing that,
with our hypotheses, the integral
_(16) I= dudy
)P, veP

[ fo,9d

>}au—v)

is f.inite,vso thait, m view of (15), the integral
an [ f,yay

U>hdlu—|

ig finite and then, b) deducing from the latter fact the inequality (13)
for almost all zeP. ‘

Since f(z,y) =0 for ¥ > w, we may, if need be, restrict our inte-
gration in (16) or (17) to subdomaing of the strip 0 < ¥ < w. Honce the
v?,lues of % in (16) or (17) are actually confined to a finite interval. Drop-
ping the condition }(u-4v)eP we obtain from (16) that

+o0 ©
1< [afa [ fonw=[af ey
P P [] v=talu—v|

B £ dy s :
, §fdwff(v,y)7dy <—1Pl, _ '

P

J = dudv
(%) sP, velP

du} ay

Y=haju—v]

* ©
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the lagt inequality being a cosequence of the first condition (14). From
this and (15), (16), (17) we deduce that

18) J= dudv 12(u, y)dy <4(1+-2-)MLP|.
Huv)eP,veP Y=ialu—1v| a
Clearly,
+00 0o 400 oo
) J= | dunffa(u,mdy{( fP Pdw}= [ [ P, v)pw, y)dudy,
—co . $(ut+v)eP, ve. — 0

Y=aju—v]

where u(u,y) denotes the integral in curly brackets. For fixed y >0

“and u, u(u, y) is the measure of the set of points v on the real axis which

lie in the interval

(20) 2

2y
Y — LV KU+ —
a a

and which, in addition, satisfy the conditions

(21) veP, }(u+nv)eP.

We claim that if 4, is any point of density of P, then, as the point
(u,y) approaches (u,,0) non-tangentially from the upper hali-plane,
u(u, y) is asymptotically equal to 4y/a, that is the length of the inter-
val (20).

Suppose, e. g., that 4, = 0 i a point of density of P. The non-tan-
gential approach in this case means that

y > eyl

for some & > 0. Leb p{v) be the characteristic function of the set P and
p(v) = 1—¢(v) that of the complementary set. Then

u2yla u42y/a
ww, ) = [ pputo)i= [ G—p@}a—yluto))d
u—2y/a u—2yje
u4-2y/a u4-2yfa u42y/a
4 +
s f y(v)do— f w(u;v)dwr p(v)y (u—z—) do,
o u~—2yfe u—2yja u—-2yfa

and it.is enough to show that each of the last three integrals is o(y).
The firgt integral is, in view of (22), dominated by

@~ lye—lyy
(23) J

—@a~ 14y
The second integral can be written

p(v)dv = o(y).

utyfa

2 [ paw

w—yla
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and so is, likewise, o(y). Finally, the third integral, being dominated, by
the first, is o(y). Hence, actually, u(u,y) ~4a~ly as (u,y) tends non-
tangentially to any point of density of P.

It follows that there is a closed subset P, of P, with |P—P,| arbi-
trarily small, and a 6 > 0 such that if wyeP,, then

2
(24) niw,y) >=-

provided 0 < y < 8, y = f|u—u,|, where § is any fixed positive number.

In particular, denoting by 4,(u,) the set of points (u, ) satisfying
these two conditions, and by U, the union of the Ap(uo) for uyeP,, we
obtain

2 ~
(25) = lﬂf Fu, g)ydudy <J.

Let now g(u, y) be equal to f*(u, y) in U, and to 0 elsewhere. Then

[ dw fg(u,y)tludy

—o0 4p()
+0o0 +o00 &

= Ja [ gwpivay = [ [g,ypauiy| | 1-da
—c0 0<Y<<d, Y= Plr—u| —00 0 Ble—ul<y
+00 &

=28 | f g(u, y)ydudy = 2~ £ [ 7, y)ydudy <ap-17,
o B

by (25). Since, by (18), J is finite, the integral I g(u, y)dudy is finite
4p(®)
for almost all z. It follows that the integral g

[[ e,y auay

4p(%o)
%s ﬁmte for almost all #,eP,. Since f2(u,y) is locally integrable in the
mte_nor of the upper half-plane, and since & and |P—Py| can be arbi-
trarily small, the lemma follows.

4. We add a few remarks about the lemma,.

(i? In certain cases important for applieations, condition (11) i,
essenha}ly, a corollary of condition (12). Suppose, for example, that
f(=,y) is harmonic in the cloged triangle

(4) algl <y, 0<y<o,

except, possibly, at the vertex (0, 0). Let g = (L a?)i/2, The circle with
eepter FO 2 Y) a.nd. radius 7 = By is tangent to two sides of 4 and is con-
tained in 4 provided y is sufficiently small, 0 <y < o’ < o. Let 2u(&, 1)
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be the characteristic function of the dise limited by the circle. If 4 < o’
we have, by the familiar property of harmonie funections,

1 ~
Fo,m=— [ s i
4 —vyi<r?

1 1
= = [[ 516 m+st—&, (e, magan,
4

11
P9 <5 = [ [ D+7(— & (e, masan

A4, rr
=i [ st mpa, agan.

4

Hence, multiplying by ¥, integrating over 0 < y < o’ and changing
the order of integration,

[0, p)dy < A, [ [ {7, m)+F(— &P {[ vm(E, nay)asan.
0 a []

But, for a fixed (£, ), we can have yx,(&, 4) =1 at most if y—r<y<
< y+r, that is to say, if y is contained between two fixed multiples
(depending only on a) of #. Hence the integral in brackets is majorized
by 4, and

J 90, 9)dy < Ao [ [{f(&, M+F(— &, Y dzdn.
0 4

Since the hypotheses of Lemma 8 imply that for almost all x the
integral [ 4f2(0, y)dy is finite, no matter how small z > 0, we immedia-

tely see that if f(z,y) is harmonic in some strip 0 <y < 5, condition
(11) may be dropped without affecting the conclusions of the lemma.
(ii) It is clear that the quadratic integrabilities in Lemma 8 are not
essential. If 1 < p << oo, f is locally in I” in the interior of the upper
half-plane, and if the integrands in (11) and (12) are replaced respecti-
vely by y|f(z, )’ and |f(z—+1¢, ¥)+Ff(@—t, y)|° we still have the conelu-
sion (13) with f% replaced by |f|” (this holds even for 0 < p << co). We
may also agsume that f is complex-valued. If f is harmonic in some strip
0 < y < 5 we may again omit the analogue of condition (11), ete.
Certain problems lead to integrals analogous to (12) with sum in
the integrand replaced by the difference, but the conclusion of the lemma.
still holds; instead of the sum in (12) we could take a linear combina-
tion with constant coefficients, and even some more general expressions.
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(iii) This case corresponding to p = oo in (ii) is of interest, though
it will not be needed in this paper. Suppose that f(x, y) is defined for y >0
and that for each <P, [P >0, there is an a = a, such that 3} {f(z+1t, y)+
+f(m—1t, )} tends to a finite limit g(z) as y -0 and 0 < alt| <y. Then
at almost all points weP we have f(o-+1t,y) —g(@) as y —0 and Bl <y,
no matier what B >0. The proof resembles that of Lemma 8 but the
details are simpler. The hypotheses imply, in particular, that f(w, y) -
— g(z) for each <P as y — 0. We give & sketch of the proof.

‘We may suppose that e is fixed, that the convergence of the semi-sum
f(w+t, y)+flw—¢,y)} is uniform on P, that P is closed, and that
g() (being measurable on P) is continuous on P. We set, as before,
o+t =u, x—t =v and we deduce that

U4

(26) L o, o 5

tends uniformly to 0 if 1 (u-+)eP, ¥ = ta|u—v|, ¥y — 0. Lot us augment
these conditions by the requirement that veP. We then have conditions
(21) and (22) satisfied and, as we have shown, if u, is any point of den-
gity of P and the point (u,y) tends non-tangentially to (u,, 0), the set
of points o such that veP, }(u+v)eP, falu—v| <y has, agymptotically,
measure 4y/a and so is (this is the only thing we need here) non-empty
if y is small enough. To sum up, if (v, y) tends non-tangentially to (u,, 0)
and y is small enough, then there is a v <P such that §(u+4v)eP, falu—v|
< ¥. Applying this information to the expression (26) and using the facts

w-+v
that g(——z—) —g(uo) andf(v,y) =g(v)+{f(v, ¥)—g(v)} g (uo), We see
that f(u,y) — g(%,) and the assertion is established.

5. LeMMA 9 (4). (i) Suppose that a function F () is defined in an inter-
wval and that at each point x, of a set E we have

(@7 ‘ lﬂl {F {2+ 1)— F(wy—1)} =0,

then F is continuous at almost all points of E. (ii) The conclusion holds
if (27) is replaced by

(28) ]ig {F (@o+1)+F (wo—1) — 2F (o)} = 0.

(*) This lemma is certainly known but sinece we cannot give an adequate
quotation we give the proof.

Added in proof. The conclusion for agsumption (28) is an immediate conse-
quence of Lan}ma 8, Remark (iii), this page: it is enough to take f(z,y) = F(x),
g(») = F(z). Similarly for assumption (27).

) B:esults analogous to Lemma 9 are discussed in a paper of C.'J. Neugebauer
which is to appear in the Duke Journal.
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re (i). Let B, be the set of 2zyeH such that |F(z,+ 1) —F(w,—1)] <n?
for 0 <t<1l/n. We have B, c B,c....c B,..., E = }E,, and it is
enough to show that at almost all points of each set FE, we have
lim tjup | B (2o 8)—F (20)] < n~1. In accordance with our general assump-
0

tions, F and ¥ are supposed to be measurable but we do not assume the
measurability of the E,. We fix n = n,. Since F is measurable, there is
a closed set P, with |B—P| arbitrarily small, such that F is continuous
on, and with respect to, P. If we show that at each point @, which is
a point of external density for B, and at the same time a point of density
of P we have ﬁmt_)sg.lp ¥ (z+1)— F(x,)] <np', part (i) of the lemma

will be established. Suppose for the sake of simplicity that z, = 0, F(2,)=0,
and. that # — 0. .

The set of points yeP such that 0 < y < 2 has, asymptotically,
measure z as £ — 0. The set of points ¥, 0 < y < @, such that z = 3(z+
+y)eBy,, has, as one can easily see, external meagure asymptotically
equal to = as # — 0. Hence, if 2 is small enough, there is a y <P such that
}(@+y)eBy,. It follows that, with b =3$(x—y),

F(2) = F(y)+{F (@) ~F @)} = F(y)+{F (o 1) —F(z—h)}.

Since |F(z-+h)—F(z—h)] <ng' for # sufficiently small and F(y) -
— F(0) = 0, we see that lim sup | ¥ ()] < ny' and (i) is established.
. 2->0

re (ii). Let B, be the set of # such that [F(z--1) +F(a—1)—2F(x)|<<

< -t for 0 <t <nt, and let P have the same meaning as before. It

is enough to show that at every point 2, which is a point of external den-

sity for B, and a point of density for P we have liﬂtl sup | ¥ (z,+1)—
-0

—P(w,)] <n-i. We fix n =n, and assume that z, =0, F(x) =0,
# — 4 0. For a fixed #, the external measure of the set of the y’s in
(0, 2) such that }(z+y)eBy is, asymptotically, #. The measure of the
set of g’s in (0, ») such that yeP, and 2z = }a+y)eP is also, asympto-
tically, . Hence, if » is small enough, there is in (0, ) a point y such
that v is in P and z = }(z+y) is both in P and B, . Since, with » =

P(a) = F(z+h)+F(e—h)—2F (2)+2F (2)~F(y),

and since the last two terms tend to 0 as z —0, it follows that
1 .

lim sup | ¥ (z)] <ng', and the proof of (ii) is complete.
L0

6. LEMMA 10. If for each @, in a set B the even part g (1) of a function
F has a k-th differential at t = 0 of even order &, or the odd part v, (t) has
at t = C a k-th differential of odd order k, then almost everywhere in B the
function F itself has a k-th differential.
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This result was already stated and used in Section 6 of Chapter I.
As indicated above, a proof may be found in [7].

Lemma 11. Let F(x) be a function defined in an interval and equal
o 0 in a set B. Suppose, moreover, that at each point of E we have, with
k=1,2,..., independent of x,

(29) Fla+1)—F(z—1) = 0("
or

(30) Fle+t)+F(e—1t) = 0(5.

Then Fgy(@) exists almost everywhere n B.

This result is essentially contained in [10], but since now the assump-
tions arve somewhat different we give the proof here. We note the basie
difference between Lemmas 10 and 11: a possible reversal of the roles
of k even and odd and, correspondingly, additional assumptions in Lemma
11 about the behavior of ¥ on F (these assumptions could be considerably
relaxed).

Consider first (29). Let B, be the subset of F consisting of points «
such that |F(w+1)—F (z—1)] < nt® for 0 <t < 1/n. It is enough to show
that F(z,+1) = o(*) at each point z,eH, which is a point of external
density for E, (and so also a point of density for H). Suppose, for simpli-
city, that ©y = 0, ¢ > 0, and let ¢ be an arbitrarily small but fixed posi-
tive number. If ¢ is small enough, in particular ¢ <1/n, we can find in
the interval ((1—e)¢,%) a point £cB such that u = }(£+%)eH,. Then,
with & = %(t— &), we have )

[P ()] = |F(u+h)—F(a—h)| <nb® <n(het),

and since ¢ can be as small as we please, F (1) = o(f*). For assumption
(30) the proof is the same.

?. LieyuA 12. Let f(z) be defined in o finite interval amd suppose
that f has a k-th differential at each point of a set B, |B| > 0. Then, for any

€ >0 we can find o closed subset P of B, with |E—P| < ¢, and a decom-
position

J(@) = g(m)}+h(w),
where geC*, g = f on P, and, except possibly for a finite number of intervals
contiguous to P,
(@) < 0{8()}",
6(w) denoting the distance of @ from the set P, and C a constant indepen-
dent of x.
For a proof see [B] or [11y], p. 73-77.
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LemMA 13. Suppose that F(x) is defined in an interval and thai for
each zy in a set B there exists ¢ number b = h, >0 such that the integral

3
f [F(®o-+8)+F(my— )T dt is finite. Then F* is integrable near almost

0
all points of E. The same conclusion holds if in the assumption we replace
F(w+1)+F (w—1) by F(ag+1)—F(zy—1).

The proof follows the usual pattern. We may assuie that the interval

(@, b) of definition of F is finite and denote by E, the set of points z,eE
1/n

such that |F(z,)| <n and [ [F(z,+1)+F(w,—1)Tdi <=n (henge the dis-
0

tance of z, from both ¢ and b is >1/n). Thus £, c Eyc By, ...,

B = Y E, We fix n and integrate the last inequality over E, which we

denote by &. Setting xy+t = u, z,—f = v, we have

[F)+F () Pdude < 208,
ved, (U v)ed
0<H{u-v)<l/n

and in particular, since {F(v)| < n, the integral

b

(31) [P )]
a Ve, Hu-+v)ed
0L (u—2)<1/n

b
oy du = [ F*(u) E(u)du,

say, is finite. If w is situated in (a+2/n, D) if 0 < 7 << 2/n, and if ¢ is the
characteristic function of &, then

a

sw) = [ plo)g{butnde > [ gl uto}d.

u—-2[n

But if u, is any point of density of & and if |u—u,| < u, the last
integral is asymptotically equal to 5 as 5 — 0. Hence £(u) is bounded
below by a positive number in the neighborhood of any point of density
of & that is situated in the interior of the interval (a+2/n, b), and the
finiteness of the integral (31) implies that F* is integrable in the neigh-
bourhood of every such point. From this we deduce that F? is integrable
in the neighbourhood of almost all points of the set E. This is the first
part of the lemma and the proof of the second part is similar.

8. Lemma 14 (%). Let « be a positive number. Suppose that a function
F(w) is defined in an interval, vanishes on a set B, |B| > 0, and at each point
zel]

(3) This is a special case of a more general result of Dr. Mary Weiss, [14]. For
a = 0 it reduces to Lemma 13.
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h

(32) [ [P+t +P@—t)Fdt = 0(h) (b 0).

Then at almost all points weB we have

h

(33) f Fr(n4-t)dt = O(hY).

—h
If @ = 1 we can replace the O in the last equation by o. The conclusions
hold if the integrand in (32) is [F(z-+t)—F(m—1)T.
We write B = Y'B,, where B, is the set of points x#<# such that

h

(34) f[ (@+0)+F(@—t)Fdt <nh®  for 0 <h <1/n,

[

and we will show that (33) holds at the points of density of each E,.
We fix n, write B, = &, and suppose, for example, that £ = 0 is a point
of density of &. Let &(h) be the part of & situated in the interval (—h, k).
Integrating (34) over £(h) we have (for h <1/n)

h

[ o [[F@+t)+F@—0Fd = 0(A+).

10—
Hence, with 2+t =u, s —1t =,
[F(u)+F (v)Fdudo = O(h*th).
HU—I<h, Ho+v)ed(h)

We a,djoin‘on th.e left the condition ve&#(h) and restrict » (which is,
anyway, contained in (—2h, 2h)) to the interval (—h,h). Since then
F(v) =0, we obtain, a fortiori,

h
(35) [P ] | doldu = O(h*.
—h Hu—vih, vel(h), Hu+v)ed(h)

But if ue(—h,h) and ved(h), then, necessarily, §|u-—o| <h, 5o
that the Ia.ttezr condition can be dropped in the last formula and the the
cofactor of F*(u) in the integrand can be written

h
{ P(®)p(}(u+0))dv,

where  designates the characteristic function of the set &. But if % e( hy k)
the last infegral is asymptotically equal to 2% so that (35) implies f F2(u)du
= O(k*). Hence (33) holds almost everywhere in K.
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Suppose now that a« > 1, and let P be any closed subset of F where
(33) holds uniformly; in other words,
h
(36) [P o+nd@t < Mh for 0 <h <7, seP,
~h
with M independent of . At every point x, which is @ point of density
of P we necessarily have f P(u)duw = o(h%). For if 0 < h < 9, the left

gide of (36), with @ = ,, is majorized by M ) (b,— a.)*, Where (a,, by}
are the intervals contiguous to P which overlap with (w,—h, 2,4 5).
Since a > 1, we have > (by,— ,)" < {3 (ba— an)}* = 0(h°), @, being a point
of density of P. It is now enough to observe that |F—P] can be arbitra-
rily small.

Remark. Lemma 14 holds, of course, if the exponent 2 on the left
is replaced by any p > 1.

LeMMA 15. Let P be a closed set situated in o finite interval (a, b).
Let y(x) be the function equal to 0 in P and equal to f—a for = in (a, f),
if (a, B) is any interval contiguous to P. Let 6(t) denote the distance of the
point t from P. Then fm‘ any A >0 the integrals

! () (1)
J ]ml ;IA,. fl 2 t;.u

converge at almost all poinis xeP.

This is well known; see e. g., [11;], p. 130. If # is a point of density
of P, the convergence of either integral is equivalent to that of
3 [(by— ) [0 (w) 1+ Where d,(z) is the distance of (ay,,b,) from .

The lemma which follows is an analogue of Lemma 12 for derivati-
ves in I% Tts proof may be found in [1], p. 186-189, Theorem 9 and
Corollary. The formulation there is very general, valid for derivatives
in I” and functions of n variables. The special case we need is as follows:

LEMMA 16. Let F () be a function defined in a finite interval and sup-
pose that at each point  of a set B, |B| >0, F has a k-th derivative in I’
Then for every & > 0 we can find a closed subset P of E with |E—P| <e,
a positive number 7, and a decomposition F(x) = G(2)+H(x) such that
GeC*, G = F on P, and

fH’(a:—i—t)dt < ME* for  zeP, 0 <h <7,

with M independent of .

9. We can now pass to the proofs of the theorems enunciated in
Chapter I, beginning with Theorem 1. For the sake of definiteness, we
assume that % is odd; for k even the proof is similar.
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Suppose, therefore, that for each ®,eF we have (cf. (2))

ay (%) ap_1(®o) 4y fio_(Q %
2! tz+”'+(k——l)!t + k! t

ey (85 F) = ao (o) +

H

with &y (8) bounded as t — 0 and sio(t) [/t integrable near ¢ = 0. We have
to show that F has a k-th differential almost everywhere in #. The boun-
dedness of &, (t) as 1 >0 implies that F(wy+ 1)+ F (£,— 1) — 2F (2,) tends
to 0 as t — 0, so that ¥ is continuous almost everywhere in B (Lemma 9),
and since the problem of the differentiability of F is local, we may assume
that F is periodic (of period 2x), bounded, and eontinuous in B. Let F(x)
be the funetion conjugate to F, F(g, ) the Poisson integral of F, and
F(g,x) the conjugate Poisson integral of F.

By Lemma 1, for each »,¢F the function

ak+1 %41 2

0
]WF(Q: @+ £)+ WF(&%"@

is integrable over any domain ¢ < C(1—p), + <o <1, and by Lem-
ma 8 the same can be said, for almost all xyeH, about the function

| g

IWHF(Q;%-}-E)

2

and so also, by Lemma 2, about the function

k1

Wﬁ(g9mo+§)

2

This implies, by Lemma 3, that the function
i3

0 ~
W{F(Qim)‘}'iﬁ'(@: @)},

Which‘is regular inside the unit circle, has a non-tangential limit at almost
all points ®,eH. In particular, the radial limit

i

exists an is finite almost everywhere in Z.

Denote by S the Fourier serieg of F, by 8 the series conjugate to S,
and by 8% and 8§, respectively, the series § and § differentiated term-
wise % times. We have just proved that §® is Abel summable almost
everywhere in . By Lemmas 4 and 5, §® is summable (0, %+1) almost
everywhere in B, and, by Lemma 7, the same holds for S®. The Iatter
series has coefficients o(n%) = o (n*+?)
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Let 7' denote the series obtained by integrating S termwise k--3
times, and let @ be the sum of T (observe that T converges absolutely
and uniformly). By Lemmas 6 and 10, @ has at almost all points of B,
a differential of order k--3. Clearly, @ is a third integral of F.

By Lemma 12, for any ¢ >0 there is a closed subset P of F, with
|B—P| < &, and a decomposition

(37) ®=VYix
where ¥ = @ on P, PeC*t® and
(37a) X ()] < C{8(x)}** (8(x) = d(, P))

except, perhaps, for a finite number of intervals contiguous to P.

‘Without loss of generality we may assume that Py () exists
everywhere in P; hence X 4 (2) exists everywhere in P. The inequality
for X ghows that X;(x) = 0 for j <%+ 3 at each point of density of P.
We may also assume that F. ,(z) exists everywhere in P.

Let us differentiate the equation @ = ¥+ X three times. Since @
is a third integral of F', and F' is continuous in F > P, we have @' (z) =
= F(#) in P (°). Hence, with ¥ = G<0* and H = F—@, we have the
identity

(38) F(w) = G(z)+H(a)

where H(z) = X'"'(2) in P.

The function H satisfies, like F, condition A, at each point of P.
It also hag, like ¥, a differential of order k—1 everywhere in P. Since,
clearly, X is a third integral of H, the differential of order k-+2 of X
at any point s,eP is obtained by integrating the differential of order
k—1 of H at x, three times. But we observed that X;(z,) =0 for 0 <
<j <k-+2 and almost all z,<P. Hence

Hy(wy) =0 for 0<j<k—1 and almost all z,eP.
This, together with the fact that H satisties condition /; at each
point of P, shows that for almost all points &P we have
(39) H(z+1)+H@—1) = 0.

(For % even we would get, instead, H(w-4f)—H(z—1) = 0(t%).) Hence,
by Lemma 11, H, (2) exists almost everywhere in P. It follows tha.t Py ()
exists almost everywhere in P, and so also almost everywhere in B

(%) The continuity of F in E is not really indispensable in the argument. The
conclusion ¢/ — F in P can be reached if F is continuous in the mean at each zel,
3

i.e., if f[]i'(w_{_t)_z«"(m)[dg = o(h), and this holds, anyway, for almost all .
]

Studia Mathematica XXIIL3 18
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10. This completes the proof of Theorem 1. Assuming the validity
of Theorem 2, we may also consider Theorems 3 and 3’ a8 established.
" We now pass to the proof of Theorems 4 and 4’. The theorems say
essentially the same thing and we may confine our attention to Theorem 4
and assume for the sake of definiteness that & is odd; we may also agsume
that 0 < |E| < co. We begin with the second part of the theorem which
agserts that if for each @,eF the function F has a k-th differential in
I?, if this differential is
3
O () 4
P (1) = Z Tt
=0
and i e,(t) is defined by the equation
tk
ﬁ'y
then &, (f)—&g,(—1) satisties condition N at almost all points of A.
By Lemms 16, we can find a closed subset P of B, with |[F—P| < ¢

and & decomposition F = G+H such that GeC¥, G =F in P, and it
{(84, bs)} is the sequence of intervals contiguous to P we have

F(my+1) = Py, (1) 425, 1)

by
(40) [ E2 ) dr < M(bp—an)™,
ay,

except possibly for a finite number of these intervals; the constant M
is independent of ». In view of Theorem 2, it iy enough to prove the required
result of F = H and B = P. Since H = 0 on P, the last inequality implies
that for every @, which is a point of density of P we have

h
f H (w4 1)@ = o (B
—h

8o that the k-th differential P, (¢) of H in I? is identically 0 and &g,(1) =
kUH (w,--1)t7%. It is therefore enough to show that for almost all z,eP
the function H(zy-+1)[t|~*+Y is integrable mear ¢ = 0.

Take any point z, of density of P and 5 >0 so small that for all
the intervals (ay, b,) situated in I = (w,— 7, 2,+ %) we have (40). By
reducing # still more we may assume that if d, = d,(x,) is the distance
of (a,,b,) from x,, then d, > b,—a, for all (a,, b,) in I. We may also
aggume that x4 neP. Let y(o) be the function equal to 0 in P and to
by,—a, in the intervals (a,, b,).

Then
n bn 2 o
Rt 9 2w < Yo [
A an n
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bn X
<UD & a0 < gt B [ @
dn,

l“’!"*"’tﬂzm’1
Zotn 2k
M f G
!56*5'7012’”'1
Lo—n

and, by Lemma 15, the last integral is finite for almost all &, in P.

i1. .It remaing to prove the first part of Theorem 4, namely that if at
each point of a set ¥ (assuming. e.g., % odd) the function &, () which
appears in

o ay (@) oy (@) 4 %,
‘pmo(t: F) = ap(®)+ ‘%!—‘tz+...+ ﬁt" 1+Ezn(t)ﬁ_

satisfies condition N, then F has a k-th differential in I? at almost all
points of E.

The proof is to a considerable degree parallel to that of Theorem 1.
h
The integrability of e?co(t) [1tl near ¢ = 0 implies, firstly, that [ lez, (D) dE =
0

=o(h) and, secondly, that {F(w,+1)--F(x,—1)} is integrable near
t = 0. By Lemma 13, F* is integrable near almost all points of E. We
may therefore assume from the start that F(z) is periodic and of the
class I?, and arguing as in the case of Theorem 1 we have the decompo-
gition (37) with ¥ and X having the same properties as before (cf. also
the footnote in the proof of Theorem 1). By differentiating we again obtain
(88) with @ in C* and H = X" in P. As before, the (k—1)-th differential
of H is identically 0 at almost all points of P, and, by Theorem 2 applied
to @, we have

(35a) [H (”“Lt)tj,;f @O g < oo

(instead of (39)) for almost all points zeP. Hence, a fortiori,
fh {H (x-+1)+H (w—1)}2dt = o(h¥*+")
0
almost everywhere in P, and so also, by Lemma 14 (%),
(35b) fh H (0 1)t = o(h* Y
~n

(6%) Added in proof. This i the only place where Lemma 14 is used, but
we could do without it and use the key Lemma 8 instead, with f(z, y) = H () s>
For then (35a) implies the integrability of functions H?(w-£t)3~*~ near ¢ = 0, and
80 also (35b), almost everywhere in P.
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almost everywhere in P. It follows that H, and so also F = G-H, hag
a %-th differential in L? at almost all points of P, and therefore also at
almost all points of B. This completes the proof of Theorem 4.

Chapter III

1. Let us return to the definition of the derivative in L* and suppose
that 1 <p < co. It can be shown () that if, say, % is even and for each
#,¢ B the even part ¢, (1) of Fhasati=02 k-th differential in L”, then
F itself has a k-th differential in I” at almost all points of F; the same
eonclusion holds if % is odd and we replace qazo(t) by g, (8). If we inter-
change the Toles of @, and y,,, without changing the parity of %, we are
led to the notions of conditions %, and A in the metric I7.

Suppose that F belongs to L” in the neighborhood of », and that
the even part ¢ (t) has at t =0 a differential in I” of odd order %, or
that the odd part v, (f) has a differential of even order k. It is not diffi-
cult to see that in either case the k-th derivative must be 0. For if, for
example, % is odd (the definitions and arguments which follow are ana-
logous for %k even) and U(#) is the k-th differential of g, (f) at =0,
the hypothesis

L
[ [ Iy =T @P ™ = o(h")
Zn .

and the even character of ¢, imply that U(#) is also even, and so is of
degree k—1; hence the k-th derivative of gy (f) at ¢ =0 iz actually 0.
‘We therefore have

J

@ Peglts ) = U0+ ey (677

‘where
3
_ " 1/p 3
= uf lery " Pt} = o(1F),
a condition whieh is easily seen to be equivalent to
1
@) {1 [ ey (P ™ = 0(1).
[
If (2) holds we shall say that F satisfies condition A% ot z,, and by
replacing here o by O we define condition AJ.
If F satisfies condition 4} at each point of B, it does not necessarily

follow that that F has a k-th derivative in I” almost everywhere in E,

(") See [14].
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though the existe'nce of the (k—1)-th derivative is assured by the remark
made at the beginning of the section. We have, however, the following
- TenOREM 5. If F satisfies condition AL, 1 <p < oo, in a st B,

then the necessary and sufficient condition for F to have a k-th differential
in LP almost everywhere in B is that the function

.
1
(2a) ) =5 f 20,(8) ds
. 0
(see (1)) satisfies condition N almost everywhere in E. '

The definition of condition Af presupposes (if % is odd) that &2, (1)
is in I” near ¢ = 0. By an analogue of Lemma 9, with exponent p, F it-
gelf is in I” near almost all points of B. Hence, without any loss of gene-
rality, we may assume that F is in I” over the whole interval of defini-
tion.

Let F; be the indefinite integral of F. Integrating (1) with respect
to ¢ we get (omitting the subseript 2, on the right)

41
3) Va8 1) = Usll)+0(0) oy
where
! k41
7,(0) = f Uls)ds, n(t) — t"_il fs(s)skds.
0 0
Hence
i t
k1 f ;
(33) 0] < g [ el < (T [ e
o 0

< (k+1) {%ft ls(s)[l’ds}llp7

so that if F satisfies condition A} at »,, ¥, satisfies condition Aj,,.
Next, e*(t) satisties condition N if and only if #(¢) does. This follows
from the two formulas

2
k
(kD)) = n0)+ 5 [ (o),

i

77“) T * 3
= g ofe (s)s"ds,

which are easily obtainable by integration by parts. Both integrals on
the right are abgolutely convergent, as may be easily seen from the first
inequality (3a) and (2) (with O instead of o).
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We shall now prove the sufficiency of the condition in Theorem 5,
Suppose that ¥ satisties condition A% in B and that s;‘o( t) satisfies condi-
tion N there. Hence the indefinite integral F, of F satisfies condition
A4, in B and we have (3) with 7 satisfying condition N. By Theorgm 1,
P, has a Peano (k--1)-th derivative almost everywhere in . By Lemma 6,
we have a decomposition F; = G +H;, where G,<0**", G, = I, in a clo-
sed set P < B with |E—P| arbitrarily small, and the derivatives of order
< k+1 of H, vanish almost everywhere on P. By differentiating the
equation Py = G, +H; we obtain F = G-+H, where G = G1C* and
H = H, vanishes almost everywhere on P.

Counsider now any point z,eP where F, has a differential of order
%k+1 and H, has a differential of order %k--1 vanishing identically; at
x, the differentials of order k+1 of F, and @, are equal. At such an z,
we must have 7, (t) = o(1) since the left-hand side of (3) is an odd function
of t, U,(t) is an odd polynomial of degree < %k, and %41 is even. If, for
the same x,, we write y, (f,G1) = V(&) +o (), then T, (2) = V,(t).
Tt follows that the differential of order & of g (¢, @) at ¢ =0 is V,(i) =
= U;(t) = U(#). Hence, by (1),

tk
Py by H) = 0y (85 1) =z, (8, G) = 22, (1) = +0 (1),

h h
1 up 1 1w
{i of 1¢pzo(t,H)|”dt} <n* {ﬁ of |swo(t)[”clt} +o(H)
= O(A") o (W) = O(HF).

Since H = 0 almost everywhere in P, an application of the analogue
of Lemma 14 with exponent p instead of 2, shows that at almost all points
weP we have

1 h . » Ip &
[ meroral” —oon.
At such a point # the function F = G+H has a k-th differential in L
Hence F has such a differential almost everywhere in P, and so also
almost everywhere in . This completes the proof of the sufficiency part
of Theorem 5.

The proof of the necessity of the condition in Theorem 5 is gimple.
Suppose tha{t F has a k-th differential in L” in E and satisties condition
A there. It is immediate that the indefinite integral ', of F has a (k- 1)-th

¢

Peano differential in B. Moreover, we have (3), where U,(t) = [ U(s)ds
0

is a ?qunomial of degree k& and #(t) = o(1). By Theorem 2, 7(t) satisties
condition N a;lmost everywhere in B and this implies, as we indicated
above, that £z,(t) satisfies condition N almost everywhere in .
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The following result is & corollary of Theorem. 5:

THEOREM 6. Suppose that FeIP,1 <p < co. The necessary and
sufficient condition for F to have a k-th derivative in TP almost everywhere
in a set B is that, almost everywhere in E,

a) I satisfies condition AY;

b) the function B:O(t) defined by (2a) satisfies condition N.

That condition A is satisfied at each point where the k-th derives
tive in L” exists, i clear, and then the necessity of condition b) follows

from Theorem 5. The latter theorem also implies the sufficiency of con-
ditions a) and b).

2. In the case p > 2 Theorem 6 can be stated in”a different form

THEOREM 7. Suppose that Felf, 2 < p < co. The necessary and suffi-
cient condition for F io have a k-th derivative almost everywhere in a set B
43 that, almost everywhere in H,

a) B satisfies condition Af;

b) the function eg(h) n (1) (for k odd, with a corresponding modifi-
cation for T even) satisfies condition N. .

The necessity of condition b) (condition a) here is the same ag in
Theorem 5) follows from Theorem 4 and the fact that, since p > 2, dif-
ferentiability in I implies differentiability in I2. The sufficiency of the
conditions follows from Theorem 6 observing that if s, (f) satisfies con-
dition N so does 6:0(” (a» simple consequence of Schwarz’s inequal-
ity).

3. For our next theorem we need the following lemma:

LeMmA 17. Suppose that FeLP, p > 2, and that (for k odd, with the
corresponding modification for k& even) the function ey (t) in (1) satisfies
condition N in a set H. Then the following two conditions are equivalent
almost everywhere in H: '

a) I satisfies condition A;

b) the integral of 1 &g, (D)7 A8 48 finite.

It is clear that condition b) implies a) at each poinb. It is the con-
verse that requires proof. It will be convenient to assume that F is perio-
dic of period 2w. :

Since &, (t) satisfies eondition N in E, F has a k-th derivative in Z?
almost everywhere in B (Theorem 4). Let us apply to ¥ Lemma 16 and
keep the notation of that lemma. Without loss of generality we may
assume that the function @ is not only in C* but also of period 2w. Then
the function z,(¢) of (1) bubt corresponding to & (e,(t) = &(t, &)) satisfies
the inequality '
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{f fei(t, G)le—aiﬁlz}”2 < A{ fgz(aé)dm}llz (g = @™,

with A independent of G This is proved in [13], and in the case &t =1
pretty familiar (see [4]). We claim thatb if 2 < p < oo, then

- ldwds)ur ; V1P

tf flax(t,Gn“—t—} <af[pras”.

For p = 2 this is the preceding inequality, and it also holds for

p = oo if we interpret is as Bss tsup lex (8, @) < A BEss suplg(w)|. Hence,
x, @

by M. Riesz’ convexity theoren{, it is valid for 2 <p < co (for k =1,
the result is already in [4]). It follows thab

f lea(t, PP E-1dt < oo
[

for almost all .

In particular, ¢ satisfies condition Af almost everywhere. Hence,
if B satisfies condition 42 almost everywhere in P, so does the function
H in the decomposition F = @-+H. Hence, by the Remark to Lemma 14
(with a = kp+-1),

{% f’ L ]H(mj:t)l”dt}llp = o(h¥)
0

for almost all weP. This shows (since H = 0 in P) that the function
|H (z+1)[Pt P+ and so also the function [e,(t, H)[?¢-%, is integrable
near ¢ = 0 for almost all z<P. Hence the same holds for &,(t, F') and the
lemma is established.

TEEOREM 8. Suppose that Fel®, p = 2, and & is odd (the correspond-
ing result holds for k even), then F has a k-th derivaiive in IP almost every-
where in B if and only if the two integrals

d -
[tewpd, [lemrd

are finite almost everywhere in H.

If the two integrals are finite almost everywhere in H, then, by The-
orem 7, F has a k-th derivative in I” at almost all points of E. The con-
verse follows from Theorem 7 and Lemmsa 17.

If k=1, Theorem 8 asserts that, for p > 2, the simultaneous exis-
tence of the two integrals

f [F(m+t)+F(fa—t)+2F(w>]’ i, le(w+t)+F;i?t)~—zF(m)l” it

[]
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almost everywhere in ¥ is both necessary and sufficient for the differen-
tiability of F in I almost everywhere in B.

4. The following result is an immediate corollary of Theorem 4’
and of known results:

THEOREM 9. Suppose that F(z) is in L*(—oco, +oo) and has & (k— 1)-th
Peano derivative at each point of o set B. Suppose also that the function
w5 (t) defined by the equation

Je—1
1 ; *
Flo+1) = gﬁﬁ’(j)(m)t’—l—(o,(t)ﬂ (@)
i=
satisfies at each point wel) the condition
0

(4) J &%ﬁ)_“_:)f_(—_tﬂi dl < co.

Then the integral

X oot — oo —1 <
(5) j .,wﬁ(_)_‘_aﬁ_,) dt = lim.

Y ¢ e t0Y
emists almost everywhere in HE.

Proof. The finiteness of the integral (4) implies that F has a k-th
differential in L2 at almost all points of B. At each point at which this

z
occurs, and so almost everywhere in B, the function @(z) = [F(@)dt
L]

bas a (k-1)-th Peano derivative. By the main result of {10], the integral
(5) exists almost everywhere in .

In the case k =1, Theorem 9 asserts that if FeL?(-oo0, +o0),
the existence of the integral of Marcinkiewicz

f [F(o+)+F@—1)—2F@)F
t3

[

for z<F, implies the existence of

00

J' Fla+1)+F@—1)—2F () o,
12

J
almost everywhere in E. The converse is not true; to see this, it is enough
@z
$o constiruet an F eI (—oo, +oo), such that @ (x) = [ F (1)dt has 2 second
: 0

Peano derivative almost everywhere while F is almost everywhere without
a first derivative in I®. The construction is not difficult and is omitted
here. A similar argument shows that the converse of Theorem 9 is false
for each %.
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5. Some of the results proved in this paper have extensions to fune.
tions of several variables. We give here one of such extensions which
is an analogue of Theorem 3'.

THEOREM 10. Suppose that F(z) = F (v, &y, ..., %) eL*(E™), and
that i satisfies condition A for each wmyeB < E, i. 6., we have

(6) F (@y+ h)+F (wo—h)— 2F (o) = O(|h]),

where b = (hy, by, ..., ha), [Bl = (W), Then the necessary and suffi-
cient condition for T fo have a first total differential almost everywhere in
B is that

™ [F(wo+h)+ﬁl’}(bﬂli3;h)—2ﬁ’(wo)] h < oo

b4

almost everywhere in H.

The integral in (7) is the n-dimensional analogue of the integral
of Marcinkiewicz. The part of it extended over |h| > e >0 iz always
finite.

The necessity of the condition is proved exactly as in the one-dimen-
sional case, by decomposing F into a “good” and “bad” part (see [1],
p. 189). We have here even a somewhat stronger result: we have (7)
almost everywhere in E if we merely assume that F has at each point
of F a total differential in the sense of L%

The sufficiency of the condition is a relatively simple consequence
of the corresponding result for the one-dimensional case. We gketch the
proof, and we omit routine arguments involving the measurability of the
?gfsbwhich oceur in the proof. Without loss of generality we may replace

v .

1F (204 B)+-F (@ — h)— 2F (mo)| < M|h| (woeB; [B] < 6).

Suppose we have (7) for a fixed @, and let ¢, e,, ..., 6, be a system

gf n mutually orthogonal unit vectors. Then, by Fubini’s theorem, we
ave

n oo
() 2 ] PE @t )P (@0 — )= 2F (@) Ft < oo
for almost all choices of the frame e,, €2y ...y 6y. Using Fubini’s theorem

again, we obtain the existence of a fived frame 015 €9, ..., &, such that (8)

holds f04r almost all w)eB. Applying a rotation, we may assume that this
frame lies along the z,, x,, seey M, AXES.

. ~Bly onr oneidimensional theorem, the partial devivative (8/dw;)F
(k=1,...,n) exist almost everywhere in . This implies that # has an

approximate total differential almost everyw!

here in B, i e., for almost
n . i 4 ) ’
all zy<F there is a set: H,, having 0 as a point of density and such that

icm°
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Foy+h) = 3 hy(0]0m) F () -+ 0(|h]), provided % tends to 0 through the
set Hay, . Take a fixed point 2, at which this occurs. We may agsume without
loss of generality that #, = 0 and that (8/0z)F(z) =0,k =1,2,..., 5.
Write H, for Hy . Since 0 is a point of density for H,, for any h with
|k| sufficiently small, and for any & >0, we can find two points h, and
by in H, such that, in the first place, h, is the mid-point of the segment
(h, by) and, second, |h—hy| <elh|. Since F(hy) = o(|h;]) = o(|h]) and,
gimilarly, F(ky) = o(lh), and since

|7 (h)— 2F (hy) +F(ho)| < M |h—hy| < Melhl,

it follows that |F(R)| < 2eM|h| for h arbitrary and sufficiently small.
Hence (k) = o(|h]) and the theorem is established.

References

[1] A. P. Calderén and A. Zygmund, Local properties of solutions of elliptic
partial differential equations, Studia Math. 20 (1961), p. 171-225.

[2] K. O. Friedrichs, An inequality for potential functions, American J ournal
for Math. 68 (1946), p. 581-592.

[3] A. Khintchine, Recherches sur la siructure des fonctions mesurables, Fund.
Math. 9 (1933), p. 212-279.

[4] J. Marcinkiewicz, Sur quelques intégrales du type de Dini, Annales de la
Soc. Pol. de Math. 17 (1938), p. 42-50.

(5] — Sur les séries de Fourier, Fund. Math. 27 (1936), p. 38-69.

[6] — Sur quelques intégrales du type de Dini, Annales de la Soc. Pol. de Math.
17 (1938), p. 42-50.

[7] — and A. Zygmund, On the differentiability of functions and summability
of trigonometric series, Fund. Math. 26 (1936), p. 1-43.

[8] — and A. Zygmund, On the behavior of trigonometric and power series,
Trans. Amer. Math. Soc. 50 (1941), p. 407-453.

[9] E. M. Stein and A. Zygmund, Smoothness and differentiability of funetions,
Ann. Univ. Sei. Budapest, Sectio Math., IIT-IV (1960-1961), p. 295-307.

[10] M. Weiss and A. Zygmund, On the exisience of conjugate Sfunctions of
higher order, Fund. Math 48 (1960), p. 175-187.

[11] A. Zygmund, Trigonometric series, 2nd ed., Cambridge 1959, 2 vols.

[12] — Smooth functions, Duke Math. Journal 12 (1945), p. 47-76.

[18] — A theorem on generalized derivatives, Bull. Amer. Math. Soc. 49 (1943),
p. 917-923.

[14] M. Weiss, Symmetric differentiation in IP (to appear in the Studia
Mathematica).

Regu par la. Rédaction le 13.5.1963


GUEST




