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On the iterative procedures of best strategy for inverting
a self-adjoint positive-definite bounded operator in Hilbert space

by

A. KIEEBASINSKI (Warszawa)

1. Introduction. This paper is closely connected with the paper [1]
of M. Altman and with the well-known iteration procedures of the best
strategy for solving numerical problems of linear algebra [6]. In this
saper a Chebyshev iterative method of arbitrary degree for inverting
pelf-adjoint, positive-definite, bounded operators in Hilbert space is
developed. For the discussion of results and comparison of methods
several basic ideas and properties of some known methods are reca-
pitulated.

Probably the most efficient methods for inverting matrices are not
iterative methods but methods of the type of Gaussian elimination.
For improving an approximate of the inverse A~' obtained by such
elimination procedure it seems sufficient to apply one or two steps of
the well-known second degree hyperpower method. Therefore methods
developed in this paper are probably not very essential to the numerical
practice.

2. Hyperpower methods in Banach spaces. Let 4 be a linear,
bounded, non-singular operator with the domain and the range in a com-
plex Banach space B. Let us suppose that a linear bounded operator
D, satisfies the condition

@) , L—Dodf = o <1,

where I is the identity mapping of B. By introducing a linear operator
B, = I—D,A we see that the equation

@) X = B, X+D,

is satistied by the operator A~ In virtue of (1) the operator A~' is the
unique solution of equation (2) and we have A~' = th,., where the

sequence of operators {X,} is defined by the recurrence formula

(3) Xk+1 = By X;+D,, kE=0,1,...


GUEST


14 A. Kielbasinski
X, is an arbitrary linear bounded operator.
From (2) and (3) we obtain the relation
4) A7 X, = Bi(47' - X,),
and the error estimate
(3) A7 —Xl| < @™ lA™ — X, -

We see that if X, = 4A~", then any term X, is equal to 4~ That
seems to be an advantage of procedure (3).

Let us consider (following von Neumann’s or Gavurin’s idea
[2], [3]) some linear combination of (n+41) first terms of the sequence
{Xk}s

n
(6) Yn = Zan,kxlﬁ
k=0

with additional condition

S

)

Oy =1.
k=0
Condition (7) follows from demand: X, = 4~ implies ¥, = 4%
Taking into account (4), (6) and (7) we find the following relation:

(8) ‘ll_l“Yﬂ = j“ﬂ,k(A_l"‘XIc> = (va a’n,kB{Jc) (-A-_I'—Xo)

k=0 k=0

= Wn(Bu) (AMI —X,).

n
Here W, (f) = %a",kt" is a polynomial of degree <n satisfying the
additional condition (cf. (7))

(9) Wa(l) =1.

We observe that any procedure of type (6) subject to condition (7)

Is fully characterized by a sequence of polynomials {W 4 isfyi
condition (9). boly {Wa ()}, satisfying

The error estimate is here
(10) 4™~ Tl < [[Wa(By)]- |4~ —X,].

A sufficient and necessary condition for the convergence of the
sequence {¥,} to the inverse A~' (with arbitrar = i
; Yy ¥, =X, is
Y [7,(8,)] = o. P

) If 2is an eig(.anva,lue of By, then |1 <o = IBo|l and in general the
exxst«'anee of_any eigenvalue satisfying this condition cannot be excluded.
If 1 is an eigenvalue of B, ) then W, (1) is an eigenvalue of W.(B,) and
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[Woa(A)| < [[W,(Bo)ll. Hence the polynomials of a complex variable ¢ in
the sequence {W,(?)} should satisfy the necessary condition
lLim sup |W,(t)] = 0.
N—>c0 [ilsg
The choice of W,(f) =" yields minimum of the functional &(W)
= sup|W(#)| in the class of all polynomials of degree <n of a complex
ti<e

variable subject to the additional condition (9) and minimum of the
functional

2n
W) = o [ 1W(oe®)ias
2n d
in the same class of polynomials (cf. [4]). We have also @(") = o"
= |IB31-

It follows that the choice of the best strategy (¢f. [6]) in this case
is the choice of the sequence {t"} or of a subsequence of this one. In fact,
if we wish to obtain X, we must not construct each term X, & < n.

Altman [1] showed how to construct iteration procedures corres-
ponding to the subsequences {t’"‘}, 1=0,1,2,..., for arbitrary in-
tegers p > 2. The simple identity P (#*"Y is Dbasic for this construe-
tion.

Let us start with X, = 0 and construct the sequence {D;},¢ =-6,1,...,
where D; = X,i. From (4) we obtain A~'—D, = B4~ By introducing
the residual operator B; = I—D;A, we obtain

(11) B;=I—-D;A = BY.
Hence we obtain B;,, = B{]’i"u = B?, so that
Pp—-1

Diyy = (I—BYA™ = > BiD;,
k=0

p-1
by the trivial identity (1—b") = > b*(1—b) and by (11). The last formula
k=0

is basic for the computation algorithms. We write it therefore in the
expanded form

(12) D,y = (I+Bi+...+BY)D,.

Altman discusses in [1] the choice of the optimal method from the
class of “hyperpower methods” (12) of various degrees p = 2,3, 4, ...
The criterion for the comparison of methods is the following: “better
accuracy of the obtained approximate after the same amount of multi-
plications”. (By multiplication we understand here the product of two
linear operators.)
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Agsuming that each iteration step takes p multiplications, one finds
that optimum hyperpower method is when p = 3. The corresponding
algorithms have (thanks to their simplicity) the important advantage
of comparatively small machine memory requirements in the cage when 4
is a matrix.

However, it is easy to observe that for » > 3 it is enough to use
[p/2]+4 2 multiplications for one iteration step. For example a glightly
transformed formula (12) in the case p = b needs four multiplications
instead of five ones (including the computation (11) of the residual ope-
rator B;)

(13) Diyy = [I+(Bi+Bi)(I+B))]D;.

It is easy to find formulas, which need even less than [p/2]+42
multiplications for greater p. That is achieved by using some more com-
plicated schemes for evaluating the operator polynomial (12),

If for an arbitrary ¢ >0 we want to achieve [|A~'—D;|| < &|l4™Y,
we have to perform i steps of the hyperpower method, where 4 can be
computed from the approximate equation o* & 1. e. i ~ loglog,e/logp.
Hence the total amount of multiplications needed to achieve the given
precision of the approximate D; (for hyperpower method of p-th degree)
is proportional to the function ’

p(p) = ﬁ](._w’
ogp
where m(p) is defined as “the least number of multiplications needed
to evaluate (without divisions) the polynomial 1+ g+ #2+4... - #-17,

Hence the Altman’s problem of the choice of the optimum hyper-
power method is equivalent to the problem of minimization of the fune-
tion p(p) for p = 2, 3, 4, ... The least value of ¢(p) for p << 25 is achieved
for p = 5. The author does not know whether it is the minimal value
of this funection.

The higher hyperpower methods seem to be less convenient for prac-
tical purposes as less efficient or, as more complicated than the lower
ones. Hence we may restrict our considerations to the cagses of P =2
?=3, p=235. In a very rough approximation comparing the corres-
ponding values of p(p) we can say that using p = 3 instead of p = 2
Wwe can spare about 5°/, of the total amount of multiplications. Using
p =75 instead of p =2 we could spare about 149/, The total gain is
not big. The author is inclined to believe that in many particular cases
the second degree hyperpower method (p =2) is (from the practical
point of view) superior to any other method discussed.

) 3 Chebyshev methods in Hilbert spaces. Let A be a self-adjoint
positive-definite bounded operator with the domain and the range in

©
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a Hilbert space $. Let m and M be the minimum and maximum eigen-
values of A respectively. It follows that 0 < m < M. As in {17, let

2
Dy = -
0 M+m
Then
2 ' M—m
14 = ||B,l| = 1- Al = .
(14) ¢ B AEEZPMI M4+m I M+ m <1

Hence the procedure (3) yields the approximate X, with the corres-
ponding error estimate (cf. (5)):

'1[_' n
(15) 14— X, < A~ — X, ( . m)

M4+m

We have now more information about the operator B, and about

norms of polynomials of B,. For any polynomial W, (f) of a real variable
we have now

(16) IWn(Bo)l = sup|Wa(A)| < sup [Wa(t),
AeZ —e<i<e
where Z is the spectrum of B,.
So we can construct the best strategy procedure (cf. [6], [2]): choose
for {W,(#)} the sequence of polynomials
{ Tu(t/o) }
Tn(1fe)

k3
of 4, n=10,1,2,..., where T,(z) = Y a,.4" is the Chebyshev polynomial
oo

COSNATCCoS L for |2/ <1,
A7) Tu(o) = [ — _
H(@+Ver—1)"+ (2 Var— 1)™™] for |z| > 1.

From (10), (14), (16), (17) we obtain for the corresponding error
estimate:

. 14— X - VM—;%)"
AT < e T A X [ )
(18) | < Zmgg <! [ ( T

The comparison of (15) and (18) shows that the Chebyshev proce-
dure is superior to the ordinary power method, if m < M.
We shall now construct a procedure corresponding to the sequence
of polynomials
| Tyi(t/o) }
ENTYRY B

=0,1,2,... -
Tajglt TR

Studia Mathematica XXIV, 1
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for an arbitrary integer p > 2. For this construction, the identity
(19) ‘ Tyir1(w) = Tp(Tyi())

will be basic. It follows from <cos(pa) = cos(p are cos (Cos a)), where
a = p'arccosze(0, x). .

We start with X, = 0 and construct the sequence {Uy}, i = 0,1, ...,
where U; = Y,i (see (6)). Hence we obtain from (8)

1

AT T =
Tpi(1/e)

1
T i(—B ) A7
P o [
It follows that U, = A™' —B, 4™ = Dy. Let
1 . 1
wenill), z-nefia)

g0 that we can write the relation

1
(20) R=1-UA=—2
K22
. for the residual operator. But by (19) we have
(21) Ty = Tp(w1);,  Zigy = Tp(Z;),
80 that
R I-U;.4 ! Z 1 Tp (i Ry)
. = [ — = — = - Ts .
i4+1 141 Tint i1 Tp(Tq'.) p\Tidly

Introducing the coefficients a,, of T,(2z) we have

P
1 1 2l
Uiy = — [Tp(nl) —Tp(uRe)]A™" = —— ¥ a,7f(I—RF) -4,
Tiq1 Tip1
Using the identity
k-1
I—r* = 3 (1—)

8=50

for k> 1 and taking into account (20) we can write
1 % K v 8
Uipr = — ) auj ZRiUi-
Tin ey

Ordering the above sum consistently with the powers of R; we can write
the recurrence formula in the expanded form:

(22) Uisr = Lol + CaRit... 4+ Lip o REITU, (U, = Dy,

©
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where
o %
" 2 Ay T4
=741
(23) bp="— (r=0,1,9,...,p—1).

Tip1

Let us note that a,, ; = 0 for odd j. Hence it follows from (23)
that {5 ; = {ip ;1 for odd j. So we can transform (22) in such a way
that for p > 4 the computation of U, +1 can be done using only [p/2]-+2
multiplications. For example, if p = 5 we can write (22) as follows:

(24) Uiy = U+ (Bi+-B}) (Cod + L BH U

Let us write
1 1

"= 3 T Tpe”

Taking into account (17) and (14) we obtain the approximate equality
(Vﬂ—l/ﬁ)”" P e
“~arml =t (= =5)
It follows that lime; = 0 and that this convergence is of degree p.
By (21) we can con;—;lomt the sequence {¢;} using the recursion formula

o7

(25) Oy = gy Oip1 = —————,
> cpﬂk"?k
=0

where ¥ = [p/2] and (cf. [5])
»

_ p— k)
Cpar = 221 Pq, g = (—1)km( P )

In the same notation we obtain from (23)

< k
2 cp,zkozi
k=0

v
2k
D €201
k=0

It follows that for each s = 0,1,...,% we have

(26) lipsa1 = (s =10,1,...,9).

2842 :
(27) 1_C’£,p—23—1 ~ oft Cp2syay .hm Ciprs1 = 1,
T—00

and the above convergence is of degree p.
We observe that the procedure (20), (22) is asymptotically conver-
gent to the procedure (11), (12). Formulas (25), (26) are bagic for the
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algorithms for computation of the coefficients (ip seq. In the case p =5
we obtain for example

I 1

=3 T iTparaar G (T8 b

Oo

5
Oipp = 0¢° C’i,tl .

We note by comparing formulas (12) and (22), (13) and (24) that
one step of the Chebyshev iteration procedure is only slightly more
complicated than one step of the corresponding hyperpower method.
We can assume therefore that the amount of work (needed to perform
one step) is almost the same in both methods. The comparison of the
efficiency of both methods can bhe deduced from (15) and (18) as follows,
Let uy consider for an a >0 the approximate equality

(M»-m)”i R (VJI_I—M)”’
M4-m VE+Vm

By assumption Vm/M <1 we can write the above in the fol-
lowing form:

) M
i~ logpw +log,a,

o1 M
J =~ ElngW +logy(a+-0,35).

In the case that M/m is sufficiently great we can (using the Che-
byshev method instead of the hyperpower one) expect about 35-50°/,
reduction of the total amount of steps. It seems reasonable to consider
only the cases p =2, p =3, p =5 for the Chebyshev methods too.
The discussion of the efficiency of those methods remains the same ag
it was for the hyperpower methods.

Remark. Nearly in the same way as in [1] we can extend the above
procedure on the general ease when A is an arbitrary non-singular linear
bounded operator in 9. Let m? be the minimum and M? the maximum
eigenvalues of the operator A*A respectively. We use formulag (20),
(22), (25), (26) starting with

2 I and I il
MPtm* s MEmE

The sequence {U;} converges to A~
estimate is

Uy =D, =

The corresponding error

A= — Ty < HA-‘n'z(M)p
M+m

icm
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4. An example of Chebyshev algorithm of the 2-nd degree. For
p =2 we can develop several special algorithms. One of them seems
to yield minimum of the additional work in each iteration step. We under-
stand by it the work which is not needed in one step of the ordinary

hyperpower iteration of the degree 2. The algorithm is based upon
formulas

énl = '51%_"%(61:‘)-1“ a’i)zs Vo= 06-D,,
Vigr = (200 I-V,A]-V,.
We have the following relations between {U,}, {o;}, {V:} and {8;}:

é% Oiqg1 1

b o 1-20

To establish the above formulas one should consider (20), (22) and

(25) for p = 2. Theoretically, we could choose any positive numbel;fi d.

But in practice the best choiceis § = 2/(1 +V1— ). Ifé = 2/11 +V1— 0%),

then the sequence {d;} is quadratically divergent to -+oo and for d<

< 2/(1+V1—p? the sequence {4;} is quadratically convergent to 0.

Both cases are not convenient for practical purposes. In the case of
8 = 2/(1+V1—g?) we have limé; =1 and the condition

o0

(28)

={n, Vi= 26U,

(29) 1< <o

is satisfied for each ¢ > 0. In order to explain the above discussion we
observe that from (27) and (28) it follows that the condition §; <1
implies lim§; = 0 and the inequality &; < &_; for j > 4. The condition

J—>00

0; > 6;_; implies similarly limd; = +oco and the inequality & > §;_;
100
for § > 4. That means that, if we want to avoid the cases ]im d; = oo

700
and lim é; = 0, condition (29) is necessary for each 4. It follows algo that
100

if condition (29) is satisfied for an index 4, then it is fulfilled also for all
former indices. From (28) and (29) we obtain the equivalent condition

2i+1 - 2i+1 e
a; ]/o'- 1 ogt+l o
Vo g, o m Vo sty
Og To

and in the limit
5 1 I z?/—— 2
= —1im Yo = ——=r.
P ke 14Vl g
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The proposed procedure for computing {d;} does not seem to be
numerically stable. We must not bother about it as far as we can expect
that the convergence of {U;} to A~' will be fast enough. For any case
it seems reasonable to check the condition (29). If it is not satisfied for
an integer j, then we can switch in the second degree hyperpower routine

Dipy = [21-D;A1D; (i =j,j+1,...)

1
starting with D; = 5 Vi.
F
5. The cgT-algorithm for finite matrices. Let now 9 be a finite
dimensional space and 4 a self-adjoint, positive-definite matrix operator.
We observe that the set of matrix operators is a Hilbert space M
with usual operations and sealar product

130) (X, Y] =spur(X*Y), X, YeM.

. Dt

Let us ¢onsider the operator B; of the orthogonal projection on
the invariant subspace 9; corresponding to the eigenvalue A; of A. Let
the eigenvalues of 4 be 1, Ay, ooy dy, h< Aipry, t=1,2,...,,n—1.
If o matrix W is a polynomial or a rational function of A, then W ix
a linear combination of H,, B,, ..., B,:

CW = W(4) = i_‘a,.m.

i=1

(31)

Here a, = W(4) and = is the degree of the minimal polynomial
of 4. We note that any term of the sequences {U;} and {R;} detined above
is of the form (31). So these terms belong to the n-dimensional subspace
M, = Lin{B,, ..., B} CM.

As mentioned in [1] or [6], we can use instead of minimum and
maximum eigenvalues m and M the corresponding lower and upper
bounds a, b: 0 <a < m, M <b. However, the convergence of the Che-
byshev method is much slower, if bounds @ and b are not sufficiently
near m and M. To start the computation with the hyperpower method
we need only the bound . The Chebyshev method needs both bounds,
o and b. In the ill-conditioned case (it means when m|/M <1) a good.
lower bound @ >0 is only seldom available.

Following the same idea as in [6], we can use a combination of the
Chebyshev method and of the conjugate gradients method. Using as
before for b an appropriate upper bound of M, we choose an arbitrary
positive number a such that in the interval (0, a) remaing only a small
pumber k of the eigenvalues of A. (The dimension of the corresponding
invariant subspaces $; is here arbitrary.) Then we apply the Chebyshev
method which will liquidate the components 7, ;H; of the resicdual

icm
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operator Ry = I— AT, corresponding to the eigenvalues ;3> a. The

remaining residual operator R, is therefore approximately the sum of
only k& components:

k
Rym Y'roB;.
f=1

These components can be liquidated by applying the conjugate
gradients method.

The proposed algorithm is based upon following formulas (ef. [77):
1° gtart with P, = R,, a, = [R, , Rel,
2° compute, for r =, 541,542, vy

‘Qrz—A-Pry lgr: PnQr]9

Upr = U+ 2P,
B,

% .
Rr+1 = »Rr"‘“pTQn Upyy = [R,+1,R,+1], !

Ori1

ar

P, = P,.

rr1

The algorithm should finish not later than after % steps with R..,=0.
The above algorithm ean be extended in the usual way on the case of
an arbitrary non-singular matrix A.
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