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On two-functional spaces
by
YUNG-MING CHEN (Hong Kong)

1. Introduction. This paper is concerned with some properties
of two abstract functional spaces defined by a certain class of asymptotic
approximation functions. One of the two spaces considered includes
the Orlicz space as a particular case, while the other one is a generaliza-
tion of a functional space defined by Lorentz [9].

Let ¢(w) be non-negative, convex, vanishing at the origin and such
that @(u)/u — co with w. Let y(u) denote the complementary function
of ¢(u) in the sense of Young. Consider the measurable functions a(t),
a <t <b, such that the product x(f)y(¢) is integrable over (a,bd) for
every measurable function y(?)eL,(a,d) and set

b
(1.1) le®ll = le(@l, = sup| [o(ry ],

the sup being with respect to all y with

b
(1.2) ov= [vlly@har <1.

a

The class of such # will be denoted by Lj which is usually called
the Orlicz space (*). If @(u) satisfies the A,-condition which was defined
by Krasnosel’skii and Rutickii [7]: ¢(24) < Kp(u), then L, and L; are
identical (*). In this paper, we shall define a new functional space L}*
which is wider than the Orlicz space L.

(1) See [18], p. 378, Notes to Chap. IV, section 10. But this is not the original
space which means ¢ (u) should satisfy the A,-condition: ¢(2u) < K¢ (u). For detailed
properties of Orlicz spaces, cf. [3], [10], [18], [14], [18], p. 170-174, and the book
by Krasnosel'skii and Rutickii [7].

(%) Cf. [18], p. 172. Throughout in this paper, p(x) will denote a non-negative
even function so that we do not need to restrict ourselves the A,-condition only for
% > 0. By the variable # we always mean it is a non-negative variable.
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Lorentz [9] has considered linear transformations between classes
of Tourier series of functions satisfying certain Lipschitz conditions
and some other functional spaces. This paper also contains generaliza-
tions of Lorentz’s theorems which are related to functions satisfying
“generalized Lipschitz conditions”. Lorentz has found some relations
between the Fourier constants of a function belonging to the Lipschitz
class Lipa or Lip(a, p). The functions f(v) satisfying the Lipschitz con-
dition Lip (a, p) form a linear normed space and the norm for each. element;
is defined by

{F i+ —fopan
I lipem = &u}llp = 1k
For functions satisfying Lipe, the norm‘is defined by
If(¢+h)—F (@)
[ ’

which. corresponds to the particular case in Lip(a,p) when p = cc.
Lorentz has also considered the spaces M,,, K., for all real number

(1.3)

(1.4) flLpe = s;gtp

sequences y = {@y, by, ...y Gy by, ...}, SUch thab
{3 (laxl®+ 15:7)} 77
(1.5) My [y] = sup == < oo
and
{k): (laxl”+ (")}
(1.6) Reply] = sup—= <eo

,n-(l
are satisfied, respectively, where 0 < a <1 and 1 <p < co. The quan-

tities on the left of (1.5) and (1.6) are defined as the norms of the corres-
ponding spaces.

Notation. By ¢(@) ~ [p1,P5], 0 <Py <Py << oo (or similarly, —oo
< py <Py < 0) we denote the non-negative even funection ¢(»), such
that g(z)2~P! is non-decreasing and ¢(z)x~" is non-increasing, as o is
inereasing in (0, co). By ¢(z) ~[p;, co]we denote ¢(z) such that ¢(w)w ™
is non-decreasing, and by ¢(#) ~ [p,, c0) we denote p(x) such that
(%) ~ [p;, N] for some positive constant N = p,. By ¢(z) ~ {p1, 2>
0<p, <py<<oo (or similarly for —oo<p,<p,<0), Wwe mean
p(@) ~[p1+e,pa—e] for some &> 0. We define ¢(w) ~ [py, ps), ¢@)
~ {p1, Psl, where p; < p,, in a similar way. By K we denote a certain
positive constant, so that two different positive constants may be deno-
ted by the same K. By ¢(x)eM(a,bd), 1 <a <b < oo, we denote the
non-negative continuous non-decreasing function @), 0 <& < oo,
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satisfying ¢(0) = 0 and the following conditions:

.7 9(2u) = Ofp(u)},
(1.8) %’b%dt = 0{"’&”},
(1.9) [ Z’Efz it = o{"”gf }

as u —>oco. By ¢@(@)eZ(a,b)c M(a,db) we denote ¢(z) satisfying the
above conditions and also the following conditions:

(1.10) @(2u) = O{p(u)},
(1.11) ;i,g-f—dt = 0{"’1(:: },
1.12) f :;52 dt = 0{")5:) },
as 4 —> +0.

In a previous paper [4] the author has defined the generalized Lip-
schitz condition. By f(x)eLipa(d), a(d) ~<0,1), we mean o(d) < Ka(d),
where ©(d) = w(8;)) = max|f(z)—f(@s)], |#1—m, < 4. Similarly, by

9,2
f(@)eLip(a(d), p), p >1, wWe mean
{ J1f+Rm)—Ff)Pa)®
Il = sup )

where |f|| is the norm of the space Lip (a(é), p). ‘We shall define two spa-
ces M,mp and R,m, which reduce to M,, and R,, respectively, when
p(8) = 8% These spaces have already been defined in [9], p. 137, but
have not yet been intensively investigated. For all real number sequences
Y = {a@y, by, vy Gy, by, ...} let us now define the spaces M,,, RE,, for
which the conditions

(1.13)

< oo,

k=1

(3 + Baf?) o

(1.14) Myply] = sup = < o0,
(3] + PP
(1.15) Ryaly] = sup o <

are satisfied, respectively, where y(5) ~<0,1], 1 <p < oo.
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2. The functional space L;*. We now prove

Levva 1. If @) ~[a,b), 0 <a <b < oo then tp(IM) is absolutely
continuous in (—N , N) where N is any positive constant. If ¢ () ~ {—o0, 0],
then o (@) is absolutely continuous in (e, co), where & is any positive constant.

Proof. We prove the first part, while the proof of the second part
for ¢(z) ~ {(—o0, 0] follows in a similar way. Without loss of generality
we take ¢(0) = 0. Since ¢(z) increases in (0, oo), given any &> 0 there
exists 6 > 0 such that 6 = 6(p, ¢), ¢(0) < /2. Let us consider the in-
terval (8, N). If 6 <@, < @ <N, then

&y (@)
@.1) q’—;g)— < j,

(@) — (@) < ‘P(wl){(mz/ml)b“l} < QJ(:?])

(2.2) |y — o}

< {p(8)| 8} — o] = K, glat— il
Since y = a° is absolutely continuous in (0, ), we have
&

n n &
23) 3 (@) —p@) o9+l D la—al <5 45

pm=l

=&
for any integer n provided that
n
Su—al<§ =00, 50,N).
1

Since ¢(x) is even, it is absolutely continuous in (—N,N).

Ag a direct consequence of Lemma 1, the first part of Theorem 1
in [4] may be improved as follows:

THEOREM 1. If (@) ~ {(a, b, where 1. < a < b < oo, then ¢ (@) <Z(a, b).
The class of functions ~ <a,b> = Z(a,b) < the class of drregular in-
creasing functions bounded by Kz® and Ko

‘We are now in a position to define a new space L;* which is wider
than the Orlicz space L% and has almost all the properties of L. Let
p@) ~[Ps, Pa], L<P; <Py < oo, With ¢,(1) = ¢(#)ft »00 a8 t o0
(the condition is certainly satisfied if 1 << p, < py < o0), and let w,(f)
be the inverse function of the positive non-decreasing continuous function
(1) = @(t)[t. Write

T

&, (@) = [ g:(t)dt

0

and  Wy(a) = [y (r)ds.

Then &, (x) is a convex function, and hence @, (») and ¥,(x) are comple-
mentary functions in the sense of Young. Consider the functions #(t),
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@ <t < b, such that the product z(t)y(f) iz integrable over the interval
a, b) for every Y(t)eLy (a,b) and set

13
(2.4) lo@] = le(®)lke = sup| [ 2@y,
v g !

the sup being with respect to all y with

b
(2.5) o = [Pully(hdt <1.

The class of such x(f) is denoted by L;* = L¥*[a, b]. Tt is easy to
see that if ¢(2) = 4%, p >1, then the norm thus defined differes only
from the ordinary p-norm in IL,-space by a constant factor depending
on p. We require the following lemmas.

Lmyva 2. If ¢(2) s non-negative and is convex such that ¢(0) = 0,
?(22) < kp(2), then there exists a consiant m < co such that p(z) ~ [1, mD.

Proof. Since ¢(0) =0, p() >0 and is convex, ¢(z)/x is non-de-
creasing as @ is increasing. The condition that ¢(z)/x is non-decreasing is
obvious. To show that ¢(z)/2™ is decreasing, it is sufficient to consider
the case 0 <2, <@,y < oo, 1 < @yfw; < 2. Write @, = 2,4 4w, where

x

Az < ®,, and ¢(z) = [p(t)dt, where p(f) is non-negative and non-de-
[

creasing (3). The function F(a,s) = (1+2)*—(1+ax) is positive for
a>1 and >0, since F(a,0) =0 and 0F/0wx = a(1+a)*'—a> 0.
Then we have

z)+4z

plo)  platdey PET f p(t)dt

(2.6)

P(ey) B o(2y) flp(t)dt
zlf “ (,) &
P (@) dt
<14 - =1+{_2?ﬂ§l_}(_41)’
{ p(@,[2)dt p(@,/2) I \'z,
171 P
4%, 22y
(2.7) 21, p (15) < 20,9 (2) < ( [+ ) 2 () = p(iny
2a) H

z3/2

<Ho(@2) = 1 [ p)d < - Ep(ay2).

(3) Cf. [10], p. 187-189, and [18], p. 24 and p. 25.
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It follows that

(2.8) D (w2) < 20°p (24/2)

and ‘!
@(s) 3(_"_”_) 14175 (ﬁl’_>< {1+A£Ii}(1+}7ﬂ‘)

@) oy <TG <1 eHDT

= (@y/2)",

where m = 141, The cage when a,/; > 2 can be reduced t? (s /m,)
= (16y/%3) (@5/%s) .. - (®,[w,). This proves Lemma 2 with m = 144k

LevmMA 3. Let ¢(x) ~ [p1y Paly T < D1 S P2 < 00 Then
_ @)  _ mw(w) _ g(zv)) <Py
i @
[fofar o ()dt ’
[
Proof. Since p(z)/2” is non-decreasing and @(@)/2"2 i3 non-inereas-
ing, by differentiating these expressions we obtain, for almost all w,

v _em_
POy e "

&
Since g(«) is absolutely continuous, we have ¢() = 0] @’ (t)dt. Hence

(2.10) P

VAN

(2.11)

VAR

the result.

THEOREM 2. () If ¢(z) satisfies the following conditions:

(i) ¢(») s a conver function;

(E) 0 = ¢(0) <p(2) <g(y) when 0 <o < y;

(iii) @(z)/@ 4 oo, as & increases from 0 to oo;

(iv) Ag-condition: ¢(2u) < Ko(u) for all w > 0;
then L, = L}y = L}

In other words, for conven functions {p(®)}, the classes of spaces {L,},
{L2Y, {L3*} for different p(w)’s thus defined are identical.

(b) In the general case, if each p(w) out of the class {p(r)} satisfies the
following conditions:

(@) p(@) ~[p1; P2y 1 <Py <P < 005

(ii) @1() = @(@)ft + oo, as t increases from O o oo;
then L} < Ly*. More precisely, there ewisis o(n) satisfying (i) and (ii), such
that Ly < Ly*, Ly + Ly*.

In other words, the class of spaces {L}*} corresponding o different
p(@)s thus defined includes the class of spaces {L}} as a proper subclass
and there ewists a function o(x) satisfying conditions (i) and (ii) such that
L; is not defined (i.e. L} is a void set).
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Proof. (a) If ¢(x) satisfies the A,-condition, then the classes I}
and L, are identical ([18], p. 172). Since &, (x) = [ ¢, (t)dt is the integral
1]

of a non-decreasing function, &,(z) is a convex function, and hence
@, (2)[= is non-decreasing. By Lemma 2 and Lemma 3, {®,(z)/x} — oo,

since {p(x)/o} — co. It is easy to see that P,(z) also satisfies the A,-con-
dition, for z

u “
0,(20) = @y (u)+ [ @)@ < By (W)+EK [ g1 ()0t < EPy(w).
° /2
Hence, by our definition for Ii*, we have L;* = Lj = Lj, and from
Lemma 3, we obtain L}* = L, = L,.

(b) In the space I}, for convex ¢, {p(z)/z} - oo, as & — co. Let
9;(?) and y(f) denote the inverse functions of ¢,(f) and ¢'(f), respecti-
vely. From (2.11) and assumptions of Lemma 3 we have ¢, () < ¢'(f).
It follows that y(?) < v,(t), and therefore

P(o) = [y@d < [pO)dt = #i(0) (2> 0).
1) " 0

It follows that the class {y} satisfying (2.5) is a subeclass of {y}
satistying (1.2). Hence L} < L}* and the norm of x with respect to L}
is bounded by the norm of » with respeet to IL}. The relation L, < L,
L, # L}, has been established in [7], p. 75. To show that L}* is practically
wider than L3, it is sufficient to consider a function ¢(z) ~ [1, m), such
that ¢ (x) is not convex, hence L does not exist. Let us take p(2) ~ <2, 3).

Then .
g Je@)) q”(m)_2¢(w)}
(2.12) %{7} _{T“ =1>0
@ qo(m)} _ @ 397(@)}
(2.13) dx{ e _{ = <0,

where the function ¢'(x) exists almost everywhere and

(2.14) 2{p (@) o} = 2p,(2) < ¢’ () < 3p.(2) = 3{p(2)/s}.

Oonversely, if (2.14) is satisfied, then ¢(z)/@27 , p(@)/2* N, and ¢(z)
~ (2, 3>. Now if we construct the function ¢(x) so that ¢'(z) is bounded
by the function 2{p(2)/z} and 3{p(x)/»} and such that ¢'(x) is not always
non-decreasing, then ¢(z) is not convex (*). To this end, we divide all
members of (2.14) by ¢(z) and then integrate the three members from 1

x
(4 If p(x) is convex, then p(x) = [ p(t)di, where p(f) is non-decreasing.
]
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to #, when # > 1. Then we have
(2.15) 7 < p@)el) <a®  (z>1).

Assuming ¢(1) = 1, and setb

6 1, 0o,
2.1 r) =
(2.16) . Ple) 2 z>1.

The function p(z) thus defined satisfies (2.14). On the other hand,
@' (4) exists everywhere except at @ = 1, where ¢'(17) == 5/2 and ¢'(1%)
= 9/4, so that ¢(2) is not equal to the integral of a non-decreasing func-
tion. Hence ¢(z) is not a convex function.

From Theorem 2, we conclude that L}* is wider than the Orlicz
space and that L, is equivalent to Ly* if the above defined p, is finite.
We now see that the space Lj* has almost all the properties of L. In
fact, by similar arguments as in [18], p. 170-175, and in virtue of ¢(t)/t
is non-decreasing and tending to oo, a8 ¢{-— co, we have the following
similar results for L,* (the detailed proofs are omitted here):

THEOREM 3. The space Ly* is a complete space.

If there is a number 6 > 0 such that fa(t)eL, for (i) ~ [p,, ps],
1< py <p; < oo, then x(t)eL;*. Conversely, if a(t)eL}*, with finite
Ds, then there is a constant 6 > 0 such that 6x(t)eL,. More precisely,
we have

TerorEM 4. If (t)eLy*, with finite py, [w(t)lp # 0, then

b
[ olla®l/lo @iy} dt < K.

This follows from an argument in [18], p.171, and from (2.11).
THEOREM 5. (a) If

b
u(@) = [o(t)y()ar

i8 bounded for every ®(t)eLy*(a,b), then y(t)e LY, = L (a, b).
(b) If the sequence

R ‘
n(0) = [2()y,(t)dt
a
is bounded for every o(t) e Ly*, then |ly, e, = O(1), as n~ oo, with respect

to the space L.

(e} If the sequence in (b) is bounded for every w(t)el,, then there is
a constant B > 0 such that

b
200 | ym@}dt = 0(1), a8 2 oo.
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We now present a comparison between J. Lamperti’s results [8]
and some results in [4] concerning conjugate functions. Leb @(f) be non-
negative, convex, and be defined for ¢ > 0 with ¢(0) = 0, p(2t) < Ke(t).
Let the classes 4 to E be classes of {p(t)} defined as follows:

Class A: ¢'(t) is concave, and ¢(t%) is convex for some 6 < 1.

Class B: ¢'(t) is convex such that ¢’'(0) = 0 (%), and ¢(£*~°) is con-
cave for some § < 1.

Class O: @(t) = @, (f)+@.(t), where ¢,ed, p,eB. .

Class D: 0 < a <o(t)/p,(t) <b < oo for all large t, where g,eC.

Class B: ¢(t) = *L(t) where 1 < p 5= 2 and L(t) is slowly varying
in the sense of Karamata [5, 6].

Lamperti proved that AuB =« <« D, B < D, and that if ¢(f)
belongs to any one of the classes 4 to &, f(z)<L,, then I (@), < EIif @),
where f(x) is the conjugate function of f(z).

To compare the results it is sufficient to consider functions belong-
ing to 4 or B, while the extensions to classes’ 0, D, B are trivial. Since
o(t) is convex, ¢(0) = 0, @(2¢) < Kp(t), therefore by our results, ¢(f)
is absolutely continuous and ¢(t) ~ [1, m), where 1 < m < oo. If p(f)ed,
then ¢'(t) is concave and ¢ (%) is convex for some 6 < 1. Tt follows that
(') ~[1, m)and g(t) ~ [1/0, m[6) = [py, o), Where 1 < p; < p, < co.
Hence ¢(t) ~ <a,p,>, where 1 < a < p; < co. By Theorem 1 and [4],
Theorem 1, peZ(a,p,), where 1 < a < p, < co. If p(t)eB, then ¢'(t)
is convex and @(f'~°) is concave for some 6 < 1. So as in footnote (%),
we may, without loss of %enerahty, take ¢’/ (t) > 0, t > 0, and ¢'(0) = 0.

It follows that ¢'(f) = f ¢''(s)ds, where ¢''(x) is non-decreasing. Let
0

us now only congider the case when ¢'(f) is convex, ¢”(f) >0, t >0,
which is in a sense wider than the class B. Then

g = [¢"()ds < [ ¢"(0)ds = 29" (@), ¢ (@)o <" (@)

(since ¢'(0) = 0, ¢'(®) is convex, non-negative and ¢”(x) increases).

(%) ¢’(0) = 0 has not been assumed in [8]. But, however, it is easy to see that
this condition is indispensable. For if ¢(f) = f, then ¢’(f) = 1, and ¢(f) is convex,
p(t—% = -9 iz concave for 6§ = 1/2 and the result is certainly invalid. It should
be further remarked that in Lemma 3 of [8], we should make use of Theorem 7.8.5
of Zygmund’s Trigonometrical Series (1st ed.). Hence ¢’(t) must satisfy Young’s
conditions (i. e. ¢’(f) be continuous, vanishing at the origin, non-decreasing, tending
t0 oo) and therefore we must assume @’ (0) = 0. Since ¢’ (f) is non-decreasing, con-
sequently, it is trivial when ¢’(0) =0, ¢”(t) = 0 for 0 < ¢< 4, and so Wwe may,
without loss of generality, take @”(f)> 0 (¢”(f) is non-decreasing).
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We then obtain
L

£ i
@17 o) = [¢'@du < [w (w)du = tp'()— [ ¢ (w)du,
0 0 0

(2.18) o' (1) = 20 () ft.

It follows that ¢(f)/? is non-decreasing. On the other hand, since
@(z) is convex, ¢(0) =0, ¢(22) < Kp(x), by Lemma 2, ¢(x) ~ [1, m),
m < oo. On account of p(x)/x* is non-decreasing, it follows that ¢(z)
~ [2, m), m < co. Hence by Theorem 1 in [4] and Lemma 1, Theorem 1,
p(w)eZ (3, m+1). Collecting the results just obtained, if ¢(w)ed or
o(z)eB, then ¢(®)eZ(e,b), where 1< a <<b < oco. Hence Lamperti’s
results are effective special cases of Marcinkiewicz-Zygmund’s results,
a fortiori, particular cases of results in [4].

3. Some properties of the space L}*(#). Let G be a bounded
closed set in a finite dimensional Euclidean space. Let @(w) ~ [py, p,],
1<p; <py;< oo, and let g(¢) = p(t)/t be non-decreasing as ¢ ig in-
creasing in (0, co). Let y,(¢) be the inverse function of ¢, (t). Write

uw u
O,(w) = [ @)@t and  ¥i(w) = [ p(t)ds.
0 0
We now replace (1.2) by
o= [w(ly®hdt <1,
@

also (1.1) by

@l = sup | [a@y@at],

v '@

and L*(@) is-defined in a similar way as before but with respect to ¢
%u the n-dimensional Euclidean space. Then L¥*(§) = %, (&), where &
is & bounded closed set in the n-dimensional Euclidean space. We shall

denote by [If (@), = ||]‘(ao)1]La,1 the norm of the space IL)*(@).

Definition 1. The sequence of functions %y (1) e L3* (@) is said to
be mean convergent to'zero it

Limo(un; @) =0, where g (un; By) = [ &, [Juy(®)|Jdw < oo.
(]

TB.EO:E‘EM 6. If ¢(@) ~[p1,p2], 1 <p; < py < 00, and if {un (@)}
converges in mean to zero in L3* = L¥*(@), then {u,} comverges in mean
to zero in L.

Proof. By Lemma 3, it follows that if Py < o0, then
(8.1) 2:1P:1(2) < 9(@) < pa®s ().
Hence g(u,, @,) - 0 implies 0 (U, @) — 0, a8 1 — oo,
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Definition 2. By M,(u) | M,(u) we denote, if there exist, positive
constants % and k such that M,(u) < Mo(ku), u > u,, as defined in [7],
p. 15.

Defin%tion 3. By M, (u) ~ M,(u) we mean M, (u) and M,(u) are
equivalent, 1. e. M,(u) 3 My(u) and M,(u) 3 M, (u).

By the definition of L}*(G) (for simplicity, we use the same nota-
tion L}%), it is easy to see that

(i) llullegy = 0 if and only if u(s) = 0 almost everywhere;

(i) llawlcpy = lolllullgy, where a is any constant;

(1) |y 4 usllepy < [l ll¢py + [leeall¢gy -

The following theorem is a consequence of Theorem 3 (cf. [11], p. 72,
and [12], p. 45, Theorem 1):

TeEEOREM 7. If @(@) ~[p;,P.], 1 <p; <py< oo, then the set
L3 (@) is a normed linear space. Moreover, it is a Banach space.

From Lemma 9.2 in [7], we obtain

TrnoREM 8. If [lully, <1, where p(@) ~[p1, pal 1 <Py <ps < o0,

T

then u (@) e Ly, (&), where @, (v) = [ {p(t)/t}at, and o(u; D) < [lll¢qs, . More-

J@l[ﬁ%]d{v <1.

In addition, it follows from (3.1) that if p, << oo, then

EE) .
& ”“”(w)

From Theorem 8 we conclude that if p, < oo and if {u,(x)} con-
verges in norm to uy(®) in L}*, then {u,(#)} is also mean convergent to
o () in Iy*. Furthermore, from Theorem 4, (3.2) and (3.3), we see that
the space L}* is the linear hull (°) of the class L, and it is also the linear
hull of the class L, provided that p, < oo, since @,(2u) < P, (u)+
- 292, (u) = K P, (u), 5o that the A,-condition is satisfied. In other words,
if p, is finite, then L3* consists of all the functions which are product
of some constants of Ly . More precisely, if we set p, < oo, then we have:

(w) If f(@)eLy¥, where g ~[py, p:], 1 <p; <Py < oo, then there
exists k> 0 such that kfel,;

(B) It f(@) e Ly, , With p, < oo, then kf e L7* for any positive constant k.

TurorEM 9. The space Li* is a linear set if and only if ¢(x) satisfies
the A,-condition: @(2u) < Ke(u).

(6) Cf. [7], p. 76; here we mean “linear covering”.

over, if ueL}*, then

(3.2)

(3.3)
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The result follows immediately from Theorem 8.2 in [7] and the
following
LEMMA 4. If ¢(1) ~ [Py, o], L <P1 < Py < 00, and of

=fwmmm=f%m%

then @,(w) satisfies the Ay-condition if and only if ¢(w) satisfies the Ay-con-
dition.
Proof. If ¢(x) satisfies the A,-condition, then

22 2
(3.4) @,(20) = [ ()it = B (a)+ [ {p(0)/t}dt

<O,@)+E [ {p)/i}dt < KD, (0).

/2
It follows that &,(z) satisfies the A,-condition. Conversely, if @, ()
satisfies the A,-condition, then, by Lemma 2, there exists a positive con-
stant m, such that @,(z) ~[1,m). It follows that by differentiating
@, (z)]w and D, (x)/a",

(3.5) 1 <ABLO/[2,(1) 1]} = {g()/s(0)} < m.
This means @(f) ~ @,(t), and therefore p(t) satisfies the A,-condi-
tion. The following theorem iz a consequence of Theorem 9.4 in [7]:

THEOREM 10. If the function p(x) satisfies the A,-condition, then con-
vergence in norm in Lp* is equivalent to mean convergence in L**.

Let K(x; &) denote the characteristic function of the set & < G.
Sinee L3*(@) = Ly, (@), by formula (9.11) in [7], we obtain:

THEOREM 11. The norm of the characteristic function K (z; &) is given
by the formula

. _ 1
(3.6) K (z; &)lpy = mes &P} ! {m};

where W (x) is the function f pi(f)dt, and y (1) is the inverse function of

Pa(t) = p(B) 2.
TaEoREM 12. The space Ly* defined above is separable if and only if
the function @(t) satisfies the A o-condition.

This follows from Lemma 1 and Theorem 10.2 in [7].
TemorEM 13. If the space Ly* is generated by () ~ [p, pal, where
1 < py <Py < oo, then it is an Orlwz space L¢l, where Dy (w) ~ [Py, Py,

i. 6. with the same p, and p,, and ®,(z) = f {p(t) [t} at.
0
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In fact, the result is an immediate consequence of the following

Lmawa 5. If the function o(f) satisfies (1) ~[p1, p.l, where 1 < p,
p Koo, then @,(t) also satisfies D, (t) ~ [py, Ps], where Dy(t) =

of{qa(u Ju} du.

Proof. It ¢(t) ~ [p1, po], 1 < p, K Pp < o0, and if 0 <% < @, then
m

, plz) (2\P? (t) A
&0 2 < (;)
It follows that
1w> 17 w
(3.8) P <— of e /trar <
and
(3.9) 2:P1(0) [z < {p(x)/e} = P (») < P29, (@) .

This means @, (s)2~ ™ is non-decreasing and @, (x)2~?2 is non-increas-
ing. Hence @,(2) ~ [py, p;]- Now if p, = oo, then one of the inequalities
in each case of (3.7), (3.8), (3.9) holds. This implies @,(z) ~ [p, col.

Definition 4. Let the Luxemburg norm (') of f(x)eL% be denoted
by [If(@)llagy, which is equal to inf% where the infimum is taken over
all ¥ > 0 such that

%() (%)
(3.10) 0 s M M dr <1.
() = [
We define
(3.11) I (@)igy = le(@)lloy,

where [[ul|o, is the Luxemburg norm of Lj = L;*. It follows then from
formula (9.24) in [7] that

(8.12) llo (@} lpgy < I (@)lcgy < 2 116 (@) g1
and the strengthened Holder's inequality (°) is

(3.19) iguwwmmd<mmmwmy

where well = Lp*, vely,,

(8.14) ; fu(m Yo w)dmi < [l llole, »

(") Tor the definition, see [7], formulas (9.18) and ‘(9.19).
(8) The results are obtained from (9.26) and (9.27) in [7].
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where weL}*, veluy,. Corresponding to the theory of Or]icf spaces, we
*
hawve corresponding formulas for the norm of the space L :

TEEOREM 14. The norm of the space Ly satisfies
uz)

lullgy <1+ [ @i [u(e)]do =1+ [dw [ {w(t)/i}ét,
@ [ 0

fu(w)|
J ol e [

Moreover, if [y <1, then

(3.15)

() i gy
{p(t) [ty < 1.

(3.16)

0

()|

(317) [®.lu(@)ldn = [do [ @O/ < vl
@ @ 0

The results arve immediate consequences of formulas (9.12), (9.14)
and (9.21) in [7].

TumorEM 15. In the space LE*, a necessary and sufficient condition
that comvergemce in morm s equivalent to mean CONVErgence in  Ly*
is that the function ¢(t) should satisfy the A,-condition.

Since Ly* = Lj, , the result is immediate consequence of Lemma 4
and results in Chap. IT, section 6 of [7].

Definition 5. By B, we denote, as in [7], gection 10, the closure
in I} of the set of bounded funetions in the sense of convergence in norm.
In other words, if

(i) %y () = %o(w), u,(®) are bounded;

(i) fln(®)— o (@)llp — 0, a8 % — o0,
then u,(x) e B,.

It is very curious that if u,(z)eL, and if we set
up(w) if

0 if

[uo(%)] < 7,

(3.18) la(@)] > 7,

un(“") = ‘
then |juy, (#)— %, ()|, may not tend to zero, in spite of the fact that
o[ty —ug) =dfzp[u,,—uo]dw tends to zero, as m— oo (°).

Definition 6. By F, we denote the closure in Ij* = Lj of the
get of bounded functions in the sense of convergence in norm.

The following theorem is a consequence from Theorem 10.1 in [7]
and Lemma 4:

THEOREM 16. If ¢(x) does not satisfy the A,-condition, then the set
of bounded functions is nowhere dense in L)* in the sense of convergence
in morm. But if o(u) satisfies the Ag-condition, then B, = Ly = L¥* = H,.

® See Lemma 10.1 in [7].
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. Th.e se-t E, may be considered as the maximal linear subspace of
FE,* which is contained in Ly, , since E, is the maximal linear subspace
of Iy contained in L,. This follows from the fact that if Au(z) eL, for
all va‘lues of 4, then u(x)e®, (1). To justify this assertion, we consider
any given ¢ > 0, and set 1 = ¢/2. Since u(w)/ieL,, there exists a bounded
function v (@) = u,()/A such that

Q[’U—%; qﬂ] = J‘tp[&@—;u(ﬂ]dx < 14y,
@

]?»ut v(@)—u(®)/A = (Aw—u)[A = (u,—u)/A, where u,(z) is a bounded
funetion. It follows that the Luxemburg norm satisfies

(8.20)

(3.19)

g ()~ u(@)]ly <4 = &[2.
Hence by formula (9.24) in [7], we obfain

(3.21) [ty () — u(@)]], <.

This implies that there exists a sequence of bounded functions
{u,(z)} such that

(3.22) oy (2) — u (@)}, > 0, a8 n— co.

Hence u(2)eH,.
From Lemma 4 and Theorem 10.2 in [7], we obtain

THEOREM 17. The space Ly* is separable if and only if ¢(z) satisfies
he Ag-condition.

4. Applications. It is of interest to consider some alternative forms
of the norm in L}*, since the usual formula does not allow us to actually
carry out the computation of the norm.

TuzorEM 18. Let u(x) e Lr* and suppose there exisis a positive nmumber
K such that

(+.1) [ Bl (6 (@) )R (o) Jdo =1,
&
then
17 .
(4.2) s = Iullo, = 75 | PIR* lu(@)l1de.
&

The results arve direct consequences of Theorem 10,4 in [7]. We
have another alternative expression of the norm in Ly

(19) This assertion. is given, but without detailed proof in [7], p. 84 (English ed.).

(*) Cf. the proof of Theorem 10.1 in [7].
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TusoreM 19. Let w(xz)<Ly*. Then

.. 1
43 @l = 0@, =ini—(1+ [ Gilklu(a) 1da).
k>0 k G
This coincides with Theorem 10.5 in [7] if we replace M (u) by &, (u).
TrEOREM 20. There ewists a basis in the space By (G). (For the space
E,(@), cf. Definition 6 above.)
This follows from Theorem 12.1 in [7] and the fact that L3*()
o, ()

Goncermng the space X, it is of interest to find a necessary and
sufficient condition for the function u () belonging to H,.

THEOREM 21. A necessary and sufficient condition that the function
w(w) e L should belong to E, is that the space Ly*
nuous norm, 1. e. for every e >0, there is a 6> 0, such that
(4.4) lu () K (5 €)ll¢qy < &

8 satisfied whenever mes & < 8, where K (;
tion of &.

This follows from [7], Theorem 10.3, For a comparison of the spaces
E, and Ly,, if we denote the totality of functions for which

(4.5) d(u, B,)

&) is the characteristic fumc-

= inf,||u——w{|<¢> <r
WeE,
by II(E,;r), then we have

THEOREM 22. Suppose that the function (x) does not satisfy the A,-
condition; then

46) II(By;1) < Lo, « II(By;1), IH(By;1) # Lo, # I(Hy;1).

This follows from Lemma 4 and Theorem 10.1 in [7].

Corresponding to A.N. Kolmogorov’s compaetness criterion for
the space E, we have immediately the following criterion for the space I,
(of. Theorem 11.1 in [7]):

TEEOREM 23. A family N of functions of the space B, is compact
(with respect to L3*) if and only if

(@) llullyy <A, u(@)eN;

(b) for arbitrary e >0, a 6 >0 can be Sfound such that the condition

r < & implies that |ju— Upllgy < & for all functions of the family N. Here
= u,(%) is the Steklov function defined by

! (t)dt
U
Me Jl-) ’

Uy () =

has an absolutely conti-
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where T,.(x) is the n-dimensional sphere with radius » and centre at @ and
my is the volume of this sphere (cf. [7], formula (11.3)).

Corresponding to F. Riesz’s compactness eriterion for the space E,,
we also have the following criterion for E, (e¢f. Theorem 11.4 in [7]):
THEOREM 24. A family N of functions in the space E, is compact
(with respect to L3) if and only if the following conditions are satisfied:
() llulkey < 4, u()eMN;

b) for arbitrary e >0, a 6 >0 can be found such that d(h,0) < &
implies |[u (@ h)— u(@)ll ey << & for all u(x)eN, where d(h, 0) s the distance
in the n-dimensional Buclidean space (in case if z is a single variable, n = 1)
between h and zero.

Now suppose that as above defined @,(x) and ¥;(x) are mutually
= [{plt)/t}dz. Let

[1]
=fu(m)a:(m)dm, w(z)ely*,

&

complementary functions where @, (z)

(4.7) Z(u) = [u,]
where v(z) is a fixed function in L%,
Banach-Steinhaus theorem (12) that % (u) is a linear functional defined on
the entire space L}*(G). Let

.- Then it follows from (1.13) and

(4.8) Il = sup £ (u).
ol gy <
Then from [7], formula (14.2), we have
(4.9) €1 < Ivlle, < 201€0-
Let K (v) = |[v]lg,/|Z]l. Then 1 < K(v) <2. To compute the value

of K(v) for Ly* defined by the function ¢(u) =
= u"/a, it follows that

(4.10) Nty = lflla, = e gUe { f éﬁl[lul]dw}""-
@

|lul®, a >1: since D,(u)

The following estimate is obtained from the result in [7], section
14, p. 125:

[olle,
(4.11) 21 = o | u(o)o(o)a] = ik
Hence we have
(4.12) KE(v) = d""?,  v(@)eLy .

TeBOREM 25. Suppose that g(u) does mot sabisfy the A,-condition.
Then (4.7) is not the general form of a linear functional on LY.

This follows from Theorem 14.1 in [7] and Lemma 4.

(12) See for example, [8], p. 135, and [2], p. 54.

»
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TamoreM 26. The formula (4.7), where v(®) eL?},], yields the gemeral
form of & linear functional on E,.

This follows from our definition for E, and Theorem 14.2 in [7].

We come now the study of linear operators A, operating from one
space L into another space L% Bagically we shall consider integral
operators of the form

(4.13) Au(p) = fk(m, y)u(y)dy.
¢

Definition 7. By & we denote the topological product G X & equip-
ted with the natural meagure. By Lo, L3, I¥*, B we shall denote
the corresponding classes and spaces Ly (®), IL@), L@ and E,(GQ)

The following theorem is an immediate consequence of Theorem 15.1
in [7]:

TrroreM 27. Let () ~ [p1, Do, 1 < Py < Py < oo, be such that for
u(w)eL:f;), v(w) eLgl®

(4.14) w(®,y) = u(y)v(@) e Li*
and
(4.15) lho (@, Py < l][u§|<¢(11)>|1”|]w§2)7

where 1 is a constant. Suppose further that the kernel k(x,y) of the linear
imtegral (4.14) belongs to the space Lf;,l, where W,(v) is the complementary
N-function to the N-function

&y (u) = [fp@)/Bpdt  (u>0),

and ¢ = gV xg®. Then the operator Au(w) belongs to {L*f) — L5 o}
(i.e. the operation mapping from L*f to L:(*;) is aomfm'uous)? There caists
a function @ such that (4.14) and (4.15) are satisfied.

We now consider an application to singular integrals. Let Iy*(D)
be the space defined by the function ¢ (D) on the bounded measurable
set D of m-dimensional space, where (%) = (@) X @ (@) X ... X@ (D),
with @(t) ~ [P, Pal, 1 <Py < P2 < co. By our definition,

L (D) = L3,(D), where  @y(o) = [ {p(t)/t}dt.

Simonenko [15] has obtained a result concerning boundedness of
singular integrals in Orlicz spaces. He also remarked that the result is
applicable to. estimating the higher order derivatives of elliptic equa-
tions, in the theory of one-dimensional singular equations and in boun-

- ©
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dary va;lut?, problems for analytic functions. It is used in discussing some
problems in mechanics. Let the singular integral Kf be defined by

Q(P; 0)

(4.16) K= [ S0 f@de,
D

P—Q

where D is a bounded measurable set of m-dimensional space B, and
Q(P; 0) satisfies the following conditions:

(i) fQ(P;6)dsy = 0, where s, is the unit sphere;
81

(ii) 2(P; 0) is continuous in 6 for a fixed P;

(iii) |R(P; 0,)—2(P; 0,)| < w(|6,— 05)), where w does not depend
on P and satisfies the condition
1

(iv) [(w(@®ff)dt < oo;

[}
(v) |Q(Py; 0)—Q(Py; 0)] < B|P;—P,|°, where a>0 and B is a
constant. :
Let
(0]

M) = [ p()d,
0

where p (1) is & non-decrleasing funetion, such that 1 < g < up(u)/M (%) < «
holds, and let L}, (D) be the corresponding Orlicz space defined by the boun-
ded measurable set D of B,,. Simonenko proved that the singular operator
(4.16) is defined and bounded in the space Ly (D), i.e.

(4.17) 1Efllae < CYfllzas

where ¢ depends on a, B, @, D, only. In fact, the condition 1 < g <

< up(u)/M(¥) < ais equivalent to M (u) ~ (8, al, where M (%) is & con-

vex function. It follows that if we assume ¢(u) ~ [f, a], then by our
u

Lemma 5, we also have P;(u) ~[f,a], where Oy(u) = [ {p@)/t}dt

(#>0). Thus we obtain a generalization of Simonenko’s theorem:
TrmoreM 28. Let g(u) ~[B, al, where 1 <f < a < vo. Then the

singular operator (4.16) is defined and bounded in the space Ly (D) = L%,(D)

> I}, Lt* # L, where Q(P;0) satisfies the above defined conditions.

5. Linear functionals defined by functions satisfying generalized
Lipschitz conditions. Let U denote an operation which transforms
every integrable function f(z) to a sequence of Fourier constants
Y = {@1, byy .-ey ny bny ..} WheTe g, b; are the i-th Fourier cosine coef-
ficient, i-th Fourier sine coefficient of f(x), respectively.
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ToEorEM 29. (a) Let a(t) ~ A[p—%, 00>, 0<p <2(*%), and let
Flo)eLipa(t). Then the operation U maps the space Lipa(l) linear in the
space Rymp where p(t) = a ()P (this implies (1) ~ <0, oo]).

In other words, the operation U is said to be limear (**) if

(5.1) U(fi+fo) = U(f))+U(f.)
and
(8.2) 1Tz, < Ellfluipatys
where

{ Slowl+ b
(5.3) 10fllz,, , = Ry.0ly] = :LWW"’
(5.4) Wiap sy = B max W”_%&U,,-

(b) Let alt) ~<0,1/p—$>, 0 <p <2, and let f(w)eLipa(t). Then
the operation U maps the space Lip a(t) linear in the space M,y p, where
now (t) = a(1[)P2,

(e) If p =2, a(t) ~<0, co), then the operation U maps the space
Lipa(t) linear n Ryp .

The result includes Satz 1 in [9] as an important particular case
with a(?) ="

For the proof of (a), let us observe that
[f@+h)—f(@—h)] < Ka(h)|fllLipae-

Setting & = =/4n, and in virtue of a(z) ~ [1/p—}4-¢, N] for some
N < o0 and

(5.5)

(6.6) {f(w+h)—Ff(r—h)} ~ ——2Zansinnhsinnw—{—zansmnhcosnw,
1 13

we infer from Pargeval's relation and Holder’s inequality that

3 @i <xitaole ()] <xfe () e,

2m—1 am—1

(58) ¥ (al+p<|Y (ai+bi)}”“(‘2n>1-"'“<K{a(i—)}”w-vlﬂm[v.

(5.7)

k=n k=n

(*%) This theorem is a generalization of Theorem 1 in Lorentz’s paper [9]. The
power p in Lorentz’s work is restricted as to satisty 1< p < 2 only, but this has been
generalized to 0 <p <2 in N.K. Bary [1], p. 208.

(%) See [2], p. 54.

icm

On two-funciional spaces 81

From the hypothesis a(z) ~ (1/p—3%, co); it follows that there
exists a positive constant e, such that

where o' (%) exists almost everywhere. On the other hand, it follows then
from (5.8) that

© o0 gf+lp—q
9 | £<lak1p+1bk1ﬂ>}"”={§ k; (ol + 1B} "

o]
<K o-m) [a(2—7'/n)]p i/p pE=112) Il
< {gﬂ )
v 1,
< Rno=3 { [ ol-2mie (5= ) )™ |,
[}
where

Pt n

u— PP (y)du = En®P~VI,

=]
-2t P o—t =
(5.10) of 8PP (2 ) 8 =

say. Since
1jn

-1 1
(611) I= f u~C=PRAGP () du = (% — 1) pi—Pi2) P (__”;) +
0

1n

+ (i B %‘)—f wlP=De®Y (w) o’ (w) du,
P 8
and in virtue of
1 1 a(w)
al(u)>(;__2—+s) P

we find
1n P\t - 1
(8.12) (1—|—s’—1)0f o~ BTGP (u) du Q(I—E) 7 o® —

where ¢ = (1/p—3)~% From (5.9), (5.10), (5.11) and (5.12), We obtain

\ o

(5.18) v (%) oflls,,, = w(%)%,p o] = {3 (aal?+ o)}

=1

1
< K,,p"bu’p_llz)a ('7—0) IfMlsipaey
‘which is the required result (3.2).

L3
Studia Mathematica XXIV. 1
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COROLLARY 1. Qetting p = 2, we get, for a(t) ~ <0, o0},

(Sateonf” - ofs[])

1) ~ <}, 00,

2:1“"‘+ [b] = O{nma (—i—)}

Proof of (b). Let 2% <n < 2¥*. Then, by (5.8), we obtain

(5.14)
OOROLLARY 2. If p =1, then we have of

(5.15)

n

(5.16) Mo [ TFlp(m) = { ) (ad+ 5™},
=)
K of+l-y
(8.17) {p@)PM,LIUF1< 2 Z (a4 1547)
i=0 4=2f
k
<K {2 210=P) [ (2~) ]p} 1F o oty
F=0
< EIP [ 207 a2 pa
[ 2—k
— —K(IfPfog2) [ w-"a(w)Pdu
*——ﬁg’;’ J WD a(u)Pdu = K(fIPL,
say, where
(618) I= f wmEP o (VP
1/n

1

= =P g (W)} (2“ %) fW(Z—M){“W)}pd“"

1jn
1
—p fu“’"”’z){a(u)}”“la'(u)du. ‘
im

Sinfze a(u) ~<0,1/p—%> implies a(u) ~[e,1/p—%—e] for some
>0, it follows that sa(u) <ua'(v) < (1/p—%—s)a(u). Substituting
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this in (5.18), we find

(5.19) {(1— —121) —D (% — é_ - e)} I < nlt-? {a (%)}p,
1 14

(5.20) I< Kp,,n(l—"lg){a (Z_)} .

This means

(5'21) IUf“M :D,e”ﬂhdpa(t):

provided that u(t) = a(l[t)t?~1,

Proof of (¢). In a similar way as in [9], p. 135, we see that by
(a) with p =2,

{ f (@i +oh))"

k=n

(5.22) <Ky () = &ifie(5)

where a(t) ~ <0, o). Then, for p > 2,

(5.23) | 2 (el + )} < supma {lay, 1302 kg (ai+ B2}

From (5.7) it is easy to see that max{|a,|, |bal}/2(1/7) < K||fluipay-
It follows that F.g e < K[ flLipay- Hence

{ Z(Iak

and the proof is completed.

TrEoREM 30. Let w(2) = a(w)s™ %, a(z) ~ A [p’, 1+1/p'>, where
1<p<oo, 1/p+1/p' =1, and le¢ T = U™ be an operation which
ts the inverse of U defined above. Then the functional T maps the space
Romyp linear in the space Lipy(z).

This theorem includes Satz 2 in [9] as a particular case when a(x)
=2% 1)p’ < a<1+1/p". In fact, by Holder’s inequality,

(5.24) P < Ka (i,

2n—1 n—1

D Gad+15:) <{ Y (awlP+ 152} 2n),

ke=n k=n

. 1 (1
1/p 1/p’ — 1P
<2 “y”Ra(t)xpn a ( %) = Kn ll( /n) "y“Ra(t),p

(5.25)
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and

n

flath—fla—ni<2 X D

=1 g=gi~1

J

[
—

(5.26) (laxl -+ 10e]) B |}

+2 ) (lol + 1) (9
k=2

It follows that

o i+l o0

. (1

U S (1ak1+1bkn<K\1y|i2<27)‘/”a(g)
=N f=g =N

<Elyl [ 27 o).

The last integral on the right is

5.28 U g (2 dt_—=_“(__-ﬂ. [, (o= ,m s 1 ro—ty ot
(6.28) [ 2%a@) ) ey [ 2 2
Y
log2

o0
9727+ (L4 p'e) [ 2 a(27)dt,
n
for some & >0, and is equivalent to

(5.29)

o
f 2P (27 dt < oM o (2.
n

elog2
On the other hand, by (5.25), we have

n o gf1 n
(5.30) 3 (a4 bk < Kyl D) 27209 a(2707")
=1 p=gi—1 =1

< Kyl [ 20+ a2~ dt.
[}

(%) This means that if the right-hand member is finite, then the inequality
. o o

holds p. p. For if f(z) ~ Qan—l—%’ancosnw—kbnsinmu and it 3 |an|+|bnl < oo, then
T

o0
fla) = %“o"‘);“n%s“w—l-bnﬁnm p.p. To see this, let us denote by ¢(x) = f()—3dq

o
—%‘acosm—i—bsiﬂm. Then the Fourier series of f(x) converges uniformly and may
be termwise integrated. It follows then that the Fourier constants of ¢ () are all zero.

. 2
In virtue of Parseval's relation, we see that fnq:? (#)do = 0. Hence ¢(x) = 0 p.p.
0
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Since a (@) ~ {1p’, 14+ 1/p’, it follows that za' (2) < (1+1[p —e)a(®)
for some & >0, and

(5.31) f 941G (9-4) dt
[
1

= @Hp)log2 (20PN (27 — a(1)}-+

n
v
oLy (24 2~ dt
RESTIN @

n

1 €
A+yp)m,, (-1 (1+1pNE, (9t
2 a(2 )+(1 a 1/1"))!2 a(27%)dt,

< -
= (@+1/p")log?2
which yields

n
(5.32) : f Q+1PYg (91 g < ——— 2P (27,
[

elog2

Substituting (5.29) and (5.32) in (5.27) and (5.30), respectively,
and then in (5.26) together with 1 2 < || < 1/27% we obtain
(5.33) [fle+m)—fla—h) <K [yll{ /| 20+ (27" 4+ 2" 2 (27}

< Elylin " a(h) = Kyl ().
The result is a generalization of Satz 2 in [9]. In particular, if p =1,
" = oo, then (i) = a(t) and [|flLpety < K“y“Ra(c)q’ where a(t) ~ <0, 1>.
The following result is a generalization of Satz 3 in [9]:
THEOREM 31. Suppose that

oo 1o 1
(5.34) {2 e+ b)) < Ea (;;) I NS

where 1 <p <2, a(t) ~<0,1>, ¥ = {@y, b1y eevy Gns Dny ...}. Then the
set {y} of Fourier constants maps Bynyp limear in the space Lip{a(t), '},
where 1/p+1[p’ = 1.

Proof. By Hausdorif-Young’s theorem, we have

(5.35) | f; S m—fa—npra” <Ef i (lal?+ bel?) [sin BRI}
n =1

n—1 ovtl- 00 Ny
<z y{X e P 15 Bl E {3 (el )}
y=0 k=2 K=ot
Since
an—1 o 1\
(5.36) 2 k”(lak‘l"_l_ ‘kaJ) < (2‘)’1;)1’ Z (lakllﬁ_‘_ lbkiﬂ) ézpuyup,nv [a (_,r;)] ,
k=n k=n
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and

n—1 n
1
’2“dt<——f -4 dg
ofza( )it < oo [

. 1 5 —i\m r to—t 1 ro—tb
= Jogz (e )]0+f22 o' (27Y dt

(5.37)

1
< (2" (1— f 2t
log2 € a(@™)
which implies
N—1

f a2

(5.38)

a(27").

It follows that

(539 | [IfG-+B—fa—mFa™ < KiyI{hl Y 2a@)+a@)
v #=0
< K|yl (1),
where 1/2"+! < |k < 1/2" Hence
(5.40) 17 HLip{a(t),p) K”.'V”Ra(n),ﬂ-

THEOREM 32. Let f(x) ~k2:Ank(m) be a lacunary trigonometric series.

Then a necessary and sufficient condition that f(x)eLipa(t), where a(t)
~ 0,15, is that a, = 0{a(l/n)} and b, = 0{a(l/n)}, as n — co.

Proof. To show that the condition is sufficient write Moy [ = A > 1,
and
k=eo
(541) = 2 (ol + bl < E Z ( ) < Kf a(n="Y dt.
Np>N
Since a(?) ~ <0, 1), there exists a positive contant ¢ > 0 such that
(5.42) a2 a(nY) i>1.

) S Ty

It follows that

(8.43) () < A% ( 1 )
n

; 1
WK f Aty (—) it = Ka (_1_)
i w n

and

(5.44)
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Hence by Theorem 30, f(z)eLipaf(t).
To show that the condition is also necessary suppose now that
f(#)eLipa(t). From Theorem 29, with p = 2, we see that

@ (Sarafr=ola(7]} s woe
n

which implies that a, = 0{a(1/n)}, b, = O{a(l/n)}, as n — oco. Hence .
the result. Theorem 31 is a generalization of Satz 6 in [9].
TEEOREM 33 (). If @, N0, b, 0, a8 1 — co, and if a(z) ~<0,1),

(5.43)

flz) = 2 @, COSNT,

) if and only if

wmofyof2)

and g(z)eLipa(t) if and only if

1 1
wmoftof2)
n \n
‘We only consider the funetion f(x). The proof for g(x) follows in
a similar way. In fact, if we put b = =/n, f(2) ¢Lipa(f), then
(5.47) If @) —f(z+h)] < a(h).
This implies that

(5.46) g(z) = 2 by, 5in naw,

then f(z)eLipa(t

n

(5.48) 2 > asin’(k/2n) < Ka( )
k=[n/2]

and o .

(5.49) > w<xal), an<K(%)a(~1n_).

k=[n/2]
Conversely, if

1 1
o= ofye ()
n \n
then there exists ¢ > 0 such that

(3.50) &) = 2 lax] + 1bel < E f la(that

o0

__Ka( )+Kfa FhHEd@r < Ka( )—l—K(l——e)ft“la(t“)dt,

(%) Cf. [1], p. 678/9.
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which implies

1
(5.51) W< (K fe)a (3?)

Hence by Theorem 30 with p =1, p’ = oo, we have f (@) eLip a(t).
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On symmetric derivatives in L”

by
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Chapter I

1. Tt is a familiar fact that symmetric properties of functions play
an important role in a number of problems. This is particularly true
of problems in the theory of trigonometric series. The first symmetric
derivative (Lebesgue’s derivative), the second symretric derivative
(Schwarz’s derivative) and their generalizations are familiar notions
in the theory of trigonometric series, and the investigation of their
properties is a legitimate topic in Real Variables. In thiy note we study
symmetric derivatives associated with the metric I¥. We begin by re-
calling familiar facts and definitions. We consider only measurable func-
tions.

Suppose a function f(z) is defined in & neighborhood of a point %,.
If there is a polynomial P(t) = P, (t) of degree k such that

(11) f(@g+1) =P(t)+o(") (¢ —0),

we say that f has at z, a k-th (unsymmetric) derivative in the sense of Peano,
and that the value of this derivative is a; if o;/k! is the coefficient of &
in P(%).

We now define the symmetric derivative (sometimes called the
de la Vallée-Poussin derivative) of order k. If there exists a polynomial
P(t) = Pyy(t) of degree k such that

(1.2) @+ 1)+ (—1f(@e— D} = PO)+0(") (> 0),

then we say that f has at x, a k-th symmetric derivative and this derivative
is o if a/k! is the leading coefficient of P(t). It is clear that if & is even
then P has only even powers of ¢, and if & is odd, only odd powers.
_If f has an unsymmetric k-th derivative at a point it also has a sym-
metric k-th derivative and both derivatives are equal. The converse is
obviously false but the following regult is known to be true (see [1]):
TaeorREM A. If f(x) has a k-th symmetric derivative at each point of

a set B, then f has an unsymmetric k-th derivative almost everywhere in E.
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