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On a generalization of regularly increasing functions
by

W. MATUSZEWSKA (Poznat)

1. In this section we shall denote by f, g, It, ... real functions defined
and non-decreasing in (—oo, co). The following notation will be used:

() = limsup (F (w+ ) —F(w)),
() = tim inf (fu-+ ) —F(w).

We denote by €, the space whose elements are functions u(-) conti-
nuous in (—oo, co) and converging to 0 with % — oo and to a finite limit
with % — —oo. Equipped with the wusual metric defined by d(,ul(-),
#a(")) = llpa () — 2 (), where [lu()| = j:tlilﬂ(t)l for p(+)ely, O, is & com-

plete metric space. We write u(-)<Cf if u(-)e0, and u(u) > 0 everywhere.
The aim of section 1 is to present some lemmas the use of which
simplifies the proofs of the theorems given further in section 3 and 4.

1.1. The following equalities are satisfied for any funciion f:

) fim 2% _ ap @ ) tim (W) _ jpp (),
w0y M w0 M pooo M w0 M
07 (1) or(p) (#) or(m)
(+) i a = inf———‘f # , o () ]im~——gf # = sup—«—‘f
04 1 #>0 “ 00 w>0 14

The proofs of (s+), (++) can be found in [2], the proofs of (x), (+)
run on the same lines. .

1.2, If for any u(:) in OF there ewists a limit
(+) lim [f (u-+ p(w) —f(w)] = g(u(),
then

(@) glu() =0 for any p(-)eCs;

(b) for any € > 0 there ewist a 6 > 0 and u, such that the inequality

Iflutp)—fw) <e
holds for |u| < 6 and u = u,.
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Evidently (b)= (a) and so it is enough to prove (b). If (b) is not
satisfied, there exist an ¢ > 0, a sequence of u, converging to oo and
2 sequence of positive numbers u, which tends to 0 such that

[f (th A+ phn) ~— f (%) = 0.

Take a funection u,(-) such that p(un) = pin, we(vs) = ¢, assuming
Uy = (un+“n+1)/27 Cp > 0, [fon+e)—Flvn)| < 50/2, and assuming Ho(°)
to be linear in the intervals <0, %;>, {Un, ¥n); {Vn, Un.1> and constant
in (—oo, 0>. Bvidently u,(-)eCy and the limit (+) does not exist, which
gives a contradiction.

1.3. If f is continuous, g;(u) end g;(u) are both continuous for u = 0,
then for any ¢ > 0 there exist § > 0 and o such that relation 1.2, (b) holds.

Under the assumption of continuity of g;(u), o;(u) for u = 0 we have

flut-p)—flu) <ef2 for w>uly),
and for any p satisfying the inequality |u] < p,.

Let us define A, = {u: |[f(u+u)—Ff(u)] <e&/2 for w =n, |u| < uy}
where n =1,2,... Since the sets A4, are closed and A,vd,u... =
{—oy Moy, there exist an integer m and an interval (u,, u,> contained
in <—pg, po> such that (u;, py>ed,,. Consequently for any u', u'’ e (py, pa
we have |f(utp”—p)—flu—p) <ef2, |[flu—p)—Ff(u) <e/2 for
% 2= m-+ py, which implies

flut-p"—p)—flu) <e  for

Using the last inequality for u = u”"—pu', where p', u' e{uy, usd,
we obtain 1.2,(b) with 6 = py—py, %y = M- p,.

U Z Mty

Remark. Lemma 1.3 remains valid if in place of the continuity
of f we assume only it measurability.

1.4, If f ds continuous and Oy denotes the collestion of all u(-) in C,
Jor which the limit 1.2 (+) with g(u(-)) = 0 exists, then Cy, is either of the
first category in C, or identical with the whole space C,.

Assuming Cy be of the second category, by arguments analogous
to those used in 1.3 we can prove what follows:

There exist wo(-)eCy, 6 >0 and u, such that the inequality

F{u+ i)+ o () — )] < &

“holds for u > u, and lu(ll < 6. Let u(-) be a given function in ¢, and
suppose the inequali_‘f,y |1 (u)— po()] < 6/2 is satisfied for w = @. Let
us define a function u()eC, as (1) = & (u)— uo(u) for u > 2, p(u) =0
fir U< U a,Ed #(+) as a linear function in the interval {u, 2%y, Evidently
B O < 8, B (w)+po(u) = i (w) for u > 21, hence |f(u-+ & (u) —F (u)] < ¢
for « = sup(u,, 2%), and consequently f(u—|— ﬁ(u)) —f(u) -0 as u — oo.
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2. According to the terminology of [2] a function ¢ continuous and
non-decreasing for % > 0, vanishing for 4 = 0 only and tending to infinity
a8 % —> oo will be called a @-function. The following will show the use-
fulness of the substitution (¢):

(*¢) flu) =1gg(e"), {(*+p) ¢ = A(u),

which reduces the investigation of g-functions to the functions we have
considered previously. Given a p-function ¢, we define the following
extended-valued functions:
u
(2) = lim int 20 e(w)
w0 @(20) o (Au)

Using the substitution (p) we obtain from 1.1 the following state-

ments:

h

by

7y (2) = Hm sup
U0

2.4, There ewist limitls

1gh, (4 By (A
1) 8, = lim lehe(h) _ sup el () ),
w0 —IgA vcic: —lga
Igh,(4) lzh,(2)
1 s = lim 2= = =i A
(1) o —lga scict —lgd ]
) o JeR) 18R
As04 —lgﬂ. 0<icl —lg}. !
- lghy(3) Ighy (%)
2/ 1 — llm L4 = Su (4
) % -1 —lgk 0<ic1 —lgi
(cf. [1]). As regards the meaning of the above formulae we shall keep
the conventions 1g0 = —oo, 1g co = oo, and the same conventions are

adopted in analogous situations.

2.1.14. Let us call attention to some differences between the proper-
ties of the indices s,, o, and those of s}, ;. The values of s,, ¢, do not
change if we replace ¢ by a g-function y such that qgri/w (a8 regards the
notation of l-equivalency; ef. [3]); on the contrary, s;, o, are not in-
variant with respect to l-equivalency. However, it is readily seen that
G~ (i e. p(u)/p(u)—>g a8 u — co, where g > 0) implies s; = s}, o) = 0y

2.2. If

pu) = [o)dt, h(u) =up(w)jy(w) for w>0,
[}
then
1 <liminfh(u) <5, <38, < 0, < 0, < lim suph(u).
U—>00 U->00
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This follows from the inequality (+) in [3], p. 336, and the trivia)
remark y(u) < up(w).

2.3. Assuming s, = o, =17,, 7, < oo, we obtain by 2.1 %,(1) =
= hy(1) = A", which means that in this case ¢ is a regularly inereasing
function with the index 7, in the sense of Karamata, and especially a slowly
varying function if v, = 0.

Conversely, if ¢ is a regularly increasing g-function, then s; = o2.

2.4. We shall denote by K, the clags of all those g-functions o for
which the relation g(ua(u))/p(u) —>1 as % - co holds if a(u) is a func-
tion continnous and positive in <0, co) and such that a(u) — 1 ag 4 — co.

25. The following properties are equivalent:

(a) peHy;

() %y(A), hy(A) are continmous for i = 1;

() for any o-functions @i, p, the relation p, o @, implies ¢(p,) ~
= @(ps) (¢ o ¢ means the asymptotical equality of the functions ¢’
@' for large u).

In order to prove the implication (a) = (b) let us use the substitu-
tion (p). Evidently, the assumptions peK, and f(u-u(u))—f(u) > 0
a8 % —> oo for an arbitrary u(-) in C,, are equivalent. Since gk, (2) =
= or(—#) = —¢s(u), Where ¢ =1, the continuity of k,(4) for A =1
follows by 1.2. In a similar way one can prove the continuity of 2,(1)
for 4 =1. Let us now assume that condition (b) is satisfied. Applying
the substitution (*p) and 1.3 we obtain:

For any &> 0 there exist §(e), v(e) such that

o(v)

& <_¢(lﬂ) < 1+e,

for |2—1]| < 48(s), v =v(s). Suppose ¢, =2 @, Or equivalently @,(u)=
= a(u)p, (u) for u > u,, where a(u) is continuous and positive for # > 0
and a(u)->1 as %~ co. Taking u sufficiently large so that g (w) =v(e),
la(#)—1] < d(¢), we obtain from (+)

P (g1 ()
(P(%(“))
which means p(p,) =~ ¢(p,) and consequently (b) = (c).

For the proof of (¢) = (a) it is sufficient to Put @, (u) = u, @y (u) =
= a(u)u, where a(u) has the same meaning as above.

2.6. A necessary and sufficient condition Jor a g-function ¢ to belong
to K, is that the inequalities

(+) 1—

1—-e< <1l+e,

(*) e(a)p(w) < p(aw) < d(a)p(u)

icm
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hold for w > u(a) and for every a>1, where 1 < d(a) < oo, d(a)—1
as a—>1, 1 <c(a), ¢(a) >1 as a—>1.
Necegsity. By 2.5 we have ho(1fa) =1 a8 a > 140 if peK,. Since
hp(1]a) = 1im supe(au)/p(u) and since it is easily seen that &,(1/a) < oo
U—+00

for a >}, the right-hand inequality of (*) is satisfied, if we assume, say,
d(a) = hy(1/a)e. Analogously one can assume in the left-hand inequality
of (*), ¢(a) = sup(h,(1/a)a"?, 1).

Sufficiency. Assuming (+) to be satisfied we obtain for 0 < ¢ < 1,

plu) < plaw) S———l—(p(u) for

() o(t/a)

m %2 U (a) = u(l/a)/a,
whence putting 2 =1/a we have ¢(1/4) or (d(1)™" <%y (4) < d(1/2) or
{e())™* and consequently Z%,(1) >h,(1) =1 as i->1. The proof of
the continuity of k(1) for 1 =1 follows by analogous arguments. Now,
it suffices to apply 2.5.

Any regularly increasing or slowly varying p-function belongs to the
clags K. This follows immediately from a well-known theorem which
says that o(iu)/p(u) tends uniformly to A» on any interval KA Ay,
A' > 0, for any measurable regularly increasing function. Other examples
of p-functions of the class K, can be obtained if we define a p-function
by the formula

() = go(w)exp [ &(t)t2dt,

where &(u) denotes an arbitrary function, measurable and bounded in
(0, o0) such that

u
[e@)itdt—~oo a5 oo,
1

and @,(#) is continuous and non-decreasing on <0, co), vanishes only
for w = 0 and tends to a finite limit with % tending to oo.

2.6.1. A p-function ¢ is said to satisfy the condition (A,) for large u
if @ >1 and if the inequality @(au) < d,p (%) holds for u > uy(a) and for
a constant d,. It is said to satisfy the condition (A,) for large w if a > 1
and ¢(u)e, < p(au) for u > u,(c) and for a constant ¢, > 1.

It follows from 2.6 that any gpeXK, satisfies the condition (A,) for
every a>1 with a constant d, which can be chosen so as to satisfy
d,—1 if ¢ —>1-+0. The condition (A,) is not necessarily fulfilled in
general. In fact, for slowly varying functions the condition (A,) is not
satisfied for any a > 1 and nevertheless they belong to K,.
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2.6.2. Let us denote by K the subclass of K, consisting of those
p-functions for which the condition (A,) is satisfied for any a« > 1.

A g-function ¢ belongs to K} if and only if the inequality (+) holds
for any o >1 with a constant ¢(a) which has the properties mentioned
in 2.6 and satisfies in addition the inequality ¢, > 1.

2.6.3. It ok < oo, then the condition (A,) is satisfied for any a >1
with a constant d(a) such that d(e) ~1 as a—~1+0; if sp > 0, then the
condition (M) is satisfied for any a > 1; consequently if 0 < sp < ap < oo,
then @eKj.

Suppose ok < oo, 0, < 0. Since 2.1,(2) imply the inequality
Lim supg(au)fp(u) < o° for a>1, the condition (A,) is satisfied with

U—>00
the constant d, = o°. One can prove analogously the condition (A,) for
any a >1 under the hypothesis s; > 0.

2.7, For a strictly increasing g-function ¢ ¢ K, both inclusions ¢~ <K,

and peK; are equivalent.

Let u(v) be a continuous and positive function for v > 0 which
tends to 1 as v — co and let v = ¢(u),

¢ ()v) _
g™ (v)

Suppose @Ky and a>1. If e(v) > a>1 for infinitely many v
tending to oo, then in view of 2.6 we have

a(v) =

o(a)p(w) < gla(v)u) = wv)e(w)

for some sufficiently large % which implies u(v)>>¢(a)>1. This contra-
dicts u(v) > 1. Consequently we have a(v) < a for large v. Therefore
lim supa(?) < 1. By analogous arguments and by 2.6, (#+) we shall prove

P00

that lim infa(v) > 1 so that finally lima(v) =1, ¢~ 'eK,. Suppose now
P00 V00
¢ 'eK,; then for any f >1 the inequality
() < d(B) g (v)

holds for © 3> wv,(f). Therefore fp(u) = po < @(d(B)u) for u > u,=
= ¢~1(n,). If, given « > 1, we choose f in such a way that d(f) <a and
define ¢, to be equal to 8, the condition (A,) will be satisfied for ¢, which
means peXK; .

13

2.8. If p(u) = [o(t)dt the following inequalities are satisfied:
0
(a) sy =148,

v
(b) gy <1+ a;.
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Applying the generalized I’Hospital rule to the ratio w(u)/y(iu)
we obtain k,(4) > h,(4)/A, whence (a) immediately follows. The proof
of (b) is analogous.

2.8.1. (a) If peK,, and y means the same @-function as in 2.8, then
weK%; (b) if peK, and is convew p-function, then peK; .

Owing to ¢eK,, the inequality ¢(ou) < d(a)p(u) holds for u >
> u(a) = 4, where d(a) -1 as a— 1. Because of the equality

vow)—y (o) _ p(av(w))
(1) — 1 (1) o{v(w))

which holds for suitably chosen o(u), %, < v(u) < u, we obtain p(au) <
< a?d(a)p(w) for sufficiently large u, whence by 2.6, weE,. v being
convex, we have p(au) > ay(u) for any « >1; so the condition (A,)
is satisfied for any « > 1 and consequently y<K;.

29, (a) If ¢, weK,, then gpeK,; (b) if @Ky, a>0,%k>0, then
a‘FkEKd (c) if @, peK,, then p(y)<K,.

The above theorems remain true if we replace K, by Ki.

Theorems (a), (b) follow directly from the definitions of the class K,
and the class K% respectively. In order to prove (¢) note that for ¢ in-
equality 2.6, (*) holds, and an analogous one holds also for the function ¢

(+) p(w)(a) < plaw) <d(a)y(u)
Defining y(a) for «>1 by y(eu) = y(a)p(u) we obtain from (+)
#(a) < y(w) <d(a) and by 2.6, (¥)
e(s(a))p (p(w) < gly(ow)) < d(d(a))e (v (W),

where the constants ¢(¢(a)), 4(d(a)) assuming that ¢(1) =1, satisfy the
agsumptions of Theorem 2.6.

If ¢, weK¥ then ¢(a) >1, 5(a)>1 for a>1 and therefore also
O(E(a)) > 1.

< ad(a),

for w >u(a).

3. In this section we always assume @ to satisfy the following con-
ditions: p(u)/u—0 as w—0, p(u)/u >oo asg u—>oco. Under these
assumptions the function :

g* (v) = sup (uv—g(0)),
u>0
complementary to the function g, may be defined. As is well known,
¢* i3 a convex p-function, and for a convex g¢-function ¢ we have
(¢*)* = ¢. It is also known that for ¢, (4) = ap(bu), Where a,b >0, ¢7 (u)=
= ap*(u(ab)™!), and from the inequality ¢,(u) > ¢(u) for w > u, the
inequality ¢*(u) > ¢f(u) for u >ug follows ([11, [4]).
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3.1, If o < oo, then oy =1 and
1 1

(+) ?;;Jr;g<1;
if oo > s> 1, then

1 1
(++) g—l-;z; =1.

If o, =1, then si. = co; if s = oo, then op =1, so that the in-
equalities (+), (++) remain true also in this Umiting case.

Let us assume op < 00, 0p < o. In view of 2.1, (2') the last inequal-
ity is equivalent to %,(1) < «” for any A, where a=1/1, 0 < i<1.
It follows that

¢ (eu) < o’ p(u) for w2 u,(a),
¢*(ufa) = 9" (ufa”) for u = ug(a),
whence
(o) e* (0 u) = Cotw)  for  w = uf(a).

The last inequality imylies ¢ > 1 such that o; > 1. In fact, if 0 << 1,
then from the convexity of ¢* follows o '¢*(u) = ¢*(a" 'u), which
is contradictory to (0) and o > 1.

From (0) we obtain therefore for o> 1

-1

1g Ay (a

%) 50
g 7 g—1’

Spe 2 04 [0p—1, §pu = oo if o} = 1.

The proof of (++) is analogous.

3.2. Let us consider two properties of g-functions:

A. g satisfies the condition (A,) for any a > 1 with a constant ¢, > a;

B. ¢ satisfies the condition (A,) for any o > 1 with a constant d, > 1,
dy—~1 as a - 1+0.

If @ has the property A or B, then ¢* has the property B or A respec-
tively.

Suppose ¢ has the property A, in other words for any a>1 the
inequality @(u)e, <p(aw) holds for w > Uo(a) and e, > a. For the
complementary function we have ¢*(alc )< c,0*(w) for w = ug(a).
We can always assume that ¢, -1 as a— 1. For any f>1 within a
sufficiently small neighbourhood of 1 we can choose a(f) in such a manner
that fa(B) < cup, a(f)>1 as p—>1. Defining dp = ¢, we obtain
9*{fu) < dy¢* (u) for large u and so, (A;) being satisfied for ¢* for small g,
it is automatically satistied for all f>1.
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Assuming ¢ to have the property B one can prove analogously to
the above ¢*(a™'d,u) > d,p(u) for u > %(a).

It does not mean any restriction if we assume for d, an arbitrary
number > o and not less than the originally given d,. This being so, we
choose, for any g >1 an a(f) >1, dyg in such a manner that oy =
= fa(B), a(f) ~1 as p— 1. Hence ¢* satisfies the condition (Ag) for
B> 1, because of ¢*(fu) = cpp* () for large u and with 0p = doggy, 65> .

3.3. It has been remarked in 2.3 that for a p-function ¢ a necessary
and sufficient condition to be regularly increasing with the index 7y 18
85 = 0 = 7,. This remark and 3.1 imply the following theorem:

If ¢ is regularly increasing and r, > 1, then ¢* is regularly increasing
and the indices 1., 7, are velated to each other by 1/re+1fre =1 (see [2]).

34. If ¢ is a comvew p-function, s, > 1 and o} < oo, then the formulae

(0) SRR
Sy o
1 1

00 —+—5=1

(00) s;,.+a; )

are satisfied.

If 5,>1, then according to 3.1, (++), ok < co and since (") = o,
we obtain by 3.1, (+), 1/s;+1/0j. <1, from which, together with 3.1,
(++), the relation (o) follows. Under the assumption 0 < co the proof
of (00) remaing the same.

3.5. If s, > 1, then ¢* K.
From s >1 follows the property A defined in 3.2 and hence o*
has the property B. It suffices now to apply 2.6 and 2.8.1.
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