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On operators with a finite d-characteristic
by

D. PRZEWORSKA-ROLEWICZ and 8. ROLEWICZ (Warszawa)

The theory of linear integral equations founded by Fredholm [1-4]
was a starting point for the development of the theory of normed spaces
and compact operators in these spaces (Riesz [1], Banach [1]). This
theory created its own methods different from the methods of the deter-
minant theory used in the original papers by Fredholm. Subsequently
compact operators in different types of linear topological spaces were
investigated by Hyers [1], Marinescu [1], Altman [1-2]. Most general
results was obtained by Leray [1]in the case of loeally convex spaces and
Williamson [1] in the case of general linear topological spaces. There
was a return to Fredholm’s original idea of the determinant theory after
second world war. The first determinant theory of operators in a Banach
space was created by Ruston [1-4]. This theory was developed and
modified by Grothendieck [1-3]. Another, more general theory was given
by Lezafski [1-2] and completed and modified by Sikorski [1-5].
Sikorski has remarked that many facts have a quite algebraic character
and can be formulated and proved in the language of linear algebra.

The theory of linear integral singular equations, developed by
Muskhelishvili [1] for one dimension, and by Michlin [1] for many
dimensions, and others, arouse an interest of mathematicians in the
theory of linear operators in Banach spaces which have finite nullity
and deficiency. These operators are called operators with a finite
d-characteristic. The basic properties of this theory was independently
formulated by Gochberg and Krein [1] and soon after by Kato [1].
Other results concerning this subject are contained in the papers of
Gochberg [1-4], Feldman, Gochberg and Markus [1] and Yood [1].

Buraczewski [1] transfered the determinant theory of Lezatiski
and Sikorski to the case of operators with a finite d-characteristic.

One of the most important methods of solution of a linear gingular
integral equation is the method of regularization (Muskhelishvili [1],
Michlin [1], [2]). Algebraic principles of the theory of regularization
were given by Przeworska-Rolewicz [1-2].
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The aim of this paper is an investigation of the theory of operators
with a finite d-characteristic exclusively in the language of linear algebra
without consideration topological properties. A part of the results is
contained in the author’s paper [1].

§ 1. Definition of operators with a finite d-characteristic. Theorem
of the index of superposition. We are given two linear spaces X
and Y and a linear operator 4 determined on a set Dy < X and with
values in Y. By B, we denote the get of values of operator 4, by Z, we
denote {xeX:Azx = 0}. The number a, = dimZ, is called the nullity
of A. The number f, = dim Y [E,, where by Y /E, we denote the quo-
tient space, is called the deficiency of the operator A. The pair of number
(e, B4) is called d-characteristic of the operator 4. We say that the
d-characteristic of the operator A4 is finite, or that the operator 4 hag
a finite d-characteristic, if numbers o, and p, are both finite. The index
of the operator 4 is the number

(1.1) %4 = fBa—0y.

The following important theorem holds for the index of superposition
of two operators:

TeEOREM 1.1. Let A and B be linear operators with o finite d-charac-
teristic, let B map X in Y, and let A map Y in Z. If A is determined on
the whole space Y, then the superposition AB is an operator with a finite
d-characteristic and
(1.2) %4p = %4+ %p.

Proof. Let €, = Bz~Z, and n, = dim€,. Obviously we can repre-
sent the set Z, as a direct sum

(1.3) Z,=C0C
where dim€, = a,—n, and ¥ as a direct sum
(1.4) Y = Ez@C,06,
where dimC€, = n,.
Since the space €,®C; is isomorphic to the quotient space Y [Ej,
we have dim(€,+C;) = fp, whence oy—n+n; = fz and
aq—fBp = ny—n.
Formula (1.4) implies
(1.5) By = BipDAG,,
but dimAC; = dim€; = n,;, and definitively
%48 = fap—04p = fat1—(ap+ny) = Bu— ay+Pfp—ap = x4+ xz,
qg.e.d.

icm

Operators with a finite d-characteristic 259

If a superposition of two operators AB has a finite d-characteristic,
then obviously f4 and ap are finite. This immediately implies a theorem
in some measure inverse to theorem 1.1.

THEOREM 1.2. Let an operator A map X in Y and an operator B map ¥

in X. If both superpositions AB and BA have a finite d-characteristic, then
both operators A and B have a finite d-characteristic.

§ 2. Finite dimensional operators. We are given two linear spaces X
and Y. An operator K of the type

n
y = Kz =g @i ()Y
where y;e Y and ¢; denote linear functionals determined on X, is called
a finite dimensional operator.

We ghall assume that ¥ = X and we shall consider the operator
I+4XK, where I denotes identity. By simple calculations we find that the
operator I+K has a finite d-characteristic and its index is equal to zero.
This fact and theorem 1.1 imply

TuroREM 2.1. Let A be an operator with a finite d-characteristic and
let K be a finite dimensional operator. Let A and K transform the Uinear
space X in the linear space Y. Then the operator A 4K has a finite d-charac-
teristic and

AL R = %4~

Proof. We decompose the space X into a direct sum of the space Z 4
and some space €: X = Z,®C. Obviously the operator 4,, which is
a restriction of the operator A to the space €, is invertible. Let K, denote
the restriction of the operator K to the space €. Then

A+ K, = ([+E A7) 4.

The operator K, A7! is a finite dimensional operator mapping ¥
in Y. Basing ourgelves on theorem 1.1 we obtain

(2.1) Maprk, = Hrymparitra, = fa-

On the other hand, the operator 4 4K is an extension of the operator
A;+E,, and we shall show that s, x = %4 x;—4- ‘We shall consider
three cases:

10 KZ,4 = By 4k, - Then Eiix = B4z, whence Bair = Bayix,-
But Oy B = aAl+K1+ Oy Therefore HALR = %4,1K; " Od -

20 For each zeZ,, © #0, Kv¢l, x. We write 7= dimKZ,.
Obviously Baix = fa4+x,—"- On the other hand, as,x = @44 x,—
—(ay—7), because ay—r is equal to the nullity of the operator K re-
stricted to the space Z,. Therefore x4,x = #4,.x,— ¢4.
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30 In the general case we decompose the space Z, into a direct
sum of two spaces €, and €,:7, = €, ®E,, where KC, = By ,x and for
each 5¢C,, » # 0, Kw¢ B, ,x,. At the begining we consider the restric-
tion A,+K, of the operator A+K to the space €PC,. Basing our-
selves on 20 we obtain x4 g, = #4,x,—AimCE,. On the other hand,
by 1°, we obtain g,z = wa x,—dim€. But dAmC,+dimC€, = a,.
Therefore x4, x = %4, — @4-

By (2.1) this implies the theorem.

§ 3. Perturbations of operators. We are given a class of operators 2.
An operator 4 is called an U-perturbation of an operator B if A+ Be?.
An operator O is called an A-perturbation of a class R of operators if ¢
is an U-perturbation of an arbitrary operator B belonging to R. An
f-perturbation of the class ¥ we shall call briefly 2(-perturbation.

In the preceding paragraph we proved that the finite dimensional
operators are perturbations of the class of operators with a finite d-cha-
racteristic. Now we shall ghow that the inverse theorem is also true.

TemorEM 3.1. If an operator K mapping a linear space X into itself
s a perturbation of the class of all operators with o finite d-characterisiic,
then K is a finite dimensional operator.

Proof. Suppose that the operator K is not a finite dimensional
operator. Then there exists a sequence {y,} (» =1,2,...) of linearly
independent elements belonging to the image of the space X by the
operator K. Let x, be such an element that K, = y,. Let X, denote
the linear space generated by sequences {w,}, {¥,}. We decompose the
space X into a direct sum: X = C@X,. Now we determine the operator 4
in the following way:

A iy an identity on €,

Ar, =y, for ==1,3,5,...

The elements @, (n = 2,4, 6,...) and those ¥, which do not belong
to the space generate by the sequence {z,} (n =1,3,...) we order in
& sequence {z,}. Similarly we order in a sequence {z;} all elements ¥,
(n=2,4,6,...) and those , which do not belong to the space generate
by yn (n =1,3,5,...). We determine: 4z, = z,.

The operator 4 is invertible and maps the space X onto itself,
whence it has  finite d-characteristic. On the other hand, the operator
A—K does not have a finite d-characteristic because (A—K)x, =0
for n =1,3,5,... and a4 _x = -+oco. Therefore the operator K is not
& perturbation of the class of all operators with a finite d-characteristic,

Remark. We considered the case of operators transforming the
space X into itself. In the case where the powers of the bases X and ¥
are equal we can obtain the same result by isomorphism of the spaces X
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and Y. In the case when the powers of the bases of the spaces X and ¥
are infinite and different, operators with finite d-characteristic mapping
X in Y do not exist.

In the case where we do not consider all operators with a finite
d-characteristic, the situation can be different, as follows from

THEOREM 3.2. Let &', be a ring of linear operators mapping the space X
into diself. Let &y contain all finite dimensional operators. Let & be an
arbitrary right-side (or left-side) ideal such that I4+T has a finite d-char-
acteristic for each T ef. Then operators belonging lo ¢ are perturbations of
the class of all operators with a finite d-characteristic belonging to &,. If,
moreover, xr.p = 0 for each Tef, then this perturbation does not change
the index.

Proof. Let 4 be an arbitrary operator with a finite d-characteristic
belonging to %,. Let the space X be decomposed into a direct sum
X =7 ,®C. This decomposition induces the following projective opera-
tors:
z2eC N

.‘EGZA.

z  for for

0 for

we@, P 0

2 =

P, =

veliy; for

Obviously the operator A, = AP, has the d-characteristic (0, 84).
Since Z, contains finite dimensional operators, we can extend the oper-
ator AT! (determined on F,) onto the whole space, without changing
the set of values. This extension we denote by A7*. Obviously A7 4 = P,.

Let T'e#. Let 1, = TP,. Then

A +T, = (I+TP,ATH A,

but Tef, whence € = TP,A7'¢#; therefore 4,+T, and obviously
A+T, has a finite d-characteristic. If, moreover, »;. 7 = 0 for all T'¢ 7,
then

naypmy = HLprp Aot ot = nay = Ba,

whence

#44TP; == Ba— 04 = 4.

On. the other hand, 7P, is a finite dimensional operator, whence

HALT = ZALTP TP, = XA TP, = X4
1+T Py 1

For left-side ideals the proof is similar. It is enough to remark that
the operator P, = A A7 is a projective operator mapping X on E, and
the operator P, = I—P, is a finite dimensional operator. On the other
hand,

A+P,T = A(I+AT'T)
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and by theorem 1.1 and the properties of the ideal we find that the
operator A -+P,T has a finite d-characteristic; and if, moreover, »; . =0
for each Te#, then

(3.1) Hyypyw = %4
Since P, is a finite dimensional operator, then P,T is an unchanging
index perturbation of class of operators with a finite d-characteristic.

Theretore 4 +P,T-+P,T is an operator with a finite d-characteristic and

(3.2) AP T = HA4T-

The formulas (3.1) and (3.2) imply x4z = #4, Q. €. 4.

We do not know if we have a right-side (left-side) ideal ¢, such
that for each Te# the operator I--T has a finite d-characteristic,
then »;,.r = 0 for all Tef?

§ 4. Conjugate operators, dy-characteristic and ¢y-operators.
Let X, Y be linear spaces. Let X', ¥’ denote their conjugate spaces, i. e.
the spaces of all linear functionals determined respectively on the spaces
X and Y. Let H = Y’ be a total space, i. e. if ny = 0 for all 5 <H, then
y = 0. A linear operator A transforming the space X into the space ¥
induces the operator 7.4 mapping H in 5 < X’ determined in the follow-
ing way:

(nd)z = n(dz).

This operator is called conjugate operator to A and we shall denote
it by A'. Then A’n £ n4.

If H = Y’, then the nullity of the operator A’ is equal to f4.

‘We shall consider the deficiency of the operator A, i. e. the dimension
of the space Z/HA. Obviously the deficiency depends of the space Z,
but it is easy to check that if H = ¥’ and 5 = X', then

ﬁA' = dimXI/YA’ = Q.
Tndeed, leb By = {£:& = nd, ne X’} and 2% = {o:£Ax = 0, < X'},

Obviously Z% = Z,. Let f be an arbitrary element of X’. This functional
induces the funectional on the space Z,, whence

ﬂ,et’ < dimZYy = dimZ 4 < ay.

On the other hand, each linear functional determined on the space
Z 4 can be extended on to the space X ; therefore o, < 84 and definitely
B4 = ay. We have proved

PrOPOSITION 4.1. Let X and Y be linear spaces. Let X' and Y’ be
their conjugate spaces. Let an operator A map X into Y and the conjugate
operator A’ map X' into X'. Then the nullity of A is equal to the deficiency
of A’ and the deficiency of A is equal to the nullity of A’ and

Hyr = —H4.
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If H+# Y or & # X', the proposition 4.1 is not true, even in the
case of X = Y, 5 = H. An appropriate example is given in the author’s
paper [1].

Now we replace the index of operator A by another number (which
be called H-index) possessing the desired property. We determine the
dg-characteristic a3 the pair of numbers (a4, %), where % = a . We
determine the H-index by the formula:

H y:d
#g = fa—aq.

Obviously » — —»3..

The example given in the author’s paper [1] shows that the dg-char-
acteristic need not be equal to d-characteristic, even in the case of X = ¥,
& — H. Moreover, it shows that the theorem similar to theorem 1.1 is
not true.

If the dg-characteristic of an operator A is equal to the d-character-
istic, then such an operafor is called @g-operator.

PROPOSITION 4.2, Let X = Y and 5 = H. If an operator A is the
sum of the identity operator I and a finite dimensional operator K map-
ping E into itself, A = I+K, then A is a D-operator.

n

Proof. Let Ko = ) m;&x. By a simple calculation we can prove
i=1

that ey x = fr.x = n—Fk, where k is the rank of the matrix (&), If
we consider the conjugate operator, i.e. the operator I--K', where

n
K'¢ = 3 fm&; then obviously ap,xr = fryxr = n—*’, where &’ is the
=1

rank of the matrix (& ;). But k¥ = k', whence Biix, equal to arx by
definition, is equal t0 a;, x = frix; Q.6 4.

In some cases it is possible to prove that the dz-characteristic is
equal to the dgo-characteristic, where =, is a subspace of 5. This follows
from

THEOREM 4.1. Let X be a linear space. Let 5 be the total space of linear
functionals determined on X. Let T map X into itself. Let X, be an arbitrary
subspace of X containing TX and let B, be an arbitrary subspace of the
space 5 containing ST. If the operator A =I+T has a finite d-character-
istic, then the restriction of operator A to the space X, has a finite dz-char-
acteristic which is equal to the dg-characteristic of operator A.

The proof immediately follows from the fact that all solutions of
the equation (I+T)z = 0 considered in the space X must belong to X,
and, similarly, all solutions of the equation (I4+7°)§ =0 considered in
the space & must belong to the space Z,.

We say that the subspace X, = X is described by the family of fune-
tionals £, when meX, if and only if &u =0 for all £e5,. If 5, is
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a finite dimensional set describing a subspace X, = X, then obviously
each subspace X, containing X, can be described by a finite dimensional
set of functionals =, « 5.

An operator A with a finite d-characteristic is a ®g-operator if and
only if the set of its values B, can be described by a finite system of
functionals.

THEOREM 4.2. Let X, ¥, 8 be linear spaces. Let E, H, X' be the total
spaces of functionals determined on spaces X, Y, S respectively. Let B be
a Dy-operator mapping the linear space X into Y. Let A be a Dg-operator
mapping ¥ dnto S. Let HA < X. Then the superposition AB is a
Dy - operator and

(4.1)

Wip = wi+ KB
Proof. Let ¥ be decomposed in a direct sum of type (1.4), i.e.
Y = Ex@® @2@ @a~
Since B is a @p-operator, then the space Ky can be described by
a system of r functionals, where r = dim(€,PC,;). Hence the space
Ez®C, can be described by a finite system of functionals & (i = 1,
2,..., %3, Where n; = dimG@,). Since 4 is a Ps-operator, B, can be
described by a finite system of functionals #; (i = 1,2, ..., 8,). Basing
ourselves on (1.5)
B, = B.s®AE,

and on the fact that HA = X, we find that B,z can be described by the
system of functionals:

£14, ..., G der.

Therefore AB is a @ -operator and =3z = »,5 and, by theorem 1.1,
we obtain the formula (4.1), q.e. d.

The following theorem is in some measure inverse to theorem 4.2:

TueoREM 4.3. Let an operator A map the space X into the space Y
and let an operator B map Y into X. If the superpositions AB and BA
are, respectively, a Py-operator and a P-operator, then the operators 4 and
B are, respectively, a Og-operator and a Dz-operator.

Proof. Theorem 1.2 implies that the operators 4 and B have a finite
d-characteristic. From the assumption it follows that the space E,p
can be described by a finite system of functionals. Hence, basing our-
selves on formula (1.5)

Ny -ovs Npys

EA = E‘{B@A’l @3 ]

we can described £, by a finite system of functionals. This implies that

Ba =dﬂ§ and 4 is a ®g-operator. For the operator B the proof is similar,
q.e. d.
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§ 5. Regularization. General properties. Let %, be a ring of linear
operators mapping the linear space X into itself. Let ¢ = %, be a two-gide
ideal. We shall assume that # is a proper ideal, i.e. # # %,.

For example, all finite dimensional operators contained in %,
state a two-side ideal. We shall denote this ideal by 4.

If for an operator 4 there is such an operator R, e%, that

RyA =I4+T (or AR, =I+T), Tef,

then this operator R, will be called a left-side (or right-side) regularizer
of the operator 4 to the ideal #. If the regularizer is simultaneously left-
side and right-side, then it will be called a simple regularizer.

Obviously a (left-side or right-side) regularizer cannot belong to ¢.
Indeed, if Rye#, then Ry A = I+Tef and Te# hence Ie# and we
obtain a contradiction because # is proper.

PRrOPOSITION 5.1. If an operator A X, possesses left-side regularizer
R, and a right-side reqularizer R, to the ideal #, then R,—R,ef.

Proof. Indeed, R, 4 = I+T,, AR, =1I+T,, where T;,Tscf.
Therefore R,(ARy) = Ry(I+Ty) = Ry-+R, Ty, (BiA)Ry=I+T)R, =
= R,+T,R, and subtracting these equalities we obtain R, —R, = T R,—
—R,Tyef, q.e.d.

PROPOSITION 5.2. If an operator A possesses a left-side regularizer B,
and o right-side regularizer R, to ideal #, then each of them is simple.

Proof. Proposition 5.1 implies that R, —R,= T'¢f; therefore
R, = R,+T and

AR, = A(Ry+T) = AR+ AT = I+T,+AT,

but T,+ATe#, whence R, is also a right-side regularizer; therefore
it is simple. Similarly we can show that R, is a left-side regularizer.

PROPOSITION 5.3. A simple reqularizer to ideal £ is uniquely determined
with respect to a component belonging to £.

Proof. Suppose that an operator A has two different simple regu-
larizers to the ideal #. They will be denoted by R, and R,. Obviously E,
is a right-side regularizer and R, is a left-side regularizer. The proposi-
tion 5.1 implies that B, —Rye#, q.e. d.

PROPOSITION 5.4, If an operator AeZ, is the sum A= B+T of an
operator B invertible on the whole space X and Tef < &y, then the oper-
ator A possesses a simple regqularizer By = B! to the ideal #. Inversely,
if an operator A possesses an invertible simple reqularizer R 4 to the ideal 7,
then A = R3'+T, where Tef.

Proof. Indeed, if A = B+T and the operator B is invertible, then

where

B4 =I+B', AB'=I+TB™
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and B~'c#, TB 'e7; therefore B~ is a simple regularizer to ideal 7.
Inversely, if a regularizer R, is invertible, then, basing ourselves on the
fact that

R4A =1I+T, where Tef,

we obtain A = R3'+RZ'T, where B7'T <, q.e. d.

PrOPOSITION B5.5. If operators A and B possess left-side (or right-side)
regularizers B4 and Rgp 1o ideal #, then a left-side (resp. right-side) regu-
larizer of the superposition AB to the ideal ¢ exisis and Ryp = RpRy,.

Proof. Let

R44 = 14T,

Then

RgR4AB = Rg(I+T,)B = RgB+RpT B = I+T,+RzT, B

but T',+RpT, BeZ, whence Rp R, i8 a left-side regularizer of the operator
AB to the ideal #. We can prove the same for right-side ideals, q. e. d.

Let 5 be the total space of linear functionals & determined on a
linear space X. Let the conjugate operators to the operators belonging
to %, transform = into itself. The operators conjugate to the operators
Te%, constitute a ring, which will be denoted by 5%,. The operators
conjugate to the operators Te ¢ < %, constitute an ideal which will be
denoted by Z2.

PROPOSITION B5.6. If R4 4s a left-side (or right-side) reqularizer of an
operator A to the ideal £, then R is a right-side (resp. left-side) regularizer
of the conjugate operator A’ to the ideal E4.

Proof. We have A'R)y = (R4A) = (I+T) = I4+T, where T' 57,
q.e. d.

PROPOSITION 5.7. Let the ideal # be such that I+T Fas o finite d-char-
acteristic for each Tef. If an operator A mapping X into itself possesses
a simple regularizer to the ideal #, then the operator A has o finite d-char-
acteristic.

This follows immediately from the theorem 1.2.

An ideal # of operators is called Z-quasifredholm ideal, if for each
Te¢ the operator I+T is a Dg-operator.

PrOPOSITION B5.8. If an operator A possesses a simple regularizer Ry
to a Z-quasifredholm ideal £, then the operator A is a Pg-operator.

Proof. Obviously B, A and AR, are @z-operators; then theorem 5.3
implies that A and R, are &z -operators.

RgB =I4T,, ~where T;,T;¢7.

§ 6. Regularization of operators with a finite d-characteristic to
the ideal of finite dimensional operators. Applying proposition 5.8
we find that if an operator A possesses a simple regularizer to the ideal #°
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of finite dimensional operators, then it has a finite d-characteristic. The
following theorems solve the inverse problem:
TarorEM 6.1. If the nullity of an operator A is finite, then this operator
possesses a lefi-side reqularizer o the ideal o of finite dimensional operators.
Proof. Let X decompose into a direct sum: X = Z, ®C. We deter-
mine the operator K in the following way:

msZA,

zeC.

for
0 for

Ko =

Obviously K is a finite dimensional projective operator. We write
y =({I—K)=.

From the definition of the operator K, ye€ and 2 =ao—yeZ .

The restriction A, of the operator A to the space ¢ ig invertible. We

denote the inverse operator by A;%, and by A7! we denote an arbitrary
extension of this operator onto the whole space X. Since y €, then

(6.2) y = A7 Ay = A7 (Ay+4») = A71A (y+2) = A7 4.

(6.1)

Therefore
(I—K)x = (I—K)A7 4w,

whence the operator B, = (I—K)A7' is a left-side regularizer or the
operator A to the ideal 2 of finite dimensional operators, q.e.d.

THREOREM 6.2. If a linear operator A has o finite d-charaoteristic, then
it possesses a simple regularizer to the ideal A of finite dimensional
operators. B

Proof. In theorem 6.1 we showed that the operator B, = I—EK)A!
is a left-side regularizer of the operator 4 to the ideal . Obviously the
operators A7 and (I—K) have a finite d-ehara,cteristig, whence the
operator R, a8 its guperposition has & finite d-characteristic. Fro.m theo-
rem 6.1 the operator R, possesses & left-side regularizer B, to the ideal 7.
whenee R, R, = I+E,, whence K ¥ but since Ry 4 = I—K, we have

R,(R,4) =R,(I-K) = R,—R. K, (RiR)A = (T+E)A = A+K A
and subtracting these equalities by gides we obtain RB,—A = R, K+
+EK,A = K,et'. Therefore

AR, = (Bi—E) By = R,Ry—K,Ry=I+E,—E;Ru,

where K, —K,R e This implies that the operator R, is a simple re-
gularizer to the ideal 2" of the operator A, g.e.d.

COROLLARY. #g, = —%4.
Indeed, wg,+ %4 = ¥Ryd = ¥I-K = 0.
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On a generalization of regularly increasing functions
by

W. MATUSZEWSKA (Poznat)

1. In this section we shall denote by f, g, It, ... real functions defined
and non-decreasing in (—oo, co). The following notation will be used:

() = limsup (F (w+ ) —F(w)),
() = tim inf (fu-+ ) —F(w).

We denote by €, the space whose elements are functions u(-) conti-
nuous in (—oo, co) and converging to 0 with % — oo and to a finite limit
with % — —oo. Equipped with the wusual metric defined by d(,ul(-),
#a(")) = llpa () — 2 (), where [lu()| = j:tlilﬂ(t)l for p(+)ely, O, is & com-

plete metric space. We write u(-)<Cf if u(-)e0, and u(u) > 0 everywhere.
The aim of section 1 is to present some lemmas the use of which
simplifies the proofs of the theorems given further in section 3 and 4.

1.1. The following equalities are satisfied for any funciion f:

) fim 2% _ ap @ ) tim (W) _ jpp (),
w0y M w0 M pooo M w0 M
07 (1) or(p) (#) or(m)
(+) i a = inf———‘f # , o () ]im~——gf # = sup—«—‘f
04 1 #>0 “ 00 w>0 14

The proofs of (s+), (++) can be found in [2], the proofs of (x), (+)
run on the same lines. .

1.2, If for any u(:) in OF there ewists a limit
(+) lim [f (u-+ p(w) —f(w)] = g(u(),
then

(@) glu() =0 for any p(-)eCs;

(b) for any € > 0 there ewist a 6 > 0 and u, such that the inequality

Iflutp)—fw) <e
holds for |u| < 6 and u = u,.
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