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Groups whose regular representation weakly contains all unitary
representations

by

A. HULANICKI (Wroclaw)

In the theory of representations of locally compact groups one of
the central problem is to find and describe the decompositions of a given
unitary representation into irreducible ones. A procedure of such decom-
position originated by Mautner [11] has been developed by many authors
(cf. e.g. [12] for references). The method is to represent the Hilbert
space of the representation in the form of a direct integral of Hilbert
spaces and to define on each of the components a unitary representation
of the group, this being irreducible for almost all components. It is a na-
tural question to ask which of the unitary representations of a group
can be built up out of the irreducible representations obtained by de-
composing a given unitary representation as the building blocks. Post-
poning the precise definition to the next gection, we say that a unitary
representation T is weakly contained in a unitary representation § if T'
can be “build up” out of the irreducible representations that occur in
a decomposition of 7' into irreducible representations. It is clear that the
representations which are weakly contained in the left (right) regular
representation deserve a special attention. They form the ‘‘prineipal
series of unitary representations” to be distinguished from the “com-
plementary series of unitary representations” which are not weakly
contained in the left (right) regular representation.

In this paper we are concerned with the class (R) of groups which
have only the principal series of unitary representations. The first who
called attention to the class (R) was Godement, ¢f. [6], who has ghown
that in order that a group belong to the class (R) it is necessary and suf-
ficient that its trivial unit representation be weakly contained in the
left regular representation. Then Yoshizawa [14] has proved that the
discrete non-Abelian free group does not belong to the class (B). In 1955
Takenouchi [13] proved that if a locally compact group G has the pro-
perty that the factor group of G by the component of the unity is compact,
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the & belongs to (R) if and only if it has property (C) of Yamabe ().
Recently Fell [3] has build up a theory of weak containment of unitary
representations of a group in terms of which the problem of characteriz-
ing the representations which are weakly contained in the regular re-
presentation as well as the problem of characterizing the groups of the
class (R) has found a very natural formulation. Fell himself has shown
that in the case of the group of n Xn complex unimodular matrices the
regular representation of G weakly contains the representations of the
principal non-degenerate series (in the sense of Gelfand and Naimark
[5]), and no others. We are going to show that in the case of discrete
groups the clags (R) coincides with the class of groups with the full Ba-
nach mean value and, as the matter of fact, we present a considerable
reduction of the problem of characterizing the class (R) in gemeral, e. g.
we show that in the general case any group of the class (R) has a left
invariant Banach mean value defined on the class of all essentially bounded
measurable functions on the group. The class of groups for which a left
invariant Banach mean value exists is well described in the case of discrete
groups (cf. [2] and [4]). In the case of locally compact groups many
results known for the discrete case remain to be true (ef. [1] and section
2 of this paper).

The paper is organized as follows. After a preliminary section I,
section 2 is devoted to the study of invariant Banach mean value defined
on various classes of bounded measurable functions on a locally compact
group. We show that the theorems concerning subgroups, factor groups
and extensions have their analogies in the general case. Section 3 presents
two conditions which are generalizations of Felner’s conditions formulated
by Feluer [4] for discrete groups and, in this case, proved to be necessary
and sufficient for a group to exist an invariant Banach mean value on
it. Section 4 is'devoted to the proof of the fact that if a locally compact
group G satisfies the first of the generalized Fglner conditions, then it
Dbelongs to the class (R). In the four theorems of section 5, called auxiliary
theorems, all reasonings needed in the proof of the main theorem are
virtually contained. The first theorem evaluates the maximum of a cer-
tain symmetric quadratic form on the class of characteristic functions.
The idea of the theorem is due to Kesten [8] and the proof makes the ut-
most use of his result. Two of the remaining theorems are to the effect
that a certain condition on the norms of operators being images of in-
tegrable functions by representations of the group implies the existence
of a left-invariant Banach mean value on the group, provided the group
is unimodular. Finally the last theorem of this section shows that this

(*) This result can be easily deduced from the main theorem of this paper and

fsheoren.x 4.1. In fa.ct_;, any group of the class (0) satisfies (F,) and any group which
is not in (0) contains a free subgroup with two generators.
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condition is implied by the requirement that the group belongs to the
class (R). This, after a simple application of a lemma due to Takenouchi
and a result of Gleason, leads to the main theorem and its corollary in
gection 6.

1. Preliminaries. All groups considered here will be locally com-
pact topological groups. If M is a measurable subset of a group @,
by | M| we denote the left-invariant Haar measure of If and by ds the
differential of the left-invariant Haar measure. The Radon-Nikodym
derivate of the Ileft-invariant Haar measure with respect to the
right-invariant Haar measure is denoted by e.

By L,(@), 1 <p < oo, we denote the space of the measurable func-
tions on the group G the p-th power of which is integrable with respect
to the left-invariant Haar measure, the corresponding norms being de-
noted by |- |lp. BY Lo(@) we denote the space of essentially bounded
measurable functions on @ and, accordingly, the norm in L. (&) is
denoted by || lo. BY L(G) we denote the set of the measurable essentially
bounded functions on @ which vanishes outside compact sets.

Let C(@) denote the space of continuous bounded funetions on G.

We say that a funchion ¢ on a group @ is uniformly continuwous if
for any & > 0 there is an open neighbourhood U of the unity of @G such
that |p(stu)—@(#)] < & for any te@ and any s, %eU. The space of uni-
formly continuous bounded functions on a group & is denoted by Co(@).
Tt is clear that (@) is a closed subspace of the space L. (G).

For any element s<G by T, and T, respectively, we denote the
operations on functions on G defined by

(Tsp)(t) = (ts), (To)(t) = @(st).

As an immediate consequence of the definition of uniformly con-

tinnous function we obtain

11. If m is a bounded linear functional on C,(&), then for a fized
Sfunction peCy(G) the functions

@1 (8) = m(Tep), wa(8) = m(Top)

are continuous bounded functions on G.

Tor any set 4 we denote by x4 the characteristic funetion of 4.
If A is a Borel subset of G such that 0 < |4] < oo, then by e4 we denote
the function

1

— e
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By a Borel measure u on & group ¢ we mean a finite countably
additive non-negative measure on the class of Borel subsets of @.
A measure is called regular if for any Borel set A

w(d) = inf u(0),
UD4

where U are open sets. For a Borel measure x in G we write u™ for the
meagure defined by

[f&)du(s) = [fls™)du~(s)
for any feC(G). A Borel measure is called symmetric if

p=p".
The convolution

[fyg )

of two functions fel, (&), geL,,(G), provided it exists, is denoted by
fxg. Similarly, if 4 is a Borel measure, we define the convolutions uxf
and feu, fel,, a8

[usf)s) = [FO'9)an(t)  and  [fxpl(s) = [flst™")dp(t)
‘We have
(11) luxflls < u(@Iflpy  1<p < oo

Let u be a Borel measure in @. Then u defines a bounded operator 4,
on the Hilbert space L,(G) by the formula

A& = uxE, Eel,(@).

We have Ar& = u~+&, where by A* we denote the operator
conjugate to A. Given a group &, the group algebra of G is the
space L, () with the multiplication x*y and the involution

*(s) = (s ™' (s)
For any element % of L,(@) we write 4™~ for the function

o~ (s) = a(s7Y).

By a unitary representation of a group G we mean a continuous ho-
momorphism of & into the group of unitary operators of a Hilbert space. If

Tis—>Ts, se@,

is a unitary representation of @ and ¢ is a vector of the Hilbert space
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of the representation, then '
(1.2) p(8) = (T, &)

is a positive definite function on G. A positive definite function on the
group G which is of the form (1.2), where & is a vector in the Hilbert
space of the representation T is said to be associated with the represen-
tation T.

By a representation of ¢ Banach *-algebra o we mean a homomor-
phism z — T, of the algebra o7 mto the algebra of all bounded operators
of a Hilbert space s (7T') such thak (Tp)* = T for all wesr.

There is & one-to-one correspondence T — T’ between the set of all
unitary representations I' of a group & and all representations 7° of the
group algebra I,(G) which are nowhere trivial in the sense that the linear
union of the ranges of the T, weL,(@) is dense in #(T"). The correspon-
dence between T and T is defined by the requirement that

(Tok,m) = [o()(Ted, n)ds

for all weL,(G) and &, nest'(T).

For any representation T’ of IL,(G) we denote by My, the least
Banach subalgebra of the algebra of all bounded operators of +#(T')
which contains all the operators T, weL,(G).

Following Fell [3], we say that a unitary representation 7' of a group
@ is weakly contained in a unitary representation § of @ if there is a con-
tinnwous homomorphism h: Mg — My of the Banach =-algebra Mg,
onto the Banach %-algebra My, such that the diagram

L, (6)
. T
A
Msf —— MT’
is commutative.

As has been shown by Fell [3] this is equivalent to the requirement
that any positive function associated with the representation T’ is the
limit of a net of linear combinations with positive coefficients of posi-
tive definite functions associated with § which is convergent uniformly
on compact sets.

By a left-reqular representation R of a group G we mean the repre-
sentation of G into the bounded operators of I,(@) given by the formula

R:s— o, T.
The corresponding representation of IL,(@) is given by
R.E =axE, EeLly(G).
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We say that a group @ belongs to the class () if any unitary repre-
sentation of @ iz weakly contained in the left-regular representation.

The connection of the notion of weak containment a,s.define.d above and th'e
one which is suggested by the “containment” of a representation 'T in the decomposi-
tion of a representation § into the direct integral of representations can be seen by
means of the following theorem due to Fell. )

We say that a representation T is weakly contained in the .se1'3 of represemia‘t:m.ng
{8}, if any positive definite function associated with T is the limit of.a net of fm.n,e
sums of positive definite functions associated with the representations helonging
to the set {§} which is convergent uniformly on compact sets.

TreorEM (Fell). If a unitary representation T is a direct integral of unitary re-
preseniations

T = j@8Vde,

then T is weakly contained in the set {Sp} and any of the representations 8, is weakly
contatned in T.

2, Invariant Banach mean values. In this section we are concerned
with the notion of an invariant Banach mean value defined on various
classes of functions on a locally compact group. This notion has been
invastigated by Dixmier [1], who has given some necessary and sufficient
conditions for the existence of an invariant Banach mean value. More-
over, he proved under some restrictive assumptions the standard theorems
on factor group, subgroup and extension known for the cage of diserete
groups. Here we recall one of his theorems and for another we get free
of this restrictive assumption in another one making use of a lemma
due to Mackey.

Let G be a locally compact group. Let @ be a closed linear subspace
of L,(G) with the property that

(a) if pe®, then pe®,

(b) if pe®, then TpeP and Tped.

Let @* denote the subspace of real functions contained in @.

By a left-invariant Banach mean value on @ we mean a linear func-
tional m which has the following properties:

(i) me = m,Tp for any seG and pe®,

(i) of pe®*, then essinfo(s) < mp < esssupp(s).
8eG se@

A Banach mean value is called right-invariant it instead of (i)
(') mp = mTep for any s<@ and pe®

holds. We say that a Banach mean value is invaréiant if both (i)
and (i) are valid.

In [2] Dixmier gives the following condition necessary and sufficient
for the existence of a left-invariant Banach mean value on @:
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(D) if @1y evy PneD* and ay, ..., a,e@, then
essinf (8)—pi(a;8)) < 0.
sir 1_:21(%( )—pia:s))

The following simple fact has been noticed by C. Ryll-Nardzewski:
LeMMA 2.1. The emistence of a lefi-invariant mean value on C(@) is
equivalent io the existence of a left-invariant Banach mean value on L (@).

In fact, let Up =y denote the operation from I (G) into c(@)
defined by the formula

1
»(s) =-»mj¢(st)dt, 0 < |4] < co.

If m, is a left-invariant Banach mean value on C(@), then putting
me = my(Up) we obtain a left-invariant Banach mean value on L (@).
THEOREM 2.2. The emistence of a left-invariant Banach mean value
on C(Q) implies the existence of an invariant Banach mean value on O (G).
Proof. Let peCy(G). Then, by (1.1), the function

m(T1 ) = y(2),
where m is a left-invariant Banach mean value on C(@), is continuous
and bounded. We put
me = my.

It is easy to verify that m is an invariant Banach mean value on
Co(G).

THEOREM 2.3 (Dixmer). If G has a left-invariant Banach mean value
on Lo (@) and if H is a closed subgroup of G, then G/H has Left-invariant
Banach mean value on L, (G/H).

TEEOREM 2.4. If H is a closed subgroup of a separable group G and G
has o loft-invariant Banach mean value on L (@), then H has a left-in-
variant Banach mean value on L (H).

Proof. The proof is a consequence of the following lemma due to
Mackey [10]:

LeymA. If @ is a separable group, H a closed subgroup of G, then there
exists a Borel set B in G which intersects each right H-coset in exactly one
point.

By this Lemma and the theorem of Lusin and Susin (cf. e.g. [9],
. 398), the function o which maps a point se<@ onto the point Hs ~ B
is a Borel function. (In fact, ¢ is the superposition of the continuous
function h: @ — @/H and the function (h | B)~! which is a Borel funetion
because it is one-to-one and is the inverse function of the continuous
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_function % on the Borel set B). Therefore, by Theorem 2 of [9], p. 285,
the function ¢(o(s))™" is @ Borel function of two variables (¢, s) and, con-
sequently, s(o(s))"* is a Borel function. Xt maps G into H; for, by defini-
tion of o, for any seG we have s = to(s) for some t<H, 50 s(or(s))‘1 =1
Similarly, o(ts) = o(s) for any teH, seG. Let p<O(H). Then

v(s) = p(s(o(s))
is a bounded Borel function on G. We put
my = myp.

To see that in fact m is a left-invariant Banach mean value on C(H)
we note that, if aeH,

al’tp(s(u(s))’l) = q:(a,(sa(s))") = qa(ws (a(a,s))‘l) = Ty (s).

Hence, by Lemma 2.2, the theorem is proved.

THEOREM 2.5. Let @ be a group, H a normal subgroup of it. Suppose
that H and G/H have lefi-invariant Banach mean values my and m, on
C(H) end O(G[H), respectively. Then G has a left-invariant Banach mean
value on Cy(@).

Proof. If ¢cCy(@), then the function of G into Cy(@) defined by
t— T
§ continuous. Moreover, if m, is a continuous functional on Oy (@) defined
by myp = my(yre), then m,(Tp) = (1) is a continuous bounded func-
tion on @ which is constant on the cosets Hs = sH, seG. In fact,
oTy(t) = ylat) = myTy = m{p(ats)}, seH.
If at =ta’ for a, a’cH, then

oIy (t) = m, {p(a’s)} = m {p(ts)} = v(t).
Therefore v defines in the unique way a continuous bounded function p
on G/H. We put
me = myP.
It is the matter of simple computation to verify that, in fact, m is
a left-invariant mean on C,y(@).
PROBLEM. Does the emistence of a left-invariant Banach mean value

on Cy(G) imply the emistence of a left-invariant Banach mean value on a(@)
(and hence on L. (@))?

) 3. Generalized Folner’s conditions. We now present two condi-
tions which are generalizations of Felner’s conditions (ef. [4]) formulated
by Felner for diserete groups and, in this case, proved to be necessary
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and sufficient for the existence of a left-invariant Banach mean value .
on a group. In the case of topological groups a straightforward generali-
zation of Felner’s conditions just by substituting the words “compact”
for “finite” and “the Haar measure of a set” for “the number of the ele-
ments of a set” though is a consequences of our condition, does not seem
to be satisfactory as far as the condition (F,) is concerned. The author
is unable to deduce from such generalization the existence of left-invariant
Banach mean value on L (), the fact which will be proved to be a con-
sequence of (F,).

Let A be a finite set in a group @. Denote by x4 the measure on G
defined by

14 (X) = the number of elemenis of A ~ X.

Let G(n) = A XG X...XG. The product measure in Gﬁ‘)
A P
n times

HaX | ]Xo X

will be denoted by u@.

(¥y) For any compact set A in G and any e > 0 there exisis a Baire
subset B with fintle positive measure such that

|B ~ aB| > (1—¢)|EB|
holds for any acA. '
(Fy) There is a positive number k such that for any finite subset A in G

and any Baire subset @ of G with compact closure and positive ulP measure
there is a Baire set E with positive finite measure in G such that

1
@) f |B ~ 7t et B dpP (a, 1y, . 8) = BB
Q

Remark. One sees that (¥) implies (F,). The converse implication,
which is known to be true for diserete groups (cf. [4]) has not been proved
for the general case as yet. It seems very likely that using Felner’s ideas
one can prove that if a locally compaet group has a left invariant Banach
mean value, then it satisfies (F,). This would settled down the problem
of the characterization of the class (R) in general.

4. Sufficiency of (F,). We have

THEOREM 4.1. If a group @G satisfies (¥,), then Qe(R).

Proof. Let T be any representation of L,(G) and let R be the left-re-
gular representation. Denote by Mz and Mr the rings of operators R,,
T, with #¢L,(G). Since R is one-to-one, there exists a homomorphism %
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such that the diagram

(4.1) f;/ &

is commutative. If we prove that the fact that G satisfies (F,) implies
that 2 is continuous in the operator norm of Mg and My, then h can be
extended to the continuous homomorphism of Mz onto My and the theo-
rem follows. To prove this it is sufficient to show that

(4.2) 1Bl 2 1%l

for any weL (@) of the form o = yxy*. In fact, since ||Ryupu| = B2
and similarly |[Ty..| = |Ty||?, we see that (4.2) will be then proved for
any # in I (@), and this shows that 2 is continuous.

Inequality (4.2) will be easily derived from the following

LemmA. If G satisfies (¥,), then any continuous positive definite fumc-
ton ¢ on G can be approwimated uniformly on compact sets by functions
usu~, where uelL.

Proof. Suppose ¢ = 1. Let 4 be a compact set, ¢ a positive number.
Then, by (F,), there exists a Baire set B with finite positive meagure such
that

\B ~ aB| > (1—e)|B|
holds for any aeA. This means that if fz = |B| "y, then

n—farfi@l = |1 [ 1armla )
- ‘1~ﬁlﬂ—|fm(t)m(t)dtl - ‘1—%]1% aE[l <
for any aeA.

If ¢ is an arbitrary continuous positive definite function, then for
the compact set A and ¢ >0

(4.3) lp(a)—@-fexfr(a)l < ep(e) for all aed.

By a theorem of Godement (cf. [6]) the product of two pogitive
definite functions ¢ and fy *f5 is a positive definite function and, since ¢
is bounded and fr#fzeL,(@), we have @-fexfa«Ly(@). But any positive
definite function which belongs to Ly (@) is of the form wxw™, where
wheLg(G) (cf. [6]). Since L is dense in L,(®), there exists a w in I such
that

[w*w™(s)—usu~(s)] < & for all sed,
whence, by (4.3), the lemma follows,
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Now to obtain the result we could have used the theorem of Fell
that was mentioned in section 1, but a simple and straight-forward reason-
ing is at hand.

We take a y in L; (@) and a positive number ¢ and we select & vector
¢ in #(T) such that (&, &) =1 and

Tyl — & < (Tyayefy &).

The function (T,¢, £) = ¢(s) is a positive definite funection on G,
80 by the lemma, we can find a function weL such that

| [o@)ymy )ds— [usu™ (e)gsy*(s)ds | < e
and
k™ (o) —p (e)] < e
We then have
ITyell— & < (Tyupds &) = [ (To&, &)ysy*(s)ds
< fu*u”(s)y*y*(s)ds—}—a = fy*u(s)-y*u(s)ds—}—s
= ly*ulli+e < IR ull+ & = Ryl Juli+e.
But Jull; = uwru~(e) < ple)+e = (&, £)+& = L+¢, whence
ITyunll < 1 Byurel| (14 £)+ 26,
whence, since & is arbitrary positive number, (4.2) follows.

5. Auxiliary theorems. In this section we are going to consider
first the following situation. Let & be a unimodular group, u a symmetric
measure on ¢. Then u defines a bounded operator A, on L,(@) by the
formula

A8 = px,  Eely(@),

which, in virtue of the fact that x is symmetrie, is Hermitian. Hence
putting A(x) = ||4,], we have

(5.1) Ap) = slélp(AE, &2,

where the supremum is taken over all £¢L,(@). Let R be the left-regular
representation of . The following Lemma holds:
Levwa 5.1. Suppose G has the property that for any nom-negative
Sfunction xeL,(G)
Ball = Jlllss
then

Mp) = p(@).
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In fact, by (1.1) we have A(u) < u(&). On the other hand, for
any ey we have

= A(tho),
= s #E,m) > sup  (uxepré, 1)
A(w) lIEstsl,l%l)llzsl(H e Iéllg=<1, linflp<t

i ity is valid because |lep*&[|;
Zhi‘]a:snj]gﬁis_)—_Tg([{:;U})sgjt):dzo (ifhz Ezgﬁétyablsihjtely con’oinuoulnls with
r\espect to the Haar measure and, moreover,

(5.2) iy = (@) = [ fer (st )au(t)ds = u(@), |
where x is the Radon-Nikodym derivate of u,. Hence, by assumption,
flells = B, = A(po)s
' i i = u(G) follows.
v b7 (83 00— (0, a b bl 1) > 40 e
hand side of (3.1) when ¢ are restricted 130' characteristic funcuons.; of
Baire sets with compaet closure and positive meagsure. The required
evaluation is given by the followi.n?im%.c rogular moasure on & group @
wahTﬁ]LIaEt“O;l:(EG% ii ll'j’e ;of ::yaBZg;Z set B with compact closure and positive

Haar measure

1
(5.3) @—]-(M*XE: xm) k<1,

fhon Au) < 4k (142871,

The i)roof of theorem 5.1 is based on a similar theorem formula.te.d
and proved by Kesten [8] for discrete groups, i.e. when the quadratic
form

(uaé, £) = B,(8) ,
is an ordinary symmetric quadratic form with non-negative coefficients.

LevmaA 5.2 (Kesten). If (by) is a symmetric substochastic N by N

matriz, that is by = b, >0,

N
o 2 by <1
i=
such that for amy set 8 = {1,2,..., N} of m indices (1 <m < N)
(6.5) m-1 wa <h<t,
i,je8
then
N
sup 2 by < 4k(1-++ 25718,
5 i7=1 )
(2, Imal=1

Regular representation of groups 49

Roughly speaking, the idea of the proof is to approximate the kernel
of the form @,(¢) by finite matrices which are to play the role of the
matrix (by). In a few simple lemmas, which follow, we present a procedure
of approximating regular measures and Baire functions on a locally com-
pact group by discrete measures and simple functions, respectively.
The proofs are easy and use the standard technique but, since the lemmas
are too special to be easily derived from text-books results of this kind,
we sketch the proofs here.

Let @ be a non-discrete locally compact group (%), X an open set

with compact closure in @. For simplicity sake we assume thag |X] is
a rational number.

LeEMMA 5.3. There emists a “rational basis” of open Baire sets in G,

that is a basis B of open Baire sets such that || is a rational number for
any UeB.

The proof of the lemma ig g copy of the proof of the well-known
fact that the Haar measure of a non-discrete group is convex, 1i. e.
that if A = O are two Borel sets and b is a real number such that |4]
< b < [0, then there exists a Borel set B with the property that 4 < B
< Cand |B| = b. One sees that for an open set ¢ the set B can be selected
among open Baire sets.

Let »' denote the product measure in XxX of the corresponding
Haar measures and let 4’ be another regular, symmetric Borel meagsure
in X¥xX (“symmetric” means that Jf(s, )au'(s, 1) = [r, s)du (s, 1)
for any continnous function fon X xX).

LeMMA B.4. Let 4,, -y A, e a finite family of Baire subsets of X x X.
For any 6 >0 and any open neighbourhood U of the unity there ewists
a finite family V,,..., V, of Baire subsets of X such that

0 Virn V; =0 if i #j,
() [V = |V5] for any % J =1,2,...,n
(iif) HV¢=X:

’

(v} for any i = 1, 2, ..., nthere is an element s of G such that sU o Vi,
(v) for any & = 1,2,...,r there is a set By of the form

(5.7) .= U V;x V;
(4,9)e Sy,
such that
(5.8) v (A3 ABy) < 6, W (A AE) < 6.

(3) The assumption that @ is not discrete is needed for the proofs only. The
lemmas trivially remain true when @ is discrete.

Studia Mathematica XXIV. 1
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Proof. Let B be a rational basis in G For any Apy b=1,2,...,7,
we gelect an open set U, such that U, o A and

[
[/} , o
'v'(Uk\Ak) < "2—, u (Uk\Ak) < 5

Let U, = U@, where

8

(5.9) QP = 1P xJ®  with IP,JPeB.
ny .
Let B, = |J@{ with
8=1

é
8 , °
V'(Uk\Ek)<_2-’ ,u(Uk\Ek)< 5

Clearly
v’(AkAEk) < 6, ,u/(-A-chEk) < 6.
Let
510) 10,99, ..., 10,78

be all the sets that appear in (5.9) for k =1, 2, ...,r. The Haglr meas;;r;;
of any of the sets (3.10) is a rational number., conse‘quen"cly,' eredequh
a family V,,..., V, of Baire subsets of X which satisfy (,1)-(1v) and § e
that any of the sets (5.10) is the union of some of the V,;’s. Consequently
B, is of the form (5.7) and the lemma follows. . _

LeMMA 5.5, Let fi,...,fm be a family of continuous _functwns ?Z'n
@ X G vanishing outside X X X. Then for any > 0 there exists a family
of Baire sets Vy,..., V, which satisfy (i)-(iv) and such that

11

(5.11) ~ f fu(s, t)dv'(s, 1) — Z‘fk(s’i’ )" (Vi Vy)} <,
XxX

612) | [ Al i (e,0— X ulss s)u (Vex V)| < n
XxX

if=1

for any selection s;eV;, i =1,2,...,n.
Proof. Let

max  |fi(s)| < M.
8eX, k=1,...,7

We pick up an ¢ such that
0 <& < 7(2max(u(X), (X)) +1)
and let U be an oi)en neighbourhood of the unity of ¢ such that
(8.13) Ife(s, ) —fiu(s', 1) < &.if only s7%", ¢ eU.
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We divide the interval ¢— i , M> into disjoint intervals {I} each of
the length < e and we consider the family
A, AL, A A

of the counter-images of the intervals {I} by the functions f,, v Iy
respectively. By means of Lemma 5.4 for

0 <6 < s(Mmax(uy,..., )7

and the neighbourhood U we select a family ¥, ..., ¥, which satisfies
(i)-(v). We have

2]
(5.14) . xfxf"“’ t)au'(s, 1) = g A{ Fu(s, ) du' (s, 1).
But
(5.15) | [f 0060~ [fi6s, nauw (s, 0] < o,
45, =,

where B, is of the form (5.7) and satisfies both inequalities (3.8) (with
Ay = AL). But since for any V;X V; that appear in (3.7) we may suppose
ViXV;~ Ay, +# 0 and since (iv) is satisfied, we see that (5.13) and the
definition of A% imply
(8, )—Fi(s’, )] < 2¢

it only (s,?) and (s',#) belong to EE. Consequently,

| [fus,0ap(s,9— 3 Flour s’ (Vix V)| < 2en’ (B)

Bk igesl,

for any 8;¢V;, i =1,2, .-+, n. Hence, by (5.15) and (5.14),

D Fulss, ) u (Vax V|

| J fuls, aw (s, 1
XxX ii=1

< 2ep’ (X)+ 6 Muy, < e(Zy’(X)—{—e).
The proof of (5.12) is analogous.

Proof of Theorem 5.1. For the measure u and an ¢ > 0 we take

& continuous real function ¢ vanishing oufside a compact set such that
Iéll: <1 and :

Mp)—(uré, £) < &

(the existence of such a function follows immediately from the fact that u
is symmetric and the family of contihuous functions vanishing outside
compact sets is dense in Ly(@)). Let X be an open set with compact
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closure that contains the support of £ On X xX we define a measure
4' be the formula

#s, tyaw (s, 0) = [£s7%, ) dus)dt,

where f is any bounded continuous function on X x X. Clea.rly 4 is sym-

metric. Consider two continuous functions f,(s, ?) = E(s)£E(?) and f,(s, t),

= £2(s) defined on X xX. For these two funections, the measures u

and » = |+|x|-] and n = ¢ we apply Lemma 55 Let Vy,..., V, be

the family of Baire subsets of X the existence of which the lemma asserts.
‘We put o

(5.16) by = W (Vix V(I VIV )7

(5.17) &= E(s) [(L+2) | Tl 17,

It is easy to verify that the matrix (by) satisfies conditions of Lem-
ma 5.2. Only (5.4) and (5.5) need proofs. We have

where  s;eV;.

Dby = D wVex V)V = 1V [ axury (8,80’ (s, 1)
i=1

4=l

= |Vi]—1flxx Vi('g-lt, t)du(s)de
= V)17 [ zx(s™ ") du(s) xr, (1) dt = p(X) <1.

To verify (5.5) we select a set 8§ < {1,2,...,n} of m indices and
write

(5.18) w7t Yy =mt Y W (VX V) (| Vil | V47

ijeS i,je8
If E = UV;, then, by (5.18),

ic8

1
mt E by = — u' (B x B)
i7es 7w

- T%Tf am(s7) xe (D) du(s)dt < k.

Further, we note that

i’&kl.

4l

;‘ g = ﬁzgm)w

1 1 v 2 .1 (1 2 ,
- VIV <S—— |- | &s)av'(s,t)+¢) <1.
- slxuglsl(s)l Wi < |Xlxxfxs(s>v(s )+e

(3.19)
In fact,

icm
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We have

(wré, &) = [E@) E@ap (s, 1) < 3 E(s) E(s) ' (Ve x V) + o

=1

< Z E(sa)((L+2) | Val) e (s) < (a+ V)2 (VX V(| Vil | V) 4o
Py it

= 2 & &by ..

if=1
Hence, by Lemma 5.2 and (5.19) we obtain
(uxé, &) < 4B(14-2571)P e,

which, in virtue of the fact that & is an arbitrary positive number, com-
Pletes the proof of theorem 5.1.

THEOREM 5.2. If @ is a unimodular group such that for any symmetric
regular Borel measure u we have

(5.20) (@) = Aw),
then G satisfies (F,).
Proof. Let 4 be a finite subset of ¢ and 44 the measure defined by

u4(X) = the number of elements of X~ A.

Let 69 = AXGX...xG, 4% be the product measure
n times

BaX|[X..ox|

and @ a Baire subset with compact closure and positive 4 measure in
QD. We have

I= (1B~ bt 1,88 (0, 1y, ..., 1)
Q
=ffZE(u)lz;l...tl—lazl...t,m(“)dudﬂg)(a;hr--,tu)
QG

= [tns(a) [ ag, ..
G

ey ta) f xE(w) ya(ts . 6. d ) du,
84(Q) G

where §,(Q) is the intersection of Q and the cylinder {4} X@x...xXG.
Let

xSa(Q)(tly ovy Bn) =f(“7t17 sevy tn).
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Then
21) L= [dpala) [ aC.yte) [£@ b t)
G Gx..xG G
N )Y el R T
= f fZE(“ u) gz (u)d f .f(tlv '--7tna't;1-"tf17 By oveytn)
é ¢ :
<Aty ey t)Apa(a).
Let
(5.22)  »(X) =——,;1——f f Fllaee a7ty ey )
'M'&)(Q) X @x..xG
Aty oy ta)dpa(a),

where X is & Baire subset in G. Clearly u is a discrete measure with the
support A in G. Moreover,

2DQ)(@) = f [ fle oty 7ty e ) B e ) dpas (0)
Q @x..xG
= f J£(@y by ey ta) Aty ey 1) dpra(a)
WXG &
=f [ tsa@ s e t) B0y oons ta)Bpa (6) = pP(Q)-
@ Gx,.xG

Hence »(@) = 1.

Now suppose that for any & >0 there exists an n and a Baire subset
Q of 37 with compact closure and positive uf) measure such that for any
Baire subset E of @ with compact closure and positive measure we have

1
0 f[Ent;‘...t;latl...tnEldp(”)(a,t,, o ) < B
Q

Let & be a positive number such that

414 2571R < 1.
Then, by (5.21) and (5.22),

1 .
7] (v*xmy xm) <k

bolds for any Baire subset B of & with compact closure and positive
measure. Consequently
(xms v*im) =

(v*ym, tm) = (v*2m, zm) < |B|k,

icm
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which shows that the inequality

i(v—!—wN
B\ 2

is valid for any Baire set B with compact closure and positive measure.
Thus, by Theorem 5.1,

*)E; XE) <k

1 (v—;v ) <1,
which contradicts (5.20) because
v+'v @ =1.

THEOREM 5.3. If @ is unimodular and satisfies (F,), then there ewists
a left-invariant Banach mean value on L. ().

Proof. We verify that G satisfies condition (D). For a finite set
4 < @ and a real function g,eL,, acd, we write

P(8) = D pal8)— pa(as).
aed

Suppose .
! ess infy(s) > §
2e@
By means of (F,) we are going to define two sequences
B, B, ...
of Baire subsets with compact closure and positive measure of @ and

Q01Q1? et

where @, is a Baire subset with compact closure of G and measure
4" (Q,) > 0.

We put @, = A.

Suppose that for an » >0 the sets #H,,...,H,, Qo -....,Q, are
already defined. Then by means of (F,;) we find a set E, ., such that

#(n)Q) f By 170t T | G (0, B,y . 1) < (L— ) (Bl

We put

Qn+1 ={(a,t1,... n+1) (a tly- -7tn)‘Qn

and

topr € By \in'. . 170k, ..

29 n+1} .
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We see that
WO Qnyr) = [IENG -ty n B[0P (b, ., 11, @)
Gn
<(1—%h) IEM—II/‘QP(Q%) .
Hence
(5.23)  p2(Qn) A=) Blpf ™ (@Qu) forany m=1,2,..

Now we define a sequence of funetions

1
Pol) =9(s), -y Ple) = @TJ P ()
It is clear that
(5.24) ess Ln:fy),,(s) = 0.
On the other hand, we shall prove that
(n)
9 (Qn) _

< ———— 2K, where K = max|@,|lw-

(5:25)  lpalle < 2K nax | g s

Hence, by (5.23),
o <2K(L—E)" for any =n=1,2,...
Hence, since 0 <k <1,

lim iyl = 0,

N=00

which, by (5.24), shows that é < 0, as required.
Thus all that remains is to prove (5.25). This is a consequence of
the following equation:

1
(5.26) yu(s) = mqf [(Pa(ts---tn8) —pa(aty. . 'tn'g)]dﬂg‘)(“: by ey ta).

The proof of (5.26) is by induetion on n. For n = 0 it is obvious.
Suppose it is true for an % > 0. Then

1
O i [ [t
T B BBl ) ) e s

—Ga(@tye bty 18)]ul (a, by, ..., o)ty
1 f f [Palty. . tutn,rs)
=TT Pally«s tplnyy8)—
Byl | By ] G Bhy

—@q(aty.. -tntnq-lﬂ)] dtn+ldﬂg)(“y by ooy ).
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For a fixed (a,1y,...,1,)eQ, we see that if
g€l ~ G0ty B,

then @, (t...0,t,,,8) cancels with Palaty.. dyty,,) for a tnyieBh, ;.
Therefore

Pus1(8) = m f f

Q, —1 -1
" En+1\tn “'tl a’l"'tnEn-i—l

]:‘Pa(tl eee tn—{-l §)—

*Q’m(a‘tl- - -tn+1'5‘)]dﬂ.(1)(a; Bygeeny tn)dtn-}-u
which, by the definition of @, +1, completes the proof of (5.26) and, at
the same time, the proof of Theorem 5.3.

THEOREM 5.4. If a group & belongs to the class (R), then for any nown-
negative function zeL,(G) we have
(5.27) el = 1B,

where B denotes the left-regular representation.

Proof. It is clear that if Ge(R), then for any representation 7' of
L, (G) we have

1Bl > IToll  for any  weL, (6.
Thus, in particular, if 7 is thev identity representation
T:2 — f z(s)ds,
we obtain
IBall = [iwll; for any non-negative function vel (G).
But the converse inequality
lkelly = IRl

is always true, whence (5.27) follows.

6. Conclusion. Now all the pieces are before us; all that remains
is to put them together to obtain

MAIN THEOREM. If o group G belongs to the class (R), then there ewists
a left-invariant Banach mean value on L. (@).

Proof. First we show that it is sufficient to prove the theorem
for unimodular groups. In fact, the following lemma is due to Takenouchi
(ef. 13, Lemma 3.5):

LevMA. Suppose a group H contains two subgroups K and I such
that

H=FKL and Kn~L-={e

and L is normal in @. Then, if K, Le(R), then H e(R).
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Suppose the theorem is proved for unimodular groups. Let G be
an arbitrary group. Then, as has been noticed by Gleason (cf. [7]), there
exists & unimodular group H = GR, where B is the group of real numbers,
is normal in H and @ ~ R = {¢}. Hence, by the lemma, H e(R). Thus,
since H is unimodular, there exists a left-invariant Banach mean value
on H and consequently, there is a left-invariant Banach mean value
on L, (@), since @ is a homomorphic image of H (cf. Theorem 2.3).

Now suppose & is unimodular and let Ge(R). Then, by Theorem
5.4, |lo,]| = ||Rfl for any non-negative function L, (@) Hence, by Lem-
ma 5.1, A(u) = u(G) for any regular Borel measure u in G. Hence, by
Theorem 5.2, G satisties (F,), which in virtue of Theorem 5.3 implies
the existence of a left-invariant Banach mean value on Lo (G,

COROLLARY. If @ is o discrete group, then G <(R) if, and only if, there
is a lefi-invariant Banmach mean value on G-

In fact, if @ is discrete, (F,) is the ordinary Falner condition and,
as such, is a consequence of the existence of a left-invariant mean on G.
By theorem 4.1, (F,) implies that G <(R), the converse implication being
a particular case of the main theorem.

Tor a generalization of the corollary to the case of locally compact
groups see the remark in section 3.
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