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For this purpose we set

a0, 8in (A, L' — 2, 1) A= A
Bl D)= 2 =2

By virtue of (13), the last series converges uniformly in R,. There.
fore E,(x,T), as a function of #, is continuous and bounded. Also

4 (—-}Dz)ﬂm(w,m = (@, T),

and, for T — oo, R, (x, T) converges uniformly to zero. This means that
condition (15) is satisfied.

Remark. If P.(z), n =0, +1, 42, ..., are polynomials of degrees
less than a given integer and 1, are defined as before, then the series

200 -Pn (w) 6’5}.”;1:

N=—00

converges to an ultra-distribution ¢(#). Furthermore, there exists an
enfire function F(z) such that

(16) #(22) ) .

Conversely, in the space of ultra-distributions each solution of equa-
tion (16) has the form

p@) = ' Py(z)eh

N=—00

where the exponential polynomials P, (z)6"* satisty the equation.

References

[1] A. 8. ?esicovitoh, Almost periodic functions, Cambridge 1932.
Los0 [2] G. Kéthe, Topologische lineare Réume I, Berlin-Gottingen - Heidelberg
[3] J. Mikusifgki and R. Sikorski, The elementary theory of distributions (I),
Rozprawy Matematycme 12 (1957).

[4] — The elementary theory of distributions
25 (1961).

. [5]1 Z. Zielefny, On infinite derivatives of continuous functions, Studia Mathe-
matica 24 (1964), p. 311-351.

(II), Rozprawy Matematyczne

Regu par la Rédaction le 28. 12. 1963

e ©
icm STUDIA MATHEMATICA, T. XXIV. (1964)

On infinite derivatives of continuous funections
by

%. ZIELEZNY (Wroclaw)

Bach distribution of L. Schwartz is locally a derivative of some
order of a continuous function. The word “locally” is superfluous, if
solely distributions of finite order are considered. This property is of
great importance for the theory itself as well as for its applications. In
particular, it is the starting point for some of the simplified approaches
to the theory of distributions.

On the other hand, analytic functionals defined by L. Ehrenpreis
[2], [3], and I.M. Gelfand-G. B. Silov [4] in connection with Fourier
transforms of rapidly increaging functions are not, in general, deriva-
tives of continuous functions defined for real values of the arguments.
The space D’ of those functionals contains all tempered distributions
and, in particular, all continuous slowly increaging functions. Further-
more, an operator of the form

1 Qy %
Al-——D| = E — D
W) (27:71 ) — (2mi)%
where & = (ky, ks, ..., k), D" is the partial differential operator of order
o = Ryt Tyt Ty, and A(z) = Japa® = Y mafiak.. . ofisan
13 Ty, kg, 100y og=0

entire function, carries each element of D’ into an element of D’
In this paper we are concerned with the subspace Dy < D' con-
sisting of Fourier trangforms of distributions of finite order. Dy is closed
with respect to the “infinite derivation” (1) and containg all tempered
distributions. We prove that each element of Dj i an infinite derivative
of & continuous glowly increasing function (of real variables). The theorem
can be extended to sequences converging in Dy, and therefore enables
us to extend in a natural way the methods used by J. Mikusitgki and
R. Sikorski in [7], [8], so as to obtain a sequential description of the
elements of Dy, We also characterize Fourier transforms of infinitely
differentiable functions as “rapidly decreasing” elements of Dy.
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For simplicity we do not define the elements of Dy as analytic fune.
tionals. The only definition adopted in this paper for distributions (of
finite order) as well as for their Fourier transforms, which we call ultrg-
distributions, is by means of sequences. We take for granted the elemen-
tary theory of distributions developed in [7] and [8], and the fundamental
properties of tempered distributions given in [6] and [10]. A sequential
theory of ultra-distributions based on Hadamard’s ‘‘finite part” of
an improper integral was given by G. Temple and the author in [12],
The pregent approach involves different methods It is therefore necessary
to give a detailed exposition.

Throughout the paper we use the abblevmmon “iff” instead of “if
and only if".

§ 1. Notation and preliminary notions. Let ¢ be a fixed positive
integer. We denote by R, the real Euclidean g-space.
I = (2,2,...,%) and &= (¥,%,...,%) are points of R,
then we write o4& = (&;+ %1, Ta+To, ..., By+Fy), 4T = X,y -+ 0,7,
«+a,%, and also 2%, if @ >%, j=1,2,...,q Furthermore, we
write |o| = Vai+a3+...+ 2y and, for any real number A, izm = (i,
Mgy ey Amg). ’
A stands for the set of points & = (%, %, ..., k,), whose coordi-
nates k; are non-negative integers. The order of % i8 oz = %yt k...,

We use the standard notation: k! = &, !k,!...%,!, (7;) (];1) (Ilaz)<7{“),
1 2 q
and o = a1af2...afs, where k&, et and xeR,.

For 4 =1,2,....,2", let p; be a point of Ry, p; = (Pir, Diny -+ y Digh
where p; = +1; in particular we set p, = (1,1,...,1). By R, we denote
the subspace of R, consisting of points & = (x,, 2,, ...y ®,) such that
@ =0 or sgna; = 8gnpy, j=1,2,...,¢

It is also convenient to adopt the notation 0 = (0,0,.

= {diy, dis, ..., dy), where d;; = 0 for ¢ #j and dy = 1.
For any ke./V D* or DE iy the gsymbol of partial derivation

v 9%

|
o100k, .. Gl

.., 0) and

of order g.

Unless the contrary is explicitly stated, all functions under con-
gideration are complex-valued and defined on R,.

A function ¢ (z) is said to be slowly increasing or of polynomial growth,
it for some integer », (14-|2*\'p(w) is bounded in Ry. o(x) is rapidly
decreasing, if for every integer vy (14 |2 o) is bounded in By.

The support of a continuous function qn( ) i3 the closure of the set
of points, where ¢(z) iy different from Z€T0.

icm
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We say that ¢(®) is an entire function, if it ean be continued for all
complex values of the arguments & = (z;,2,,...,2,) and the resulting
function @(2) is entire.
An entire function ¢(z) is of exponential type, it there exists a
b = (by, bay...s by) = 0 such that, for every &> 0,

o (2)!

where (2] iy the modulus of the complex number #, j =1, 2,
and M, is a constant; then the type of ¢(z) is <b.
We use the symbol

< M, 6(b1+’)151|+(1‘2+3)|5zls-..y(bq+8)lﬂg'l

' 4

[ ¢(@)de
—00
to denote the multiple Lebesgue integral of ¢(z) over R,.
If p(w) is integrable over R,, then its Fourier transform ¢(s) =
F{p(2)}, defined by the formula

00

f o (@) e~y

—00

P(s8) =
is a continuous function in R, and tends to zero as |s| — oco.

The Fourier transform ¢(s) of an entire function ¢(#) of exponential
type, which is rapidly decreasing (on R,), is infinitely differentiable and
has a compact support. Conversely, if ¢(s) bas the latter properties,
then ¢(w) is an entire function of exponential type. Also Fourier’s inver-
sion theorem holds, i. e.

pla)= [ p(s)e™s.

We write briefly ¢(x) = F {p(s)}

Let now @, (x) be a sequence of continuous slowly increasing func-
tions. If, for some integer », the functions (1 |w|*)’ @, (x) are bounded
in R, and form a sequence, which. converges uniformly to (14 %y D (),
then @ () is also a continuous slowly increasing function. We say that
D, () iy v-uniformly convergent to ®(x) and we write

@ (@) & B(w).
Similerly
Du(2) &

means that the sequence @, (w) is v-uniformly convergent to some fune-
tion and

B, (@) == ¥, (@)
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denotes that both sequences &,(z) and ¥,(z) converge v-uniformly to
the same function.

A sequence Fy(z) is said to converge almost wniformly in R, if it
converges uniformly in every compact subset of R,.

In this paper we deal only with distributions of finite order. Theye-
fore, in contradistinction to [8], we use the concept of a fundamenta]
sequence in the following sense:

A gequence f, () of infinitely differentiable functions is Jundamental,
if there exists a ke" and infinitely differentiable functions F,(v), such
that

(Fy) DlﬂFn(m) = fu(®),
(Fy) F,(z) converges almost uniformly in R,.

Distributions of finite order are classes of equivalent fundamental
sequences defined in the same way as in [8].

A distribution is of compact support, contained in —a <o <a,
if it is determined by a fundamental sequence f, (), such that fal®) =0
outside —a < 2 < a.

§ 2. Two lemmas on entire functions. We need the following lemmas
on entire functions.
Lmvas 1. Let f(w) be a real-valued continuous fumction on R,, such

that f(w) > 1. There exists an entire function F(x), which has the Sollowing
properties:

@) |F ()| > f (),
and, for every ke,
1
3 el
0 ]D[F(m)]rng,

where the M, are constants.
Proof. Consider the function

1
%) = inf [—-]
wi<iol LF(y) 1’
which is continuous in R,, symmetric with regpect to the origin and

decreasing in the sense that l#] = ly| implies g(z) < g(y). Clearly we
also have ‘

) 0<g(®) <1
and
(8) 1

gt =)
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We take the product
2”L
g* (@) = [ [ g(a+py),
j=1

where the p;, j =1, 2, ..., 2" are defined ag in § 1. Then, for every <R,
and every ¢ of the g-sphere [3| <1,

(6) g o—1) < g(o).
In fact, if ¢, and [t < 1, then
@t py— 1) = [al.
Hence, by the stated properties of g(x), we get
gla+p3—1) < g(),
and consequently the desired inequality (6). Since jljlcﬁ, = R,, this is

true for all weR,.
Let now y(w) be a real-valued, infinitely differentiable function
such that

0] p@ 20, p@) =0forja|>1, [y@)ds=1.
Then the convolution
h(@) = [ g"(@—1)y(1)ds

is an infinitely differentiable positive function. Furthermore, on account
of (6) and (7),

(8) h(w) = supg*(2—1) < g(@),
[¢]=1

and also

9) [Dih(@) < [ |DEy@)a

for every ked”.

We now make use of a general approximation theorem of H. Whitney
([181, p. 76, lemma 6) in the case of the whole space R,. The theorem
may be formulated in & stronger form suitable for our purpose as follows:

Lot By, By, ... be bounded open sets, such that By c By, and

B, = R,. Then, if ¢(v) is an infinitely differentiable function in Ry
1

fi=
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and e = & > ... are given positive numbers, there is an entire function

@ (x) such that
|D* @ (@)D (2)] < &
The proof is the same as in [13].
Accordingly we can find an entire function F(z) guch. that

in Ry—B,, for o, <n.

2
F(w)—-m = 1(®),
where
(10) |Dfn (@) <1
for |¢| > o, and every ke4. Hence, in view of (5) and (8), we obtain
2 h 1 1
(@) =;i%)7—@3 > 57> 77 > T

i. e. inequality (2). It remaing to show that all derivatives

1 h ()
sl ol
7 () 24y (@) ()
are bounded, but this is a consequence of the boundedness of D*h()

and D¥5(z) insured by (9) and (10). Lemma 1 is thus established.

Levma 2. If the fumctions fi(n), fo(),..., (%) are continuously
differentiable up to the order o, then there ewists an eniire funciion G ()
such that

G(@)] = 1+ 1fi(@)+ e @) oo+ @)

and all derivatives

5 | fi(@) k[fz(m):l % [fm(w)
D [G—(m)]’ D G(w) reea D G‘(w)]’
of order oy <o are integrable over R,.

Proof. Let f(#) be the function defined by equation
F(@) = gole) (14 [wf?) 0O,

(11)
‘where
m
gol@) =1+ X' M| (@)].
Op&o f=ml
. Then f ('w) is continuous and f(w) 3 1. Therefore, by lemma 1, we can
find an entire function F(») such that |F(a) > f(x) and all derivatives
of 1/F(x) are bounded in R,. The function
G (0) = It (1)
satisfies the conditions of lemma 2.

icm
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For the proof we observe first that

ki3

1P @) > 1+ 3 |f()].

F=1
Now, in order to show that e.g. all derivatives DF[f, () /G (@)] of
order oy < o are integrable over R,, we use the Leibniz formula

2[5 g7 | = 2 )7 mer 5]

sl
Thus it is sufficient to show that, for every ke of order o, < o
the function D', (w)/F (x) is integrable and

X 1] Iy ()
D [G(m)

= .Z’w——uk+1(w) 4
where F, () is an infinitely differentiable function bounded in R, together
with all its derivatives. But these facts can be easily verified by use of
equation (11) and the properties of F(w).

G ()] =

H

§ 3. Generalized regular sequences, First we refer briefly to Light-
hill’s book [6], which containg a sequential theory of tempered distri-
butions, based on a different idea (due to Mikusingki [6]) (*). “Good
functions’ used as the starting point of this theory are infinitely differen-
tiable functions rapidly decreaging together with all their derivatives.
We formulate the definition of a regular sequence (see [5], p. 16, defini-
tion 8) in an equivalent form as follows:

A gequence ¢, () of good functions is regular, if there exists an in-
teger », a polynomial P(x) = 3 &, #"and good functions @, (z) such that

o0
1 N W
R L = o V' nle) = )
(Rz) an(m) é; ¢

One may always assume that P(x) is a sutficiently high power of
(L |").

We now modify slightly the above definition so as to obtain gener-
alized regular sequences and finally ultra-distributions. We replace
namely the polynomial of derivation in (R,) by the more general opera-
tor (1), generated by an entire function. But the class of good functions
is t00 wide for this purpose. In other words, the operator (1) cannot be

(') Though Lighthill’s book deals only with tempered distributions of one
variable, the case of several variables is analogous.
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applied to every good function. Thus our first task is to find a suitable
gubset of the class of good functions.

In what follows an operator of the form (1), generated by an entire
function A (x), is called an infinite derivative or a derivative of infinite
rder.
e TWe seek a class of functions, whose all infinite derivatives exigt
(in a certain sense) and belong to the same class. More precisely, each
function ¢(x) of the class in question must be such that the series

1 e
. Y D (e
kz (i) p (i),

where @, are Taylor coefficients of an entire function 4 () at ¢ =0,
converges at least almost uniformly in R, and its sum

1
A(ml’)“‘”)

is again a function of this elass. A useful result in this point was given
by H. Muggli [9] (see also [1], theorem 11. 7. 3.) We formulate its exten-
gion to ¢ dimensions.

LeMmA 3 (Muggli). Suppose that F (2) = %‘a;oz’“ W8 an analytic function
in the set Gy ={&| <by, |2 <bay..., Ryl <bg}. Then, for every
entire function o(2) of exponential type << b == (by, by, ..., by), the series

D) a.D¥p(z)
k

converges almost uniformly in the complex Buclidean g-space and its sum
F(D)p(2) is again an entire function of ewpomential type < b.

The proof can be obtained in exactly the same way as in the case
of one variable.

OOROLLARY. The infinite derivative carries each entire function of
exponential type < b into an entire fumction of ewponential type < b.

Moreover, if p(w) is an entire funcition of ewponential type, which is
rapidly decreasing (on R,), then its infinite derivative

1
4 (m D) (@)
18 also rapidly decreasing (on Ry ().

In falct,. by what we have said in §1, the Fourier transform ¢(s) =
= F{p(»)} is an infinitely differentiable function with compact suppors.

2 3 2 .
(%) In this cage the corresponding series converges in a muoch stronger sense.

©
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The result follows immediately {rom the eorrespondence
. [ (1
(12) A (S)(p(b‘) = F14 ——1D gv(w)}
1 \om

Entire functions of exponential type, rapidly decreasing (on Ry)
form the appropriate class. Functions of this class are admitted ag mex;l:lz
bers of the generalized regular sequences to be defined. For brevity they
are called very good functions.

Definition 1. A sequence g,(x) of very good. functions is said to
be a generalized requlay sequence, if there exists an integer v, an entire
function A (x) and very good funetions @, (x) such that

1
(GR,) 4 (2;@ 'D) Dy, (1) = gn(w),

(GRy) Dy (@) = .

It is obvious that the integer » may always be replaced by any
greater integer. We shall show later on that also 4 (x) may be replaced
by some other entire functions of greater modulus.

Bach regular sequence of very good functions is a generalized
regular gequence. In particular, each sequence of very good functions,
which converges »-uniformly, is a generalized regular sequence.

If ¢y (@) is & generalized regular sequence and 4 (#) an entire function,
then

1
{55 )t

is also a generalized regular sequence.

Let now @, (#) be very good functions and w(z) an integrable func-
tion, whose Fourier transform (s) is infinitely differentiable. Then the
convolutions )

0o

D (@) == j D, (w—1)w (1) dt

- O

are also very good functions, since by the Fourier transform the con-
volution corresponds to the product and, as already said before, very
good functions correspond to infinitely differentiable functions with
compacet supports. Moreover, if ‘

(13) "HJ (m)l :‘; .M(l--[w \w|2)”""q/2"’1/9,
where » iz an integer 30 and M a congtant, then

(14) &, () > D (@)
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implies
(15) Dh(@) > O* (@) = [ Dlo—t)w(y)ds.
—o¢
In fact,

14lo—1i <2(141of) (14117

and therefore, in view of (13),

1G5(@)—~B* @) _,, [ |Bnlo—t)—P(a—1)]
RN l (0 o=y

(L) fw ()| dt

v [ ABa@=0)—=B@—=] e
<2M_i Ty L

By virtue of (14), the quotient under the last integral converges
uniformly to zero. Hence we obtain the required convergence (15).

Next, by lemma 2 (with m = 1), to any. entire function A (») and
any integer o > 0 there exists an entire function .4*(#) such that |4*(x)} >
>1+|A(2)] and all derivatives D*[A (x)/A"(»)] of order o <o are
integrable over R, We take o = 2v4-g+1 and @(s) = A(s)/4*(s).
Then w(x) satisfies the above conditions including inequality (13).
Furthermore, since

A*(s)Br(s) = A(s)Bu(s),

we also get

(16) A ( 1

ip) O} (z) = A(%D) Dy (),

2ni
on account of equation (12). This shows that the entire function A ()
in the definition of a generalized regular sequence may be replaced by

A*(z), i e. if pu(@), v, O, (0) satisfy conditions (GR;) and (GR,), and
if A*(z), On(w) are chosen as above, then

1
* —_— * .
(0] 9°(0) = ulo
and
& (@) = .
The same argument leads to the more general

ProrostTION 1. If ¢(2), 4P (), ..., o™ (2) are generalized regular

sequences, then there ewists an entire fumction A(w), an integer v and very
good functions &Y (w), & (a), ..., DL (1), such that

1
NES 2)o0@) = 0
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and
oP(@) >, j=1,2,...,m.

§ 4. Ultra-distributions. The main adventage of our method is
the fact that ultra-distributions are defined in the same way as distri-
butions (compare with the definition in [7 1). The modifications concern
the operators involved, which are now more general, and the convergence,
which is now stronger than the almost uniform convergence used in [71.

Definition 2. We say that two generalized regular sequences
en () and p,(x) are equivalent and we write

(/'n(x) = () ;

if @y (), 9. (@), p2(2), po(), ... is a generalized regular sequence.

In other words, the generalized regular sequences en(®) and v, (x)
are equivalent, iff there exists an entire function A (x), an integer » and
very good functions &,(x), ¥,(x), such that

(GE,) A (’5];"‘ D) ¢n(m) = ‘pn(m): A (—1“ D) Wn(w) = 'Pn(m)y

2 2ni
(GE,) By (0) & < ¥ (a).

Similarly as in definition 1, the integer » in (GE,) may be replaced
by any greater integer, and also, by the results of the preceding
section, 4 (z) may be replaced by some other entire funections of greater
modulus. Thus we have

PrOPOSITION 2. If ¢ (2), ¢ (2), ..., g4 (@); v (@), v (), ..., ¢ (x)
are generalized regular sequences and

g @) ~pd (@), j=1,2,...,m,

then there exists an entire function A(»), with |4 ()| > 1, an integer v and
very good functions @ (), (Dg)(w); ey ¢S;u)(w)§ Yjv(tl)(w): T}Lz)(w)i oy PN )

?
such that

1 y 1
A (ﬁ n) P (o) = i) (), A( 44444 -~ D) P9 (@) = v (),
27h 2mi
and
D (@) & & WD), §=1,2,...,m.
The relation ~ is obviously reflexive and symmetric, i. e.
an @n(@)~pn (@),
(18) P (@)~ (0) miplies gy, (@)~e, (@).

Studia Mathematica XXIV 2
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‘We prove now its transitivity:
(19) on(@)~ya(z) and (@)~ 0 (@) implies g, (2)~b, (2).

By proposition 2, with m = 2, there exists an entire function A(g),
|4 ()] > 1, an integer » and very good functions @, (w), ¥¥ (z), PP (z),
O, (x), such that

1 1
(20) 4 (‘2”7; D) Gy (z) = pu(w), A ('5_’;; D) O () = 9,,(2),

@) Ao D)@ = 4[5 D) P) = ulo
and
(22) Bp(@) > < PN (@), PO @)% <&0,(w).
But
7P () = 9P (@),
since from (21) we get
FED (@)} = FTP (a)}.
Therefore, because of (22),
B,(2) > < 6, (w),

and this completes the proof.

The relation ~, being reflexive, symmetric and transitive, splits
the set of all generalized regular sequences into disjoint classes. Two
sequences belong to the same class, iff they are equivalent. These classes
are called wltra-distributions. We denote ultra-distributions as usual
functions; we also write ¢(z) = [, ()] to indicate that the ultra-distzi-
bution () is determined by the generalized regular sequence ¢, ().
It has, however, to be remarked that one cannot, in general, substitute
for the variable z any point of R,.

§5. Tempered distributions as ultra-distributions. Ultra-distri-
butions determined by regular sequences of very good functions may
be identified with tempered distributions. If, in particular, ¢(x)=
= [pn(®)], where ¢,(2)> for some integer », then the ultra-distribution
#(#) may be identified with a continnous function of polynomial growth
— the limit of ¢,(2). On the other hand, every tempered distribution
may be represented by a regular sequence of very good functions. Simi-
larly, to every continuous function ®(x) of polynomial growth we can
find a sequence ¢,(z) of very good functions such that pu(®) > @(0),
for a sufficiently large integer ». We may therefore regard ultra-distri-
butions as a generalization of tempered distributions.

©
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In order to show that the above correspondence is one-to-one we
need some further results on generalized regular sequences.

Levva 4. Let A(z) be an entire function, v an integer, and &, (x)
a sequence of very good fumetions. If

O(@) >0 and A (51—— D) Pp(@) = I'(x),

)
then I'(z) = 0.

Proof. Integrating by parts one can easily verity that, for any
very good function ¥(x), .

fwmqigﬂQMM=f@mAﬁgﬂwmm

By the assumption, the integral on the right-hand side converges
to zero as m — oo, and so

(23) fWWﬂm%:m

Congider now the functions
Vn (@, @y) = n¥y(nw— na,),

where 2, i3 an arbitrary point of B, and ¥y (z) a very good functions, such
that

[ #y(@)dn =1.
¥, (x,my) are very good functions, and therefore

o0
[ Pl@, @) (@) do = 0,
by equation (23). Since, on the other hand, for n — oo,
o0
[ @, 2)I'(@)d2 ~ I'{m,),
-0
we have I'(wp) = 0. Our assertion ig thus proved.

ProrosirioN 3. Let g, (w) and v, (v) be regular sequences of very good
functions. Then g, (@) ~w, (@), iff the interlaced sequence o, (), vy (%), @a(®),
(@), ... 98 reqular,

Proof. If the interlaced sequence is regular, then it is a generalized
regular gequence and therefore g, (w)~1, (). Conversely, suppose that
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@u (%) ~yy (). Then there exists an entire function A4 (z), an integer »,
and very good functions 6, (z), such that

1
- D) 0, (@) = 0, (%) = pn(8)— pa ()
(24) alsm ) W(0) = By (2) = ¢ ,
(25) 0, (z) = 0.

But ¢, () and y,(z) are regular sequences, 1. e. there exists a poly-

nomial P(z) = (14 |#*)*, an integer +*, and very good functions &}(z),
Yy (), such that

, 1 " _ ‘ _1, . .
(26) Pﬁ;ﬂ%m—%m,P@Mﬁ%m Yu(®),
(27) SXx) 5 and Wi (z) S,

Replacing if necessary » or »* by a greater integer, we may set
o=,
For the proof it is sufficient to show that

(28) 03 (x) = B} (2)— P (z) = 0.

We may assume that x > (1+¢)/2. Then 1/P(x) is integrable over R,
together with all its derivatives, so that the Fourier transform g(s) =
= F{1/P(x)} is a continuous and rapidly decreasing function. Therefore
convergence (25) implies that

)

(29) O (@) = [ Oulm—1)o(t)di > 0,

00

by the same argument as in the proof of (15). Moreover, O;*(x) are very
good functions such that

&4

1
Hence, taking into account equations (24) and (26), we get

.4Lﬂwm=mw
27i

and consequently, by application of (27), (29) and lemma 4, the con-
vergence (28). The proof of proposition 3 is now completed.
In a similar way one can prove

PROPOSITION 4. Let g, (z) and v, (x) be very good functions such that
(@) > @) ad () > y(2)
for some integer v. Then ,(x)~vp, (%), iff p(z) = p(w).

©
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Two regular sequences determine the same tempered distribution,
iff the interlaced sequence is regular (see [71, theorem 3.2). Thug proj
position 3 shows that the stated correspondence between ultra-distri-
butions and tempered distributions is one-to-one. Similarly, proposition 4
shows that the correspondence between ultra-distributions and continuous
functions of polynomial growth is one-to-one,

A very good function ¢(x) is determined by the generalized regular
sequence, all of whoge terms coincide with »(z).

§ 6. Operations on ultra-distributions. All operations on ultra-
-distributions will be defined by means of the corresponding operations
on functions of the generalized regular sequences, which determine the
ultra-distributions. In this gection we define the sum, the difference, the
translation and the infinite derivative of ultra-distributions, and also the
product of an ultra-distribution with a polynomial. Other operations,
such as the Fourier transform, the sealar product with a very good fune-
tion, the convolution and the product of an ultra-distribution with 3
function of a wider class, will be discussed separately.

Definition 3. For two arbitrary ultra-distributions (@) = [pa(2)
and y () = [v,(2)] we define

P (@) p(2) = [pa(2)+ pu(@)],
p(x+4h) = [pn @+ 1)1,
1

b (_;7;; D) p(x) = [1/‘ oo D) qvn(w)],

i3
P(2)p(2) = [P()gn ()],

where h = (hy, hy, ..., hy) is & g-tuple of complex numbers, F(z) an
entire function and P(x) a polynomial.

Proof of consistency. All terms of the new sequences are
obviously very good functions. We have to verify that in each cage:
1° the sequence in square brackets iy a generalized regular sequence,
2° the new ultra-distribution does not depend on the choice of the gener-
alized regular sequences reprosenting ¢(z) and y(z). In point of fact
we need only to verily the item 1°, which already implies 2°, as it is easy
to see.

From proposition 1 it follows that the sum g, (@) + w, (#) (and similarly
the difference) is a generalized regular sequence.

The translation can be reduced to infinite differentiation, since

-~y h,ln

30 o (@b T) =
(30) on (4 1) 2 %

Digu@), n=1,2,..,
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the series being convergent uniformly in R, on multiplying by any poly-
nomial. :
Next, if the functions ¢, (2) satisfy conditions (GR,) and (GR,), then
1
F|—D
(Zm' )"’" (@
satisfy the same conditions with A4 (x) replaced by the product F (@) A (),
Hence
1
# (D) guie)
is a generalized regular sequence,

Finally, let 4 (x) be an entire function, » an integer and @,(x) very
good functions such that

1 v

A (——— D)@n(w) =gu(2) and D, (z)=>.
27

Then

1

& Pn (®) =4 (27”2

D) (o B, (@) + B (?% D) @0 (a),

‘where
1
B(®) = —— D% .
() o DA ()

Since a;D, () ’; )y %;on(2) is a generalized regular sequence. Now,
given any % = (ks, ..., k)et", we repeat the above argument %, times
with respect to @y, k, times with respect to @,, ete. It follows that 2%, (2)
is & generalized regular sequence and, since the product of a generalized
regular sequence with a number is again a generalized regular sequence,

the same is true for P(z)e,(x). Thus the consistency of all parts of
definition 3 is established.

Similarly, for an a = (ay, ..., a;) e Ry, a; # 0, we set
(02) = [pn(a@)];
the proof of consistency offers no difficulties and we leave it out.
I g(x), w(s) are tempered distributions, ¥(») a polynomial and
heRy, then all operations in definition 3 are compatible with the same

;pera.;)ions defined earlier for tempered distributions (see e, g. [5], defini-
on 6).

Also, if ¢(®) is an entire function of exponential type, such that
p@)=0(z[") as |o]—> oo,

and F(z) = ; ¢,a" an arbitrary entire function, then the infinite derivative

F (%D) P (@)
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in the usual sense, i. e. regarded as the sum of the almogt uniformly con-

vergent series
RN A
2 G ela),
k

coincides with the infinite derivative defined for ultra-distributions.

In fact, we shall show in §10 that ¢(x) may be represented in the
form

p(@) = [gle—t)y(ta,

—00

where y,(#) is some very good function. Thus, if 2:(®) is another very
good function with x,(0) =1, then

F (ot
mi@) = [ n(oa-nnma

—00
is a generalized regular sequence of ¢(x), such that g,(») 2 ¢(z) and
also

F (2% D) PulX) > F (E%D)(p(m).

Consequently

el [ ]

The translation of a tempered distribution by a g-tuple of complex
numbers is not, in general, a tempered distribution; it is an ultra-distri-
bution. It can be obtained by infinite derivation as follows:

p(@+h) = ¢"Pp(a).

In the theory of distributions derivation (of finite order) is always
feasible. Now each ultra-distribution has an arbitrary infinite derivative.
Moreover, the class of all ultra-distributions is the smallest class, which
1° i cloged with respect to infinite derivation, 2° contains all continuous
functions of polynomial growth. We have namely

ProrostrioN B, Hach ultra-distribution is an infinite derivative of
a continuous function of polynomial growth.

In other words, each wlira-distribution ¢(m) can be represented in the
form

(31) p(e) = A (——}w D) D(x),
27
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/
where A(w) is am entire function and D(x) a continuous function of poly-
nomial growth.
Proof. If ¢(z) = [p.(2)], then there exists an entire function 4 (2),
an integer » and very good functions @, (x) such that

1 v
A<—2-—i-D) D, () = @u(2) and D,(z) = P(x).
K
Here @ () = [P, (2)] is a continuous fonetion of polynomial growth
and we have

i 2] oo =[ 455 ) 2ut0)] = truton = pte),
2me -\ 27t
q.e. d.

Remark. If the function @ (2) in equation (31) is O(jx*) as |x| ~>00,
and if 4*(«) is an entire function making the quotient A (#)/4*(x) inte-
grable over R, together with all its derivatives up to the order 2»+¢+-1,
then there exists another continuous function &*(z), which is O(jz|™)
a§ [z| - oo and satisfies the equation

* 1 *
A (2m, D) D*(z) = p(x).

A greater rate of decrease of the quotient A (x)/A*(x) improves
the smoothness of @*(x). If, for example, the quotient is rapidly decreas-
ing, then @*(x) is infinitely differentiable. Thus each ultra-distribution
@(z) admits a representation (31), where @ (x) is an infinitely differentiable
function or even an entire funection.

§ 7. Another definition of ultra-distributions. Proposition 5 allows
us to regard ultra-distributions as formal derivatives of slowly increasing
continuous functions. This conclusion suggests an equivalent definition
of ultra-distributions, which is of purely algebraic character (3). As the
starting point we use now ordered pairs (4 (), D (x)), where 4 (z) is an
entire funetion and &(x) a continuous function of polynomial growth.
The main difficulty is to define under what conditions two pairs of this
kind are equivalent.

We write
i)

@) )’

if the quotient in curly brackets is integrable together with all its deri-

Wrg(2) = y‘{

) () A similar definition of distributions of finite order was given by R. Sikorski
in [117 (see also [7], § 7). ’
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vatives up to a certain order, 80 that Wy () is at least integrable over R, .
Then we have the relation <
(82) Wra(®) * Wag (#) = Wi (x),
where # denotes the convolution.

Let now (A(m), @(m)) be one of the ordered pairs under considera-
tion. Then, for some integer » = 0,
(33) D) = 0(of") a8 o] > oo,

On the other hand, by lemma 2, there exists an entire function G(x)
such that

(14 [;1,'12)1A 1] I,ZWA(;’ (5&') == O(]) a8 [w} - 00,

On account of (33), the latter condition insures the existence of the

convolution
D(w) * Waa(z),

which we use always in this meaning.

We say that two pairs (4 (x), @(z)) and (B(@), ¥(z)) are equivalent
and we write

(4 (@), ®(@))~ (B(a), ¥(2)),
if there exists an entire function F(z) such that
(34) D) * Wyp(x) = V(x) * Wop(2).
The relation ~ is obviously reflexive and symmetric. We prove
that it is also transitive, i. e. that
(4 (@), D(@)) ~ (Bl@), P(w)) and (B(x), P (@)~ (C(z),O)
implies
(A (@), D(2))~(C(x), O(x).
In fact, by assunption, there exist entire functions F(x) and G(z)
such that
D) * Wp(a) = V() * Wyp(e),
P(w) * Wig (@) = O(0) * Weg(w).
Applying now lemma 2 to IF(x) and G(#), we can find an entire
funetion K (x) such that Wi () and Weg(®) are integrable on multi-

plying by a sufficiently high power of ||, Then, by virtue of (32) and (35),
we obtain :

(35)

D) * Wag (2) = (@) * Wag (@),
W (w) * Wk (2) = 6 (@) * Wog (@),
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and econsequently
D(x) * Wag () = O(z) * Wog (),

which means that (4 (2), P (2))~ (C(®), O (x)).

The abstraction classes (with respect to the relation ~) of equi-
valent pairs are called ulira-distributions. We denote by [A4(z), D(x))
the ultra-distribution determined by the pair (4 (), ().

Any two ultra-distributions may be represented by pairs with
a common first element, since

(4 (@), D(@)~(F (@), P(@) * Wir(@)),
it F(x) is chosen according to lemma 2, so that the convolution on the
right exists.
All operations considered in the preceding section may be defined

for the new ultra-distributions in a simple way. In particular, we define
the infinite derivative by equation

F(zim-“D) [4(2), @(2)] = [F(2)4(2), P ()],

where F(x) is an arbitrary entire function.
If A(z) 0 and (A(2), B(x))~(4d(x), P (z)), then &(x) = ¥ (x).
In fact, one can find an entire function F(») such that

(36) O(x)* Wap(s) =0, where O(z)= D(x)—¥(2).

Let now ¢(w) be a very good function, [ o¢(z)de =1, and ?(s)
= Z{p(x)}. We take the sequence

pula) = F {f«% ; (i)}

Then
W ar (@) * () = np(na),
and hence, for some integer v,
O (2} * Wap(0) * pu(@) = O(2) * np(nz) > O (x).

Thus O(x) =0, on account of (36).
By the above we may identify an wultra-distribution, which admits

& representation of the form [1, #(x)], with the continuous slowly increas-
ing function & (z). Moreover,

[4(0), 9(6)] = 4 (5 D) 1, 2601,
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and therefore each ultra-distribution is an infinite derivative of 4 contin-
nous slowly increasing function. We identify an arbitrary ultra-distri-
bution [4 (), @(»)] in the new sense with the infinite derivative
1
Al—D)o
(271:?; ) (@)
in the former sense. For the proof of consistency it is sufficient to observe
that, for infinite derivatives of continuous slowly increasing functions in
the former sense,
A( - D) & () B( 1
omi 9=z

—D|¥

i ) (z),

iff there exists an entire function F(x), which satisfies condition (34).
This result can be easily proved by use of the Fourier transforms
discussed in the next section.

§ 8. Fourier transforms of ultra-distributions. As said before, the
set of Fourier transforms of very good functions consists of all infinitely
differentiable functions with compact supports. Moreover, it appears
that to generalized regular sequences there correspond fundamental
sequences defined as in section 1.

PRrOPOSITION 6. Let @, (w), n =1,2,..., be very good functions and
@n(8) their Fourier transforms. Then @n(x) 18 a generalized reqular sequence,
iff the sequence @n(s) is fundamental.

Proof. Suppose first that ¢.(v) is a generalized regular sequence.
Then there exists an entire function 4 (z), an integer » > 0 and very good
functions @, (») such that

(37) A(»—l—,—D) O, (2) = gu(x) and B (z) >.
2mi

The sequence
(38) () = (14 |o]?)™" "y (2)

converges in the space Lﬂa of integrable functions. Therefore the sequence
of Fourier trangforms ¥, (s) converges uniformly in R,. But from (37)
and (38) we deduce that

- A \rert
fp,,,(&') = A(&) (1'-— -—4;;') ‘I’n(s),

where
02 0% 0?
4 =—a-gglr-|“aT§ +»~-+a§7

and 80 ¢,(s) is a fundamental sequence.
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Conversely, if @,(s) is a fundamental sequence, then there exists an
meA and infinitely differentiable functions 6,(s) such that

(39) D", (s) = Gnl(s)

and @,l(s) converges almost uniformly in R,. The functions ¢,(s) have
compact supports, say, contained in the g-spheres |s| <7, n =1, 2, R
respectively. We take an infinitely differentiable function a(s), which
ig 1 for |s] <1 and vanishes for |s| > 2. Multiplying both sides of (39)
by en(s) = a(s/r,) and applying to the left-hand side the Leibniz formula
we obtain

(40) (1260t ) = i,

k<m
where, for every k < m, the sequence
(41) By (8) = () D an(s)

converges almost uniformly in R,. Hence all functions @M(s) are uni-
formly bounded in each bounded subset of E,. Therefore one can find a
real-valued continuous funetion f(s), which satisfies the inequalities

(42) F(8) = 1416, ,.(s),

Furthermore, by lemma 1, there exists an entire function B(s)
such that

(43)

k<m n=1,2,..

|B(8)] = f(s) {1+ [sf2) @D,
Now, by virtue of (41), (42) and (43), we can write
(:)k,n(s) = B(s)ék,n(s)’
where the functions cﬁk,n(s) have compact supports and, for every fixed
kE <m, Op,(s) converges in LRQ ag n - oo, Hence every sequence
Ben (@) = F 7 By (s)}

consists of very good functions and converges uniformly in R,, i. e. it is
a generalized regular sequence.

Finally, from (40), (41) and (44) it follows that

d o\~ K 1 q
Z(W,f) (—2nia) ’B(% D) Pin(0) = gn (@),

k<m

(44)

and thus ¢,(2) is also a generalized regular sequence, q. e.d.

 Two generalized regular sequences @n(2) and y,(x) arve equivalent,
iff the corresponding fundamental sequences @,(s) and p,(s) are equi-
valent, and so determine the same distribution of finite order. In fact,

©
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by proposition 6, ?1(2), Y1(2), Po(), po(a), ... is a generalized regular
sequence, iff the sequence ‘171(3)71/’1(3);‘792(3%77’2(3);--- is fundamental.

We have thus proved the consistency of the following

Definition 4. The Fourier transform ¢(s) of the ultra-distribution
(@) = [gn(®)] is & distribution of finite order determined by the funda-
mental sequence @, (s) = F{p, (z)}.

By proposition 6, each ultra-distribution has a distribution of finite
order a8 its Fourier transform. Conversely, since each distribution of
finite order can be represented by a fundamental Sequence of infinitely
differentiable functions with compact supports, it is a Fourier transform
of an ultra-distribution.

The Fourier transformation just defined is obviously a linear opera-
tion, and so we can formulate

ProPOSITION 7. T'he Fourier transformation establishes an 180morphism
between wltra-distributions and distributions of finite order.

If the sequence ¢, (z) is regular, then g, (s) is also a regular sequence
ag one can easily see from the proof of proposition 6. Therefore Fourier
transforms of tempered distributions are again tempered distributions.
In this case our Fourier transforms coincide with the Fourier transforms
defined earlier for tempered distributions (see [5] and [10]). In parti-
cular, for integrable functions our Fourier transforms coincide with the
usual Fourier transforms. We shall write

and  g(a) = Fp(s))
for an arbitrary ultra-distribution ¢(z).

Directly from definition 4 we get the following properties of the
Fourier transform. Let ¢(2) be an ultra-distribution and ¢(s) = & {p(z)}.

It F(x) is an entire function, P () a polynomial and k a g-tuple of complex
numbers, then

(45) #{n ( o ) vr(m)} = P(5)ps),

-1\ .
(46) I ‘D) ps),
(47) Flpla— )} = G (s),

It (@) = [g,, ()] and p(x) is a very good function, then the sequence

o

[ oul@)p(@)de

-0

Iu"’"
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converges and its limit I is independent of the generalized regular ge-
quence representing @ (x). We call I the scalar product of ¢ () with y(a)

and we write
(o]

I= [ ¢la)y(@)do.
The scalar product of the distribution &(s) with 9(—s) can be de-
fined in the same way and we have the Parseval theorem
oo 5]
[ e@p@ds = [ d(s)p(—s)ds.
—00 —00
Remark 1. From what we have said above it follows that there
exists a one-to-one correspondence bhetween ultra-distributions and func-
tionals of the space Dy introduced in [2]. In this correspondence 1° the
subset of all tempered distributions remains invariant, 2° derivatives
of ultra-distributions are transformed into derivatives of elements of Dj.
Thus, by proposition 5, each element of Dy is an infinite derivative of
a continuous slowly increasing function.

Remark 2. If the ultra-distribution @(x) is of the form
1
(48) plz) =4 (-2*'— D) D(x),
T

where A (z)is an entire function of exponential type <b and &(x) 2 con-
tinuous function of polynomial growth, then there exists a continuous
function ¥(s) of exponential growth and type <b such that

(49) P(s) = D" (s)

for some ke.4”" (*). Conversely, if @(s) has the stated property, then one
can fake in (48) as A (z) an entire function of exponential type <b.
‘We prove now

LeMuma 5. Let ¢(») and () be ultra-distributions and F(z) an entire
Sfunction. If F(x) # 0, then

# o 2)pto) = 7[5 2)vio
implies p(x) = p(@).
Proof._ On account of (45) we have
F(s)p(s) = F(s)p(s),
and gince F(s) 7 0, from the last equation it follows that P(s) = p(s).
Consequently, ¢(x) = p(x), q. e. d.

4 A uopﬁpuous funection is of exponential growth and type < b, if it satisties
on By a restriction analogous to that for entire functions of exponential type < b.
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If F(x) = 0 outside the interval —a <o < a, then

1 1
F\— D =F|—
(27”. )?9(56) F(zm‘ D)w(m)
implies that ¢(x) and ¢ () differ by an entire function of exponential type
<2na. In fact, p(s) and p(s) differ by a distribution, whose support is
contained in —a < 8 < a. Its Fourier transform is an entire function of
exponential type <2ra (see [10], vol. 2, p. 128).

§9. Limits of ultra-distributions.

Definition 5. We say that a sequence of ultra-distributions ¢, (x)
converges to the ultra-distribution ¢(x) and we write
(50) Lm g, (2) = ¢(z),

N—>00
if there exists an entire function A (), an integer » and continuous fune-
tions @D, (x), P(x) such that
1
Al-——

(L) ( 27h

(Lig) &, (z) > DB(x).

Remark. From (L,) it follows that ®(z) = O(lz*) as |z| — oo,
and so the limit g(w), if it exists, is an ultra-distribution.

The integer » and the entire funetion A () may be replaced similarly
as in definition 1. In particular, if ¢,(z) and u,() are two sequences of
ultra-distributions, then there exists an integer » and an entire function
A (x) without real zeros, which are good for both sequences.

The limit (50) is unique. For, if

Iim gu () = ¢(#) and mlujﬂ oa(3) = p(@),

N300

1
-D) Q‘n(m) =(Pn(w)’ A(%D)QS(‘D) =q7(m)7

then there exists an entire function 4 () without real zeros, an integer »,
and continuous functions @, (), D (@), Pu(®), ¥(z), such thab

1
(51) 4 (—2% D) () = A (9—7” D) Wo(2) = pn(@),
1 A( 1 D)‘I’ ()
(52) A (—2;,; D) b (z) =@(x), i () = (=),
(63) By(z) > O(x) and  Py(o) > P(w).

By lemma B, equation (51) implies that ®n(z)= ¥.(xz). Hence,
by the convergence (53), @ (z) = ¥(2) and finally ¢(z) = (), on account
of (52).
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If &,(») is a sequence of continuous functions, which satisfy con-
dition (L,), then evidently lim &, (x) = D (x).

B N—s00

Also, if ¢, () are tempered distributions, which satisfy the conditions
(I,) and (L,) with a polynomial as the entire function A (z), then the
limit ¢(x) is a tempered distribution.

PrOPOSITION 8. If lim g, () = p(x) and Lm y,(®) = p(x), then
N—00

lm {py, (@) & ¢ (%)} = nlim on (%) £ Em P (@),

lim g, (@—h) = p(@—h),
N0

1 1
b 252}t = 2 (g 2] ot

lim P(z) g, (2) = P(2)p(w),

N—r00
where b is a g-tuple of compler numbers, F(x) an entire function and P (x)
a polynomial.

Proof. The proof of proposition 8 is much the same as the proof
of consistency of definition 3. In case of the translation we have to use
a representation of the form

1 1
(@) = A|— » =A|l—D
(@) A(M Jv)aj @, o) A(ZM )@(w»
where 9, (z) and @ (w) are entire functions. This is possible by the remark
following proposition 5.

PROPOSITION 9. 4 sequence of ulira-distributions @n () comverges to
¢(@), f the sequence of Fourier transforms g, (s) = F{p,(x)} converges
distributionally to @ (s) = F{p(x)}.

Prooi. In order to show that the convergence of g, () to @(x) implies
the distributional convergence of @,(s) to @(s) we may proceed in the
same way as in the first part of the proof of proposition 6. The proof
of the converse implication is now simpler than in the case of proposition 6,

because we need not to deal with very good functions. In fact, if @, (s)
converges distributionally to @(s), then

(54) Pu(s) = D"By(s), §(s) = D"6(s),

Whefe meA and @,(s) is a sequence of continuous functions converging
to ©(s) almost uniformly in R,. The functions &,(s) being uniformly
bounded in every bounded subset of E,, there exists a continuous func-
tion f(s), which satisfies the inequalities

f®) >1+16,(5), n=1,2,...
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Making use of lemma 1 one can now find an entire function B(s)
such that

IB ()] = f(8) (14 |s[})etna,

Thus we may write
(55) Ou(s) = B(s)Pu(s) and  B(s) = B(s)d(s),
where the sequence @n(s) consists of integrable fanetions and converges
to @(s) in Lg,.

On account of (34) and (55), the ultra-distributions ¢,(z) and ¢(2)
can be expressed as follows .

1 1
Pu (@) = (—2miz)" B (% D) Pu(2), @(@)=(—2niz)"B (Tm D) D(w),

where @, (z) are continuous functions bounded on R, and &,(z) > D ().
Hence, by virtue of proposition 8, ¢, (x) converges to ¢(z) in the sense of
definition 5.

For sequences of very good functions we have

PROPOSITION 10. A sequence ¢,(x) of very good fumctions converges
to an wltra-distribution ¢ (), iff @t is a generalized regular sequence of p(x),
i.e. (@) = [ga(®)].

Proof. If ¢,(2) converges to ¢(x), then there exists an entire func-
tion A4 (x), an integer » and continuous functions &,(») such that

1
(56) 4 (51517) Bole) = pule), A (E,;;D) ®(2) = p(0)
and

@, () > D(z).

We may assume that A4 (2) # 0. Then, applying the Fourier trans-
formation to the first equation in (56), one can easily see that @,(x) are
very good functions, and 80 ¢, (2) is & generalized regular sequence of p(x).
The converse implication is evident.

For a sequence of numbers (constant functions), the convergence
in the sense of definition 5 coincides with the usual convergence. This
follows from proposition 9, and the fact that the sequence a.d(s), wherfa Gy
are numbers and 48(s) is Dirac’s s-distribution, converges distribution-
ally, iff the sequence of numbers a, converges in the usual sense.

We also remark that, for any very good function y(x),

lim g, (%) = @(2)
N 0O
implies

lim fw%(w)w(w)dw= [ o(@)y(@)ds.

nsco _% -

22
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The proof can be obtained from definition 5 by integration by parts.

oo
A series of ultra-distributions } ¢, (2) is convergent, if the sequence
M=

of partial sums u, (@) = @ (2)+@a(@)+...+@n(®) converges. We gay
that )
@ (@) = Hm y, (2)

N—r00

is the sum of the series concerned and we write

D oal@) = p(@).

The results of proposition 8 and proposition 9 hold also for series
of ultra-distributions. For example, one may apply infinite differentia-
tion term by term, i.e.

PXACETIC)

o
1 1
F|——-D =F|l—
D7 (g ?)mier =2 (55 2)r
for any entire function F(z). Similarly, one may take the Fourier trans-
form term by term, but in this case the new series consists of distributions
of finite order (which need not to be ultra-distributions) and converges
in the sense of distributions of finite order.

On the other hand, the infinite derivative may now be regarded
a8 the sum of a series. This shows

Prorosrrron 11. If ¢(w) is an ultra-dgstribution and F(x) = 3 opa
an entire function, then k

1
Zk:(z—,i';ﬁﬂ%(w) =F(2—m.—1>)m(w>,

implies

or, in other words, the series on the left-hand side converges to the infinite
derivative.

Proof. By definition 4, p(s) = #F{p(2)} is a distribution of finite
order. An application of equation (45) gives
L. 1
Fiit) - #{p (—. D)qo«v)}
2ni
and for the partial sums S,(s) = Y o,s",

op<m

8n(8)p(s) = &F {s,m (i D) ¢(m)} .

274
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Furthermore, S,,(s)p(s) converges distributionally to F(s)(s), whenece
the sequence of partial sums

converges to
1
Pl—D
(2m‘ )(p(m),

on account of proposition 9, q.e. d.
Also Maclaurin’s formula

hk
— Dy ()

vtk = g

is satisfied for every ultra-distribution ¢(x).

There is no difficulty in extending the definition of the limit fo the
case, where the ultra-distribution depends on a continuous complex
parameter or on a point of R,. For example, in the following definition 2
is a continuous complex parameter.

Definition 5. We say that ¢,(x) converges to o(x) as A — i, and
we write

(87) Hm g,(2) = o(x)

I~y

if there exists an entire function 4 (x), an integer » and continuous func-
tiong &,(x), P(x), such that

1 1
(L) 4 (%D) D, (z) = ga(@), A (ﬂ; D) D(») = ¢(2),
(L) @,(x) > D) as A4, ().

All properties of the limit (50) stated above remain valid for the
limit (57). The proofs are analogous.

The partial derivatives of an ultra-distribution ¢(#) may now be
obtained similarly as for holomorphic functions

26)—
Dp(@) = lim p(o+4¢) w(w)7
o A
§ 10. Multiplication of ultra-distributions by funetions. We extend

now definition 3 so as to obtain a product of ultra-distributions with
functions of a wider class. Each function w(z) of the clags in guestion

J=1,2,..,¢

2\ —v

() The symbol 2 in (L;) means that (I1-+|af)” Pa(x) is bounded for every 4
and converges, for 1 — 4y, o (1+1w|2)_”@(w) uniformly in Eg.
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must be such that for each very good function 4 (), the product w (2)9 (x)
is again a very good function. This condition is satisfied, if w(x) is an en-
tire funection of exponential type, slowly increasing on R,. We ghow
that, in fact, entire functions of exponential type, slowly increasing on R,
form the desired class of multiplicators. In what follows we call them
fairly very good fumctions (°).

A tairly very good function (%) is obviously an ultra-distribution;
it is determined by the generalized regular sequence

(58) wn (@) = B, (%) o(@),

where ¥,(2) is a very good funetion such that 4,(0) = 1. If w(x) is of
exponential type <{b; and #,(z) of exponential type <b, then the n-th
function w,(2) is of exponential type < b, + by/n. Therefore ity Fourier
transform @, (s) is an infinitely differentiable funection, whose support
is contained in the interval

— o bt ) <o (na ).
2% n n

It follows that the distribution o (s) = & {w ()}, which is determined
by the fundamental sequence w,(s), has a compact support contained in
—b,/27 < x < by/2r. Also the converse is true: If the distribution @ (8)
has a compact support contained in —b,/2x <o < b,/2n, then ()
is o fairly very good function of exponential type <b, (see [10], vol. 2,
p. 128).

Definition 6. We define the produet of an ultra-distribution (@)
= [pa(®)] and a fairly very good function w(#) by equation

(59) @(@)p(@) = [o(@)pn(@)].
Pfoof of consistency. First we observe that, for every n,
(60) Flo@en(@)} = &(3) * gals),

where, as usually, @(s) = F{w (@)}, pu(s) = F{p,(2)} and the convolu-
tion on the right-hand side is well defined, since both &(s) and y(s)
have compact supports. Equation (60) involves only tempered distribu-
tions. It is a special case of a more general correspondence (see [10],
YOL 2, p.124, theorem XV). Now, on account of proposition 6, @, (s)
is a fuilda,mental Sequence. Hence, by the properties of the convolution,
©(8) * g, (s) is also fundamental. Applying again proposition 6 we con-
clude that w(z)p,(x) is a generalized regular sequence.

(°) Compare with fairly good functions defined in [5].
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It remains to show that the produet (60) does not depend on the
choice of the sequence representing ¢ (x). But this is a eonsequence of the
fact already proved, similarly as in previous proofs of consistency.

It is easy to verify that the product (60) has the usual properties

(@) (03 (2) @ (@) = (w1 (a) 04 (2)) g (),
(01(2) + 02(2)) @ (#) = 1 (2)p(a) + 05 (2)p(2),
o (@) (p(@)+ (@) = 0 (@) @)+ o(@)p(2),
Do (@) (@) = DY o (@)¢(2)+ o (@) Dip(@).
If p() is a tempered distribution, then the above product coincides
with the product defined in the theory of distributions. In particular,

if p(2) is a continuous function of polynomial growth, it is the ordinary
product of functions.

PRrOPOSITION 12. If () is an ullra-distribution, o(z) a fairly very
good function and @(s), @(s) their Fourier tramsforms respectively, then

(61) Z{w(@)p(@)} = o (s) * p(s).

Proof. The convolution on the right-hand side is well defined
because ®(s) is a distribution with compact support. Equation (61)
follows from equation (60), proposition 6, and the fact that the convo-
lution is a separately continuous operation.

If p(2) is a very good function, then from (61) we also get

o(@)* p(@) = F{o(s)es)},

where the product in curly brackets is well defined in the space of
distribution. In particular, if ¢(s) is equal to 1 on the support of w(s),
then

w(2)* p(2) = o).
From equation (61) and proposition 9 we obtain easily
PrOPOSITION 13. If ¢, (@) is a sequence of ultra-distributions and
Lim @, (2) = ¢(@),
then o

lim o (%), () = o(@)e(@)

for any fairly very good function ().

The corresponding statement for series is evident.

Remark. Let ¢,(£) and ya(q), n = 1,2, ..., be very good functions
of the variables & = (@3, ..., %p)y 1 = (Tps1y--rs Tg)e I Pulf) and y,(n)
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are generalized regular sequences, then on(E)yn(n) is also a general-
ized regular sequence. AlSo @, (&)~gpn(£) and wu(n)~yr(n) implies
Pn (EVpn(n) ~9h(E) v (n). Thus the product of two ultra-distributions
p(&) = [pu(&)] and w(n) = [¥a(n)] With separated variables may be
. defined in the usual way: ¢(£)w(n) = [Pa(&)pu(n)].

§11. Rapidly decreasing ultra-distributions. Each ultra-distri-
bution is “tempered”, being a derivative (of finite or infinite order) of
a continuous slowly increasing function. We deduce from proposition 5
another property of ultra-distributions, which shows their “slow increase’:

The translations ¢(z-+h) of any ultra-distribution p(x) by points heR,
are such that
(62) lim p(@+h)

o [}

for some integer p (depending on ¢(x)).
In fact, suppose that

=0

1
mm=Aggﬂ¢m,
where @ () is a continuous function, bounded on dividing by (14 |@[*).

Then 1

and from the rate of increase of ®(z) as [x| - co we infer that

B(a+h) ,
_l—h['*”'T=>0 as

This proves the convergence (62) with u == 2»-1.

In the present section we deal with ultra-distributions, for which
the u in (62) may be zero or even an arbitrary negative integer.

Detfinition 7. We say that an ultra-distribution ¢(2) vanishes at
infinity, if it is determined by a generalized regular sequence ¢, (w), which
satisfies conditions (GR,) and (GR,) with » = 0.

Ultra-distributions vanishing at infinity can be characterized as
infinite derivatives of continuous functions, which tend to zero as |@| —oo.

ProroSITION 14. An ulira-distribution o (o) vanishes at infinity, off
i satisfies one af the following conditions:

h] — oo.

(Vi) (@) is an infinite derivative of a continuous function @ (x), whose
ordinary Wimit, as |o| — oo, is zero;

(Va) lim @(w-+h) = 0.

1h|—>c0
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Proof. Let g.(®) be a generalized regular sequence of o(x), which
satisfies (GR,) and (GR,) with » = 0, i. e. there exists an entire function
A (z) and very good functions @,(») such that

%@=A(1

b

D) By(z) and  &,(a) > B(x).

1
@(2) = A(ﬁl)) D ()
and P(x) is a continuous function, whose ordinary limit, as |z| — oo,
is zero. Thus condition (V) is satisfied. Also ®(z-+1h) = 0, and so (V;)
implies (V). It remains to show that condition (V) is sufficient for ¢(z)
to be vanishing at infinity. Now, if (V,) is satisfied, then there exists an
entire function B(w), continuous functions @,(x), heR,, and another
continuous function @(x), such that

1 1
(63) B (% D) @y () = g(z+h), B(%D) qﬁ@) =0
and for some integer v,
(64) Oy (#) > O(w) as |k = oo.

We may assume that B(z) has no real zeros. Then, by lemma 5,
equation (63) implies that @,(s) = Py(v-+h) and also P(x) = 0. Hence,
substituting @ = 0 in (64), we infer that @,(h) tends to zero as |h]| — oo.
A generalized regular sequence ¢, (2) of ¢(x), which satisfies the condition
of definition 7, is given by equation

on(@) = B (—1—1)) {79(, (%) ] f nd, (n— nt) @D(t)dt},

27
where #,(») is a very good function defined as in (58) and #,(x) another
very good function, such that [ d;(#)de =1, q.e.d.

If ¢ (@) is a distribution, which vanishes at infinity in the sense stated
in [10] (see vol. 2, p. 61), i. e. p(w-+h) converges distributionally to zero
as |h| —» oo, then it is an ultra-distribution vanishing at infinity in the
sense of definition 7.

A fairly very good function ¢(v) vanishes ai infinity, iff its ordinary
limit, as |w| — oo, ewists and equals zero.

In fact, if ¢(#) vanishes at infinity, then it is an infinite derivative
of a fairly very good function @(w), which tends to zero as |@| - co.
We represent now @(z) in the form

& (1) = fmﬂ(m——-t)iﬁ(t)dt,

—00
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where & () is & very good function. Then each infinite derivative of @ (x)
is a convolution of @(#) with a very good function, and therefore tends
to zero as |#| - co. The converse implication iy evident.

If a sequence of ultra-distributions ¢, (¢) vanishing at infinity satisfies
the conditions of definition b with » = 0, then its limit @ () also vanishes
at infinity. In what follows we sometimes write

Lim g (2) = @(x)

N—r00

ve=p
to indicate that in definition 5, for suitably chosen 4 (x), @, (2) and (),
one can take » = u. In particular, if 4 = 0, we have the proper conver-
gence for ultra-distributions vanighing at infinity.

. Definition 8. An ultra-distribution ¢ (%) is said to be rapidly decreas-

ing, if, for every ke, o*p(z) vanishes at infinity.

Similarly as before we have

PrOPOSITION 1B. An wlira-distribution @(x) s rapidly decreasing,
iff it satisfies one of the following conditions:

(RD,) For every integer u > 0 there exists a generalized regular sequence
on () of p(x) satisfying conditions (GR,) and (GR,) with v = —pu.

(RD,) Given an arbitrary integer u > 0, @ (%) can be represented as an
infinite derivetive of a continuous function ®(x), such that (14 |z|*)* D (x)
tends to zero as [®| — oco.

(RDy) For every integer u >0,

Tim (1+ BV gl ) = 0.

Proof. Suppose first that the ultra-distribution ¢(x) is rapidly
decreasing. Then, for every kes”,

(65) "{[im (@+1)p(@+h) =0,

by definition 8 and proposition 14. In (65) we substitute ¥ = 0 and
k=¢e,j=1,2,...,q and apply proposition 13. It follows that

ll]l-}m hi?)($+h)=0’ j=1725-"7Q:
and by induction,

i hg (o) =0,
|~>00

for every integer x > 0. This proves condition (RD,).
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Next, if (RDy) is satipfied, then there exists an entire function A (z),
an integer y and a continuous function @, (x) depending on h, such that

1
(66) A (En—z D) Dy (z) = p(a-+h)
(67) (14 1By ®y (@) = 0.

We may assume that A (@) has no real zeros. Then, by lemma 5,
equation (66) implies that &, (x) = &, (z-+ k). Hence, taking into account
the convergence (67), we infer that (1--|h|*)*®,(h) tends to zero as
|B| = co. Thus (RD,) implies (RD,). Also

D) {00 (%) ) f nd, (ne—ut) @,,(t)} i,

where 9, (#) and 9,(x) are very good functions defined as in the proof
of proposition 14, is a generalized regular sequence, which satisfies com-
ditions (GR;) and (GR,) with » = —u.

It remains to show that, under agsumption of (RD,), ¢(z) is rapidly
decreaging. But for this reason it is sufficient to observe that for any
generalized regular sequence g¢,(z), which satisfies (GR,) and (GR,)
with » = —pu < 0, @*Pp,(») satisfies the same conditions with » = 0.
This completes the proof of proposition 15.

If (o) is a distribution, rapidly decreasing in the sense of Schwartz,
then it is a rapidly decreasing ultra-distribution.

A fairly very good function is rapidly decreasing, iff it is a very good
function. This is a consequence of the fact stated above that a fairly very
good function vanishing at infinity has its ordinary limit zero, as |#| —>oo.

Let now @, (w) be a sequence of rapidly decreasing ultra-distributions.
If, for every ket

1
pn(®@) = 4 (Eﬁ—

(68) lm o, (0) = o9 (@),
ey

then ¢(x) is also rapidly decreasing. In this case we have
(69) Lm gu(2) = ¢ (@)

N—r00

Yo b

for every integer u 3> 0. The proof is similar to the proof of condition
(RD,) in proposition 15.
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§12. The convolution of ultra-distributions. We prove

ProposITION 16. Let ¢(#) be an ultra-distribution and v(x) a very
good function. If ¢, (@) is o generalized reqular sequence of ¢(x), then for
some integer v,

(70) ga(@)* p(@) = [ galo—1)p()dt > y(2)

and y(x) is a fairly very good function. Moreover, if () is rapidly decreas-
ing, then x(x) 18 a very good fumction.

Proof. By assumption there exists an entire function A4 (x), an
integer » and very good functions @, (») such that

A(%D)@n(m)z%(m) and D, (x) > D().

Hence we get

1 v 1
(M) (@ *yp@) =0u(@)*4 (EE D)w(w) = O(z)* A (5;;1)) P(@),

where the convergence follows similarly as in (15). Since

1
4 ( 2ni D) v(@)

is a very good function, the limit in (71) is a fairly very good function.

If ¢(=) is rapidly decreasing, then, for any given integer u, we can
choose the entire function A (z) so that (14 |4[)*P(x) tends to zero as
|#] - co. Consequently y(«) is rapidly decreasing (on R,), and thus a very
good funetion, q. e. d.

From (71) one can easily see that y(«) does not depend on the se-
quence g, (x) determining ¢(x); all sequences of ¢ (x) give the same limit.

Let now ¢(x) = [pn(#)] and y(2) = [pa(z)] be ultra-distributions
and assume that at least one of them, say ¢(z), is rapidly decreasing.
Then, for every fixed m,

(12) Pn (@) * P (B) > (@)

a8 % — oo, where » is some integer. We shall show that, in fact, one can
find a v, which is good for all m.

Definition 9. The convolution of ¢(x) and y(x) is defined by the
sequence yx, () given in (72), i. e.

(73) ¢{@) * v (@) = [xa(®)].

Proof of consistency. By proposition 16, y,(®), n =1,2,...,
are very good functions. We assert that they form a generalized regular
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sequence. For, there exists an entire function A(), an integer » >0,
and very good functions @, (x), ¥,(x), such that

1 1

D,(x) & P(x) and V,(x) > ¥(w).

Hence, similarly as in the proof of proposition 16, we obtain the
convergence (72) with
1
278

(74) ) = Az( D) (B(a) * (o)}

But ¢(») is rapidly decreasing and
A( 1 D)@(w) = ()
27 =@

Therefore, replacing if necessary A(r) by another entire funection,
we may assume that (L--|a*y*@2d(z) tends to zero as |u| — oo.
Then, for m — oo,

(75) P(2) * V(@) = D)+ ¥(2),

and this shows, together with equation (74), that x,(2) is a generalized
regular sequence.

Ag already said, the functions g, (#) do not depend on the sequence
@n () representing ¢(«). But the convolution (73) is also independent of
the sequence ), (%) representing v (z), by an argument analogous to that
used in other proofs of consistency.

In particular, if y(z) is a very good funetion, then

@ (@) * plz) = [x®)],

where x (o) is defined by (70). Thus in the general case, when () is an
arbitrary ultra-distribution determined by the generalized regular se-
quence y,(x), the definition (73) may be written as follows:

p(@) * p(@) = [p(@) * pn(@)].
The convolution just defined has the following usual properties:
@ (@) * p () = p(@) * plx),
(p2(@) * a(@) * p (@) = p2(2) * [pa(2) * v (2)),
(¢2(@) + 9(@)) * p(@) = pu(@) * p(@)+ P2 (@) * 9 (2),
(@) * (p1(2)+ 9a(@) = p(2) * 92(2) + 9 (@) * 9a(®@);
where the ultra-distributions ¢ (@), ¢, (%) and @, (%) are rapidly decreasing.
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Remark. If the ultra-distribution ¢(z) is rapidly decreasing, then
its convolution with an arbitrary ultra-distribution is defined by for-
mula (73). However, the convolution of ¢(2) with one particular ultra-
-distribution y(x), say, can be defined under a weaker assumption on
p(@). In fact, if ¢(z) is an infinite derivative of a continuous function
¥(z), which is O(jz|*) as |2| — oo, then it is sufficient to assume that
o(r) is an infinite derivative of a continuous function ®(z), which is
O(jw|~*~%"%) as |#| > co. Moreover, if

1 1 .
p(z) = A(—,‘EJD) O(xw) and w(w) =208 (Zni D) ¥(x),
then the convolution may be expressed in the form

(16 o)+ plo) = 0[5 ) (010) + W,

where O(x) = A (2)B(%).

§ 13. Fourier transforms of rapidly decreasing ultra-distributions.
According to a theorem of L. Schwartz ([10], vol. 2, p. 124, theorem XV)
a distribution is rapidly decreasing, iff its Fourier transform is an
infinitely differentiable function, slowly increasing together with all its
derivatives. Moreover, the convolution of a rapidly decreasing distri-
bution with an arbitrary tempered distribution is transformed into the
product. For rapidly decreasing ultra-distributions we have the following
results:

PROPOSITION 17. An ultra-distribution ¢(x) s rapidly decreasing,
iff its Fourier transform @(s) is an infinitely differentiable fumction.

Proof. Suppose first that ¢(x) is rapidly decreasing and apply
condition (RD,) of proposition 15. Then, for any integer u >0, there
exists a representation of the form

o0 = 4 (=) 2(0),

where A (z) is an entire function and @(x) a continuous function, which
i8 O(jz|™* %) as |#] - co. @(x) is integrable over R, on multiplying
by any power &* with o, < 2u. Therefore its Fourier transform & (s) is
continunously differentiable up to the order 2x, and the same property
has the product p(s) = A (s)B(s). Since z was an arbitrary integer >0,
we conclude that g(s) is infinitely differentiable.

Conversely, let @(s) be an infinitely differentiable function and u
a given positive integer. Then, by lemma 2, there exists an entire func-
tion A4*(s) such that the quotient

(17

e ©
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is integrable over R, together with all its derivatives up to the order 2 1.
Thus the function
(78)

is continuous and O(|#|™*) as |@| — co. Also from (77) and (78) it follows
that

D* (%) = F~HP* (s)}

* 1 *
p(@) = A (2—751)) &* (),

and so ¢(x) is rapidly decrcasing on account of proposition 15.

ProprosITIoN 18. Let ¢(x) and y(®) be ultra-distributions and assume
that at least ome of them is rapidly decreasing. Then

(79) Flp(@) * w(@)} = ¢(s)p(s),
where, as usually, ¢(s) = Flp@)} and p(s) = F{y(x)}.
Proof. Suppose that ¢(x) iy rapidly decreasing. If u(@) = [, (%)]

then, passing in (72) to the Fourier transforms and applying proposition 6,
one can eagsily verify that

(80) Flp() * va(@)} = P(5)¥nls),

where ,(s) = F{p,(®)}, » =1,2,... But 3,(s) is a fundamental se-
quence of $(s) and, by virtue of proposition 17, ¢(s) is an infinitely dif-
ferentiable function. Therefore ¢(s)p,(s) is a fundamental sequence of
#(8)9(s). On the other hand, by definition 9, ¢(2)* p.(2) is a general-
ized regular sequence of @(w)* y(®). The result (79) follows now from
definition 4 and equation (80).

If both ¢(#) and w(x) are rapidly decreasing ultra-distributions,
then the convolution {®)* y(x) is also rapidly decreasing, on account
of proposition 17 and proposition 18.

Tf (o) is rapidly decreasing, then

limy, (z) = p()
T OO
implies
Timg (@) * pu (@) = @(@) * p{2).
N-+00

Let now ¢, () be a sequence of rapidly decreasing ultra-distributions
and ¢, (s) = F{p,(@)}. We prove
ProPONITION 19, The following conditions are equivalent:

limp, (@) = p(@), #=1,2,..
aao)

(Co)  for every ke, Dip,(s) converges to Dig(s) almost uniformly
in Ry.
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Proof. Condition (C,) means that to any integer » there exists an
entire function A(x) and continuous functions &,(z), @ (), such that

1 1
Pn(@) = A(2m} Dx) &, (x), )= 14(_2_7;43
¢7L(m) > 415(0(:)

Let us take » = —pu—(g-+1)/2, where 4 is a given positive integer,
and consider the Fourier transforms @,(s) = F{D, ()}, D (s) = F{D(x)}.
Then from (82) it follows that, for any k4" of order o, < 2y, the sequence
Df®d,(s) converges to DFd(s) uniformly in R,. But equations (81) are
transformed into ‘

Guls) = A()Buls),  §ls) = A(s)Bls).

Hence, for every ke of order oy, < 2u, D%, (s) converges to D¥qp(s)
almost uniformly in RE,. ux being an arbitrary integer, we have proved
that (C,) implies (C,).

Conversely, suppose that condition (C,) is satisfied. Then, for every
ket, the functions Df@,(s), » =1,2,..., are uniformly bounded in
every bounded subset of E,. Thus one can find a continuous function
fe(8) majorating the functions concerned, i. e.

| D% @ (5)] < fa(9),
for every keA". We proceed now similarly as in the proof of lemma 2.
Accordingly, given a positive integer u, we set
flo) = (14 3 fuls)) A+ |afyerir,
OS24

By lemma 1 there exists an entire function #(s) such that |F(s)| >
> f(s) and all derivatives Di[1/F(s)] are bounded in R,.

Let us take the entire function

G(s) = F*4*1(s).

Using the same argument as in the proof of lemma 2 one shows that
the functions

(81)

Dx)¢’<w) ,

(82)

n=1,2,..,

Bile) = 2 gy = 2L
' n ) G(s) ? ( ) G(S)
are integrable over R, together with all their derivatives up to the
01‘391; 2uq. Moreover, for~every ket of order oy < 2ug, the sequence
Dy @7 (s) converges to DEd*(s) in Lp,. This implies thab

Do) = FHDL(s),  O*(a) = FHB* (s)
are continuous functions and

(84) (+ [Py Bh (@) > (14 |0l &* (a).

(83)
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Algso from equations (83) it follows that

1
i) — @ (5;‘; Dx) @), olo) = G(?zl;; Dm) &*(a),

and so
lim ¢, (2) = ¢(2),
Ny 0O
Y=t b

in view of the convergence (84). Since u is an arbitrary positive integer,
condition (C;) is proved.

COROLLARY. If ¢u(®), n =1,2,..., are rapidly decreasing wulira-
distributions, then

iimwn(w)=¢(w), p=1,2,...,
pe—
implies
Lim @y (2) * p(@) = @(2)* p(2)

N—>00

for an arbitrary ultra-distribution v(x).
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