

- [2] Direct product of Banach spaces and linear functional equations, ibidem 1 (1951), p. 327-384.
- [3] Formulae of Fredholm type for compact linear operators on a general Banach space, ibidem 3 (1953), p. 368-377.
- [4] Operators with a Fredholm theory, Journal of London Mathematical Society 29 (1954), p. 318-326.

R. Sikorski

- On Leżański's determinants of linear equations in Banach spaces, Studia Mathematica 14 (1953), p. 24-48.
- [2] On determinants of Lezański and Ruston, ibidem 16 (1957), p. 99-112.
- [3] Determinant system, ibidem 18 (1959), p. 161-186.
- [4] On the Carleman determinants, ibidem 20 (1961), p. 327-346.
- [5] The determinant theory in Banach space, Colloquium Mathematicum 8 (1961), p. 141-198.

I. H. Williamson

 Compact linear operators in linear topological spaces, J. Lond. Math. Soc. 29 (1954), p. 149-156.

B. Yood

 Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. Journal 18 (1951), p. 599-612.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

Reçu par la Rédaction le 23. 9. 1963

STUDIA MATHEMATICA, T. XXIV. (1964)

On a generalization of regularly increasing functions

p2

W. MATUSZEWSKA (Poznań)

1. In this section we shall denote by f, g, h, \ldots real functions defined and non-decreasing in $(-\infty, \infty)$. The following notation will be used:

$$\begin{split} & \bar{\varrho}_f(\mu) = \limsup_{u \to \infty} \big(f(u + \mu) - f(u) \big), \\ & \underline{\varrho}_f(\mu) = \liminf_{u \to \infty} \big(f(u + \mu) - f(u) \big). \end{split}$$

We denote by C_0 the space whose elements are functions $\mu(\cdot)$ continuous in $(-\infty, \infty)$ and converging to 0 with $u \to \infty$ and to a finite limit with $u \to -\infty$. Equipped with the usual metric defined by $d(\mu_1(\cdot), \mu_2(\cdot)) = \|\mu_1(\cdot) - \mu_2(\cdot)\|$, where $\|\mu(\cdot)\| = \sup_{\substack{-\infty \leqslant l < \infty \\ 0 \text{ if } \mu(\cdot) \in C_0, \text{ and } \mu(u) > 0 \text{ everywhere.}}$

The aim of section 1 is to present some lemmas the use of which simplifies the proofs of the theorems given further in section 3 and 4.

1.1. The following equalities are satisfied for any function f:

$$(*) \qquad \lim_{\mu \to 0+} \frac{\overline{\varrho}_f(\mu)}{\mu} = \sup_{\mu > 0} \frac{\overline{\varrho}_f(\mu)}{\mu}, \quad (**) \quad \lim_{\mu \to \infty} \frac{\overline{\varrho}_f(\mu)}{\mu} = \inf_{\mu > 0} \frac{\overline{\varrho}_f(\mu)}{\mu};$$

$$(+) \qquad \lim_{\mu \to 0+} \frac{\varrho_f(\mu)}{\mu} = \inf_{\mu > 0} \frac{\varrho_f(\mu)}{\mu}, \quad (++) \quad \lim_{\mu \to \infty} \frac{\varrho_f(\mu)}{\mu} = \sup_{\mu > 0} \frac{\varrho_f(\mu)}{\mu}.$$

The proofs of (**), (++) can be found in [2], the proofs of (*), (+) run on the same lines.

1.2. If for any $\mu(\cdot)$ in C_0^+ there exists a limit

$$\lim_{u\to\infty} [f(u+\mu(u))-f(u)] = g(\mu(\cdot)),$$

then

- (a) $g(\mu(\cdot)) = 0$ for any $\mu(\cdot) \in C_0$;
- (b) for any $\varepsilon > 0$ there exist a $\delta > 0$ and u_0 such that the inequality

$$|f(u+\mu)-f(u)|<\varepsilon$$

holds for $|\mu| \leqslant \delta$ and $u \geqslant u_0$.

Evidently (b) \Rightarrow (a) and so it is enough to prove (b). If (b) is not satisfied, there exist an $\varepsilon_0 > 0$, a sequence of u_n converging to ∞ and a sequence of positive numbers μ_n which tends to 0 such that

$$|f(u_n+\mu_n)-f(u_n)|\geqslant \varepsilon_0.$$

Take a function $\mu_0(\cdot)$ such that $\mu_0(u_n)=\mu_n$, $\mu_0(v_n)=c_n$ assuming $v_n=(u_n+u_{n+1})/2$, $c_n>0$, $|f(v_n+e_n)-f(v_n)|<\varepsilon_0/2$, and assuming $\mu_0(\cdot)$ to be linear in the intervals $\langle 0,u_1\rangle$, $\langle u_n,v_n\rangle$, $\langle v_n,u_{n+1}\rangle$ and constant in $(-\infty,0\rangle$. Evidently $\mu_0(\cdot)\,\epsilon C_0^+$ and the limit (+) does not exist, which gives a contradiction.

1.3. If f is continuous, $\bar{\varrho}_f(\mu)$ and $\varrho_f(\mu)$ are both continuous for $\mu = 0$, then for any $\varepsilon > 0$ there exist $\delta > 0$ and u_0 such that relation 1.2, (b) holds.

Under the assumption of continuity of $\bar{\varrho}_{t}(\mu)$, $\varrho_{t}(\mu)$ for $\mu=0$ we have

$$|f(u+\mu)-f(u)| \leq \varepsilon/2$$
 for $u \geqslant u(\mu)$,

and for any μ satisfying the inequality $|\mu| \leq \mu_0$.

Let us define $A_n = \{\mu\colon |f(u+\mu)-f(u)|\leqslant \varepsilon/2 \text{ for } u\geqslant n,\ |\mu|\leqslant \mu_0\}$ where $n=1,2,\ldots$ Since the sets A_n are closed and $A_1\cup A_2\cup\ldots=\langle -\mu_0,\mu_0\rangle$, there exist an integer m and an interval $\langle \mu_1,\mu_2\rangle$ contained in $\langle -\mu_0,\mu_0\rangle$ such that $\langle \mu_1,\mu_2\rangle \epsilon A_m$. Consequently for any μ',μ'' $\epsilon\langle \mu_1,\mu_2\rangle$ we have $|f(u+\mu''-\mu')-f(u-\mu')|\leqslant \varepsilon/2,\ |f(u-\mu')-f(u)|\leqslant \varepsilon/2$ for $u\geqslant m+\mu_2$, which implies

$$|f(u+\mu''-\mu')-f(u)| \leq \varepsilon$$
 for $u \geq m+\mu_2$.

Using the last inequality for $\mu=\mu''-\mu'$, where μ',μ'' $\epsilon\langle\mu_1,\mu_2\rangle$, we obtain 1.2,(b) with $\delta=\mu_2-\mu_1,\ u_0=m+\mu_2$.

Remark. Lemma 1.3 remains valid if in place of the continuity of f we assume only it measurability.

1.4. If f is continuous and C_{0f} denotes the collection of all $\mu(\cdot)$ in C_0 for which the limit 1.2 (+) with $g(\mu(\cdot)) = 0$ exists, then C_{0f} is either of the first category in C_0 or identical with the whole space C_0 .

Assuming C_{0f} be of the second category, by arguments analogous to those used in 1.3 we can prove what follows:

There exist $\mu_0(\cdot) \in C_0$, $\delta > 0$ and u_0 such that the inequality

$$|f(u+\mu(u)+\mu_0(u))-f(u)| \leqslant \varepsilon$$

holds for $u\geqslant u_0$ and $\|\mu(\cdot)\|\leqslant \delta$. Let $\overline{\mu}(\cdot)$ be a given function in C_0 and suppose the inequality $|\overline{\mu}(u)-\mu_0(u)|\leqslant \delta/2$ is satisfied for $u\geqslant\overline{u}$. Let us define a function $\overline{\mu}(\cdot)$ ϵC_0 as $\overline{\mu}(u)=\overline{\mu}(u)-\mu_0(u)$ for $u\geqslant 2\overline{u}$, $\overline{\mu}(u)=0$ for $u\leqslant\overline{u}$ and $\overline{\mu}(\cdot)$ as a linear function in the interval $\langle u,2\overline{u}\rangle$. Evidently $\|\overline{\mu}(\cdot)\|\leqslant \delta$, $\overline{\mu}(u)+\mu_0(u)=\overline{\mu}(u)$ for $u\geqslant 2\overline{u}$, hence $|f(u+\overline{\mu}(u))-f(u)|\leqslant \varepsilon$ for $u\geqslant \sup(u_0,2\overline{u})$, and consequently $|f(u+\overline{\mu}(u))-f(u)| > 0$ as $|u|>\infty$.

2. According to the terminology of [2] a function φ continuous and non-decreasing for $u \ge 0$, vanishing for u = 0 only and tending to infinity as $u \to \infty$ will be called a φ -function. The following will show the usefulness of the substitution (φ) :

$$f(u) = \lg \varphi(e^u), \qquad (**\varphi) \qquad e^{\mu(u)} = \lambda(u),$$

which reduces the investigation of φ -functions to the functions we have considered previously. Given a φ -function φ , we define the following extended-valued functions:

$$\underline{h}_{arphi}(\lambda) = \liminf_{u o \infty} rac{arphi(u)}{arphi(\lambda u)}, \quad \overline{h}_{arphi}(\lambda) = \limsup_{u o \infty} rac{arphi(u)}{arphi(\lambda u)}.$$

Using the substitution (φ) we obtain from 1.1 the following statements:

2.1. There exist limits

$$s_{\varphi} = \lim_{\lambda \to 0+} \frac{\lg \underline{h}_{\varphi}(\lambda)}{-\lg \lambda} = \sup_{0 < \lambda < 1} \frac{\lg \underline{h}_{\varphi}(\lambda)}{-\lg \lambda},$$

$$s_{\varphi}^{1} = \lim_{\lambda \to 1-} \frac{\lg \underline{h}_{\varphi}(\lambda)}{-\lg \lambda} = \inf_{0 < \lambda < 1} \frac{\lg \underline{h}_{\varphi}(\lambda)}{-\lg \lambda},$$

(2)
$$\sigma_{\varphi} = \lim_{\lambda \to 0+} \frac{\lg \overline{h}_{\varphi}(\lambda)}{-\lg \lambda} = \inf_{0 < \lambda < 1} \frac{\lg \overline{h}_{\varphi}(\lambda)}{-\lg \lambda},$$

(2')
$$\sigma_{\varphi}^{1} = \lim_{\lambda \to 1^{-}} \frac{\lg \overline{h}_{\varphi}(\lambda)}{-\lg \lambda} = \sup_{0 \le \lambda \ge 1} \frac{\lg \overline{h}_{\varphi}(\lambda)}{-\lg \lambda}$$

(cf. [1]). As regards the meaning of the above formulae we shall keep the conventions $\lg 0 = -\infty$, $\lg \infty = \infty$, and the same conventions are adopted in analogous situations.

2.1.1. Let us call attention to some differences between the properties of the indices s_{φ} , σ_{φ} and those of s_{φ}^1 , σ_{φ}^1 . The values of s_{φ} , σ_{φ} do not change if we replace φ by a φ -function ψ such that $\varphi \stackrel{\sim}{\sim} \psi$ (as regards the notation of l-equivalency; cf. [3]); on the contrary, s_{φ}^1 , σ_{φ}^1 are not invariant with respect to l-equivalency. However, it is readily seen that $\varphi \sim \psi$ (i. e. $\varphi(u)/\psi(u) \to g$ as $u \to \infty$, where g > 0) implies $s_{\varphi}^1 = s_{\psi}^1$, $\sigma_{\varphi}^1 = \sigma_{\psi}^1$.

$$\psi(u) = \int_0^u \varphi(t)dt, \quad h(u) = u\varphi(u)/\psi(u) \quad \text{for} \quad u > 0,$$

then

$$1\leqslant \liminf_{u\to\infty}h(u)\leqslant s_{\psi}^1\leqslant s_{\psi}\leqslant \sigma_{\psi}\leqslant \sigma_{\psi}^1\leqslant \limsup_{u\to\infty}h(u).$$

This follows from the inequality (+) in [3], p. 336, and the trivial remark $\psi(u) \leqslant u \varphi(u)$.

2.5. Assuming $s_{\varphi}^1 = \sigma_{\varphi}^1 = r_{\varphi}$, $r_{\varphi} < \infty$, we obtain by 2.1 $\overline{h}_{\varphi}(\lambda) = \underline{h}_{\varphi}(\lambda) = \lambda^{-r_{\varphi}}$, which means that in this case φ is a *regularly increasing* function with the index r_{φ} in the sense of Karamata, and especially a *slowly varying* function if $r_{\varphi} = 0$.

Conversely, if φ is a regularly increasing φ -function, then $s_{\varphi}^{1} = \sigma_{\varphi}^{1}$.

- **2.4.** We shall denote by K_c the class of all those φ -functions φ for which the relation $\varphi(u\alpha(u))/\varphi(u) \to 1$ as $u \to \infty$ holds if $\alpha(u)$ is a function continuous and positive in $(0, \infty)$ and such that $\alpha(u) \to 1$ as $u \to \infty$.
 - **2.5.** The following properties are equivalent:
 - (a) $\varphi \in K_c$;
 - (b) $\overline{h}_{\varphi}(\lambda)$, $\underline{h}_{\varphi}(\lambda)$ are continuous for $\lambda = 1$;
- (c) for any φ -functions φ_1, φ_2 the relation $\varphi_1 \simeq \varphi_2$ implies $\varphi(\varphi_1) \simeq \varphi(\varphi_2)$ ($\varphi' \simeq \varphi''$ means the asymptotical equality of the functions φ' , φ'' for large u).

In order to prove the implication (a) \Rightarrow (b) let us use the substitution (φ). Evidently, the assumptions $\varphi \in K_c$ and $f(u+\mu(u))-f(u) \to 0$ as $u \to \infty$ for an arbitrary $\mu(\cdot)$ in C_0 , are equivalent. Since $\lg \overline{h}_{\varphi}(\lambda) = = \overline{e_f}(-\mu) = -\underline{e_f}(\mu)$, where $e^{\mu} = \lambda$, the continuity of $\overline{h}_{\varphi}(\lambda)$ for $\lambda = 1$ follows by 1.2. In a similar way one can prove the continuity of $\underline{h}_{\varphi}(\lambda)$ for $\lambda = 1$. Let us now assume that condition (b) is satisfied. Applying the substitution (* φ) and 1.3 we obtain:

For any $\varepsilon > 0$ there exist $\delta(\varepsilon)$, $v(\varepsilon)$ such that

$$1 - \varepsilon < \frac{\varphi(v)}{\varphi(\lambda v)} < 1 + \varepsilon,$$

for $|\lambda-1| \leq \delta(\varepsilon)$, $v \geqslant v(\varepsilon)$. Suppose $\varphi_1 \simeq \varphi_2$ or equivalently $\varphi_2(u) = a(u)\varphi_1(u)$ for $u \geqslant u_0$, where $\alpha(u)$ is continuous and positive for $u \geqslant 0$ and $\alpha(u) \to 1$ as $u \to \infty$. Taking u sufficiently large so that $\varphi_1(u) \geqslant v(\varepsilon)$, $|\alpha(u)-1| \leq \delta(\varepsilon)$, we obtain from (+)

$$1-arepsilon < rac{arphi \left(arphi_1(u)
ight)}{arphi \left(arphi_2(u)
ight)} < 1+arepsilon,$$

which means $\varphi(\varphi_1) \simeq \varphi(\varphi_2)$ and consequently $(b) \Rightarrow (c)$.

For the proof of (c) \Rightarrow (a) it is sufficient to put $\varphi_2(u) = u$, $\varphi_1(u) = a(u)u$, where a(u) has the same meaning as above.

2.6. A necessary and sufficient condition for a φ -function φ to belong to K_c is that the inequalities

(*)
$$c(a)\varphi(u) \leqslant \varphi(au) \leqslant d(a)\varphi(u)$$

hold for $u \geqslant u(a)$ and for every a > 1, where $1 < d(a) < \infty$, $d(a) \rightarrow 1$ as $a \rightarrow 1$, $1 \leqslant c(a)$, $c(a) \rightarrow 1$ as $a \rightarrow 1$.

Necessity. By 2.5 we have $h_{\varphi}(1/\alpha) \to 1$ as $\alpha \to 1+0$ if $\varphi \in K_c$. Since $\overline{h}_{\varphi}(1/\alpha) = \limsup_{u \to \infty} \varphi(\alpha u)/\varphi(u)$ and since it is easily seen that $\overline{h}_{\varphi}(1/\alpha) < \infty$ for $\alpha > 1$, the right-hand inequality of (*) is satisfied, if we assume, say, $d(\alpha) = \overline{h}_{\varphi}(1/\alpha)\alpha$. Analogously one can assume in the left-hand inequality of (*), $c(\alpha) = \sup(h_{\varphi}(1/\alpha)\alpha^{-1}, 1)$.

Sufficiency. Assuming (*) to be satisfied we obtain for 0 < a < 1,

$$(**) \quad \frac{1}{d(1/a)} \varphi(u) \leqslant \varphi(au) \leqslant \frac{1}{c(1/a)} \varphi(u) \quad \text{ for } \quad u \geqslant u_1(a) = u(1/a)/a,$$

whence putting $\lambda=1/\alpha$ we have $e(1/\lambda)$ or $(d(\lambda))^{-1} \leqslant \overline{h}_{\varphi}(\lambda) \leqslant d(1/\lambda)$ or $(e(\lambda))^{-1}$ and consequently $\overline{h}_{\varphi}(\lambda) \to \overline{h}_{\varphi}(1) = 1$ as $\lambda \to 1$. The proof of the continuity of $\underline{h}_{\varphi}(\lambda)$ for $\lambda=1$ follows by analogous arguments. Now, it suffices to apply 2.5.

Any regularly increasing or slowly varying φ -function belongs to the class K_c . This follows immediately from a well-known theorem which says that $\varphi(\lambda u)/\varphi(u)$ tends uniformly to λ'^{φ} on any interval $\langle \lambda', \lambda'' \rangle$, $\lambda' > 0$, for any measurable regularly increasing function. Other examples of φ -functions of the class K_c can be obtained if we define a φ -function by the formula

$$\varphi(u) = \varphi_0(u) \exp \int_1^u \varepsilon(t) t^{-1} dt,$$

where $\varepsilon(u)$ denotes an arbitrary function, measurable and bounded in $(0,\infty)$ such that

$$\int_{1}^{u} \varepsilon(t) t^{-1} dt \to \infty \quad \text{as} \quad u \to \infty,$$

and $\varphi_0(u)$ is continuous and non-decreasing on $(0, \infty)$, vanishes only for u = 0 and tends to a finite limit with u tending to ∞ .

2.6.1. A φ -function φ is said to satisfy the condition (Δ_a) for large u if $\alpha>1$ and if the inequality $\varphi(\alpha u)\leqslant d_\alpha\varphi(u)$ holds for $u\geqslant u_0(\alpha)$ and for a constant d_α . It is said to satisfy the condition (Λ_a) for large u if $\alpha>1$ and $\varphi(u)e_\alpha\leqslant \varphi(\alpha u)$ for $u\geqslant u_1(\alpha)$ and for a constant $e_\alpha>1$.

It follows from 2.6 that any $\varphi \in K_c$ satisfies the condition (Δ_a) for every a>1 with a constant d_a which can be chosen so as to satisfy $d_a \to 1$ if $a \to 1+0$. The condition (Λ_a) is not necessarily fulfilled in general. In fact, for slowly varying functions the condition (Λ_a) is not satisfied for any a>1 and nevertheless they belong to K_c .

2.6.2. Let us denote by K_c^* the subclass of K_c consisting of those φ -functions for which the condition (Λ_a) is satisfied for any $\alpha > 1$.

A φ -function φ belongs to K_c^* if and only if the inequality (*) holds for any $\alpha > 1$ with a constant $c(\alpha)$ which has the properties mentioned in 2.6 and satisfies in addition the inequality $c_{\alpha} > 1$.

2.6.3. If $\sigma_{\varphi}^1 < \infty$, then the condition (Δ_a) is satisfied for any a > 1 with a constant d(a) such that $d(a) \to 1$ as $a \to 1+0$; if $s_{\varphi}^1 > 0$, then the condition (Λ_a) is satisfied for any a > 1; consequently if $0 < s_{\varphi}^1 \leqslant \sigma_{\varphi}^1 < \infty$, then $\varphi \in K_c^*$.

Suppose $\sigma_{\varphi}^1 < \infty$, $\sigma_{\varphi}^1 < \sigma$. Since 2.1, (2') imply the inequality $\limsup_{u \to \infty} \varphi(\alpha u)/\varphi(u) < \alpha^{\sigma}$ for $\alpha > 1$, the condition (Λ_{α}) is satisfied with the constant $d_{\alpha} = \alpha^{\sigma}$. One can prove analogously the condition (Λ_{α}) for any $\alpha > 1$ under the hypothesis $s_{\varphi}^1 > 0$.

2.7. For a strictly increasing φ -function $\varphi \in K_c$ both inclusions $\varphi^{-1} \in K_c$ and $\varphi \in K_c^*$ are equivalent.

Let $\mu(v)$ be a continuous and positive function for $v \ge 0$ which tends to 1 as $v \to \infty$ and let $v = \varphi(u)$,

$$a(v) = \frac{\varphi^{-1}(\mu(v)v)}{\varphi^{-1}(v)}.$$

Suppose $\varphi \in K_c^*$ and $\alpha > 1$. If $\alpha(v) \geqslant \alpha > 1$ for infinitely many v tending to ∞ , then in view of 2.6 we have

$$e(a)\varphi(u) \leqslant \varphi(\alpha(v)u) = \mu(v)\varphi(u)$$

for some sufficiently large u which implies $\mu(v) \geqslant c(a) > 1$. This contradicts $\mu(v) \to 1$. Consequently we have a(v) < a for large v. Therefore $\limsup_{v \to \infty} a(v) \leqslant 1$. By analogous arguments and by 2.6, (**) we shall prove that $\liminf_{v \to \infty} a(v) \geqslant 1$ so that finally $\lim_{v \to \infty} a(v) = 1$, $\varphi^{-1} \epsilon K_c$. Suppose now $\varphi^{-1} \epsilon K_c$; then for any $\beta > 1$ the inequality

$$\varphi^{-1}(\beta v) \leqslant d(\beta) \varphi^{-1}(v)$$

holds for $v \geqslant v_0(\beta)$. Therefore $\beta \varphi(u) = \beta v \leqslant \varphi(d(\beta)u)$ for $u \geqslant u_0 = \varphi^{-1}(v_0)$. If, given $\alpha > 1$, we choose β in such a way that $d(\beta) \leqslant \alpha$ and define c_α to be equal to β , the condition (Λ_α) will be satisfied for φ , which means $\varphi \in K_{\sigma}^*$.

2.8. If $\psi(u) = \int_0^u \varphi(t)dt$ the following inequalities are satisfied:

(a)
$$s_{\psi}^{1} \geqslant 1 + s_{\varphi}^{1},$$

(b)
$$\sigma_{w}^{1} \leqslant 1 + \sigma_{w}^{1}.$$

Applying the generalized L'Hospital rule to the ratio $\psi(u)/\psi(\lambda u)$ we obtain $\underline{h}_{\psi}(\lambda) \geqslant h_{\psi}(\lambda)/\lambda$, whence (a) immediately follows. The proof of (b) is analogous.

2.8.1. (a) If $\varphi \in K_c$, and ψ means the same φ -function as in 2.8, then $\psi \in K_c^*$; (b) if $\varphi \in K_c$ and is convex φ -function, then $\varphi \in K_c^*$.

Owing to $\varphi \in K_c$, the inequality $\varphi(\alpha u) \leq d(\alpha)\varphi(u)$ holds for $u \geq u(\alpha) = u_0$ where $d(\alpha) \to 1$ as $\alpha \to 1$. Because of the equality

$$\frac{\psi(\alpha u) - \psi(\alpha u_0)}{\psi(u) - \psi(u_0)} = \alpha \frac{\varphi(\alpha v(u))}{\varphi(v(u))} \leqslant \alpha d(\alpha),$$

which holds for suitably chosen v(u), $u_0 \leqslant v(u) \leqslant u$, we obtain $\psi(\alpha u) \leqslant \leqslant \alpha^2 d(\alpha) \psi(u)$ for sufficiently large u, whence by 2.6, $\psi \in K_c$. ψ being convex, we have $\psi(\alpha u) > \alpha \psi(u)$ for any $\alpha > 1$; so the condition (Λ_a) is satisfied for any $\alpha > 1$ and consequently $\psi \in K_c^*$.

2.9. (a) If φ , $\psi \in K_c$, then $\varphi \psi \in K_c$; (b) if $\varphi \in K_c$, a > 0, k > 0, then $a\varphi^k \in K_c$; (c) if φ , $\psi \in K_a$, then $\varphi(\psi) \in K_c$.

The above theorems remain true if we replace K_c by K_c^* .

Theorems (a), (b) follow directly from the definitions of the class K_c and the class K_c^* respectively. In order to prove (c) note that for φ inequality 2.6, (*) holds, and an analogous one holds also for the function ψ

$$(+) \psi(u)\overline{c}(\alpha) \leqslant \psi(\alpha u) \leqslant \overline{d}(\alpha)\psi(u) \text{for} u \geqslant \overline{u}(\alpha).$$

Defining $\gamma(a)$ for a>1 by $\psi(au)=\gamma(a)\psi(u)$ we obtain from (+) $\bar{o}(a)\leqslant \gamma(u)\leqslant \bar{d}(a)$ and by 2.6, (*)

$$c(\overline{c}(a))\varphi(\psi(u)) \leqslant \varphi(\psi(\alpha u)) \leqslant \overline{d}(\overline{d}(\alpha))\varphi(\psi(u)),$$

where the constants $c(\bar{c}(a))$, $d(\bar{d}(a))$ assuming that c(1) = 1, satisfy the assumptions of Theorem 2.6.

If φ , $\psi \in K_c^*$ then $c(\alpha) > 1$, $\bar{c}(\alpha) > 1$ for $\alpha > 1$ and therefore also $c(\bar{c}(\alpha)) > 1$.

3. In this section we always assume φ to satisfy the following conditions: $\varphi(u)/u \to 0$ as $u \to 0$, $\varphi(u)/u \to \infty$ as $u \to \infty$. Under these assumptions the function

$$\varphi^*(v) = \sup_{u \geqslant 0} (uv - \varphi(v)),$$

complementary to the function φ , may be defined. As is well known, φ^* is a convex φ -function, and for a convex φ -function φ we have $(\varphi^*)^* = \varphi$. It is also known that for $\varphi_1(u) = a\varphi(bu)$, where a, b > 0, $\varphi_1^*(u) = a\varphi^*(u(ab)^{-1})$, and from the inequality $\varphi_1(u) \geqslant \varphi(u)$ for $u \geqslant u_0$ the inequality $\varphi^*(u) \geqslant \varphi_1^*(u)$ for $u \geqslant u_0^*$ follows ([1], [4]).

3.1. If $\sigma_{\varphi}^1 < \infty$, then $\sigma_{\varphi}^1 \geqslant 1$ and

$$\frac{1}{s_{m*}^1} + \frac{1}{\sigma_m^1} \leqslant 1;$$

if $\infty > s_{\varphi}^1 > 1$, then

$$\frac{1}{s_m^1} + \frac{1}{\sigma_{w^*}^1} \geqslant 1.$$

If $\sigma_{\varphi}^1=1$, then $s_{\varphi^*}^1=\infty$; if $s_{\varphi}^1=\infty$, then $\sigma_{\varphi^*}^1=1$, so that the inequalities (+), (++) remain true also in this limiting case.

Let us assume $\sigma_{\varphi}^1 < \infty$, $\sigma_{\varphi}^1 < \sigma$. In view of 2.1, (2') the last inequality is equivalent to $\overline{h}_{\varphi}(\lambda) < a^{\sigma}$ for any λ , where $\alpha = 1/\lambda$, $0 < \lambda < 1$. It follows that

$$\varphi(\alpha u)\leqslant \alpha^{\sigma}\varphi(u) \qquad \qquad \text{for} \quad \ u\geqslant u_{\mathbf{0}}(\alpha),$$

$$\varphi^*(u/\alpha) \geqslant \alpha^{\sigma} \varphi^*(u/\alpha^{\sigma})$$
 for $u \geqslant u_0^*(\alpha)$,

whence

(0)
$$\varphi^*(\alpha^{\sigma-1}u) \geqslant \alpha^{\sigma}\varphi^*(u)$$
 for $u \geqslant u_0^*(\alpha)$.

The last inequality implies $\sigma \geqslant 1$ such that $\sigma_{\varphi}^1 \geqslant 1$. In fact, if $\sigma < 1$, then from the convexity of φ^* follows $\alpha^{\sigma-1}\varphi^*(u) \geqslant \varphi^*(\alpha^{\sigma-1}u)$, which is contradictory to (o) and $\alpha > 1$.

From (o) we obtain therefore for $\sigma > 1$

$$\frac{\lg \underline{h_{\varphi^*}(\alpha^{\sigma-1}u)}}{\lg \alpha^{\sigma-1}} \geqslant \frac{\sigma}{\sigma-1},$$

$$s_{arphi^*}^1\geqslant \sigma_arphi^1/\sigma_arphi^1-1\,,\ s_{arphi^*}^1=\infty\ ext{if}\ \ \sigma_arphi^1=1\,.$$

The proof of (++) is analogous.

3.2. Let us consider two properties of φ -functions:

A. φ satisfies the condition (Λ_a) for any a>1 with a constant $c_a>a$;

B. φ satisfies the condition (Δ_a) for any a>1 with a constant $d_a>1$, $d_a\to 1$ as $a\to 1+0$.

If φ has the property A or B, then φ^* has the property B or A respectively.

Suppose φ has the property A, in other words for any a>1 the inequality $\varphi(u)c_a\leqslant \varphi(au)$ holds for $u\geqslant u_0(a)$ and $c_a>a$. For the complementary function we have $\varphi^*(a^{-1}c_au)\leqslant c_a\varphi^*(u)$ for $u\geqslant u_0^*(a)$. We can always assume that $c_a\to 1$ as $a\to 1$. For any $\beta>1$ within a sufficiently small neighbourhood of 1 we can choose $\alpha(\beta)$ in such a manner that $\beta\alpha(\beta)\leqslant c_{\alpha(\beta)}, \ \alpha(\beta)\to 1$ as $\beta\to 1$. Defining $d_\beta=c_{\alpha(\beta)}$ we obtain $\varphi^*(\beta u)\leqslant d_\beta\,\varphi^*(u)$ for large u and so, (Δ_β) being satisfied for φ^* for small β , it is automatically satisfied for all $\beta>1$.

Assuming φ to have the property B one can prove analogously to the above $\varphi^*(a^{-1}d_au) \geqslant d_a\varphi(u)$ for $u \geqslant u(a)$.

It does not mean any restriction if we assume for d_a an arbitrary number > a and not less than the originally given d_a . This being so, we choose, for any $\beta > 1$ an $\alpha(\beta) > 1$, $d_{\alpha(\beta)}$ in such a manner that $d_{\alpha(\beta)} = \beta \alpha(\beta)$, $\alpha(\beta) \to 1$ as $\beta \to 1$. Hence φ^* satisfies the condition (Λ_{β}) for $\beta > 1$, because of $\varphi^*(\beta u) \ge c_{\beta} \varphi^*(u)$ for large u and with $c_{\beta} = d_{\alpha(\beta)}$, $c_{\beta} > \beta$.

3.3. It has been remarked in 2.3 that for a φ -function φ a necessary and sufficient condition to be regularly increasing with the index r_{φ} is $s_{\varphi}^{1} = \sigma_{\varphi}^{1} = r_{\varphi}$. This remark and 3.1 imply the following theorem:

If φ is regularly increasing and $r_{\varphi} > 1$, then φ^* is regularly increasing and the indices r_{φ} , r_{φ^*} are related to each other by $1/r_{\varphi} + 1/r_{\varphi^*} = 1$ (see [2]).

3.4. If φ is a convex φ -function, $s_{\varphi}^1 > 1$ and $\sigma_{\varphi}^1 < \infty$, then the formulae

(0)
$$\frac{1}{s_{\varphi}^{1}} + \frac{1}{\sigma_{\varphi^{*}}^{1}} = 1,$$

(00)
$$\frac{1}{s_{\sigma^*}^1} + \frac{1}{\sigma_{\sigma}^1} = 1,$$

are satisfied.

If $s_{\varphi}^{1} > 1$, then according to 3.1, (++), $\sigma_{\varphi^{*}}^{1} < \infty$ and since $(\varphi^{*})^{*} = \varphi$, we obtain by 3.1, (+), $1/s_{\varphi}^{1} + 1/\sigma_{\varphi^{*}}^{1} \le 1$, from which, together with 3.1, (++), the relation (o) follows. Under the assumption $\sigma_{\varphi}^{1} < \infty$ the proof of (oo) remains the same.

3.5. If
$$s_{\varphi}^{1} > 1$$
, then $\varphi^{*} \in K_{c}^{*}$.

From $s_{\varphi}^1>1$ follows the property A defined in 3.2 and hence φ^* has the property B. It suffices now to apply 2.6 and 2.8.1.

References

[1] W. Matuszewska, Some further properties of φ -functions, Bull. Acad. Pol. Sci., Ser. sci. math. et astr., 9 (1961), p. 445-450.

[2] — Regularly increasing functions in connection with the theory of $L^{*\varphi}$ -spaces, Studia Math. 21 (1962), p. 317-344.

[3] W. Matuszewska and W. Orlicz, On certain properties of φ -functions, Bull. Acad. Pol. Sci., Scr. sci. math. et astr., 8 (1960), p. 439-443.

[4] – A note on the theory of s-normed spaces of φ -integrable functions, Studia Math. 21 (1961), p. 107-115.

Reçu par la Rédaction le 15. 10. 1963