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which implies

1
(5.51) W< (K fe)a (3?)

Hence by Theorem 30 with p =1, p’ = oo, we have f (@) eLip a(t).
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Chapter I

1. Tt is a familiar fact that symmetric properties of functions play
an important role in a number of problems. This is particularly true
of problems in the theory of trigonometric series. The first symmetric
derivative (Lebesgue’s derivative), the second symretric derivative
(Schwarz’s derivative) and their generalizations are familiar notions
in the theory of trigonometric series, and the investigation of their
properties is a legitimate topic in Real Variables. In thiy note we study
symmetric derivatives associated with the metric I¥. We begin by re-
calling familiar facts and definitions. We consider only measurable func-
tions.

Suppose a function f(z) is defined in & neighborhood of a point %,.
If there is a polynomial P(t) = P, (t) of degree k such that

(11) f(@g+1) =P(t)+o(") (¢ —0),

we say that f has at z, a k-th (unsymmetric) derivative in the sense of Peano,
and that the value of this derivative is a; if o;/k! is the coefficient of &
in P(%).

We now define the symmetric derivative (sometimes called the
de la Vallée-Poussin derivative) of order k. If there exists a polynomial
P(t) = Pyy(t) of degree k such that

(1.2) @+ 1)+ (—1f(@e— D} = PO)+0(") (> 0),

then we say that f has at x, a k-th symmetric derivative and this derivative
is o if a/k! is the leading coefficient of P(t). It is clear that if & is even
then P has only even powers of ¢, and if & is odd, only odd powers.
_If f has an unsymmetric k-th derivative at a point it also has a sym-
metric k-th derivative and both derivatives are equal. The converse is
obviously false but the following regult is known to be true (see [1]):
TaeorREM A. If f(x) has a k-th symmetric derivative at each point of

a set B, then f has an unsymmetric k-th derivative almost everywhere in E.
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Tet now f be defined almost everywhere in some neighborhood of
5, and belong to some L” in that neighborhood; here 1 <p < oo. If
there exists a polynomial P(i) = P, (f) of degree k for which

1d 1p
L3) {% [ lf(mo+t)—P(t)l”dt} — o) (b 0),

we say that f has at z, & k-th unsymmetric derivative in the L' mean, or
just in LP. As before, the value of the derivative is oy if oz /k! is the leading
coefficient of P(t). This definition was considered in [2].

The definition of the k-th symmetric derivative in L” is now obvious.
Let f(#) be defined almost everywhere in some neighborhood of #, and
belong to I?, 1 <p < oo, there. If there is a polynomial P () = P, (7)
of degree k for which

b 1p
(14) {% | lé{f(mo+t)+(—1)"f<mo—t)}~1’(t)|“’dt} =o(B) (b= +0),

f will be said to have a k-th symmetric devivative in IP at the point m,,
and the value of the derivative is aj if ap/k! is the leading coefficient
of P. Here again P(f) has the same parity as k.

Remark. Strictly speaking, the requirement in the preceding de-
finition that f should belong to I” is unnecessarily strong, and it is enough
to assume that f(w,+ 1)+ ( —l)kf(mo—t) belongs to L” near f = 0. How-
ever, if the latter condition is satisfied for each x, belonging to a set B
of positive meagure, then in the neighborhood of almost all x,¢XE the
function f itself is in IP. Thus in theorems of “almost everywhere” type
nothing is gained by weakening the assumption about the L” integrab-

ility of f.

2. The rest of the chapter will be devoted to proving about symmetric
derivatives in L” a theorem analogous to Theorem A, namely,

TerOREM 1. If f(2) has o k-th symmetric derivative in IP at each
point of & set B, then at almost all points of B the function has an unsym-
metric k-th derivative in IP.

In order to prove Theorem 1 we will need Theorem A above, another
theorem (Theorem B, below) which is known and which we will take for
granted here, and a lemma which we must prove ourselves.

TemOREM B. Suppose that F(z) has an unsymmetric r-th derivative
at every poini of a set B of positive measure. Then there ewists a perfect set
IT = B of measure arbitrarily close to that of B, and a decomposition

(2.1) F(z) = G(x)+L(w)
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with the following properties:

(i) G(z) has & continuous r-th derivative throughout the inferval of
definition of F(x);

(ii) L(z) = 0 for well.

For the proof, see either [3] or [4;, p.73].

The lemma we will need is as follows:

Lemma. Suppose that f(x) is zero on o set E of positive measure and,
Sfurthermore, for all @ in E either

13
(2:2) [f@+)+fl@—iPdi = o(h?)  (h — +0),
or

h
(23) [f@+8)—flo—Pdt = o(h") (b - +0)

holds, where a and p are positive numbers. Then for almost all poinis of B
we have

h
(2.4) f fla+0)Pdi = o) (b —> +0).
-k

3. Proof of the lemma. Suppose for the sake of definiteness that
it is condition (2.3) which holds for all # in F; in the case of condition
(2.2) the proof remains the same. The hypothesis of the lemma implies
that there is a subset of E, with measure arbitrarily close to that of E,
on which (2.3) holds uniformly. Without loss of generality we may assume
that (2.3) holds uniformly on E itself. Thus there is a function & = &(h)
which tends to 0 with & and such that

h
(3.1) [1f @48 —flo—1)Pd < ob°
0
for all # in K. It iz sufficient to show that (2.4) holds at every point of

density of E. To simplify notation we may assume that 0 is a point of
density of F and we wish to show that

A
(8.2) [1f@Pd = o(n).

By )
More specifically, we will show that for h sufficiently small we have

h

f If)|PaE < 468°.

—h

(3.3)
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h 0
At least one of the integrals [[f(t)"@¢ and J1f ()Pt is not less than
h 0 —h
1 fh If (t)/dt. Suppose, for example, that

h B

(8.4) f [fPa > 4 f \f()ra,

the argument in the other case being essentially the same. Denote by F
the set complementary to B. For any & in the interval [0, $h] we may

write

h — h—z
85)  [Ifmra < f \f(w+)Pat+ f |f(m—1)Pas
0
h—-x
< [ farolPa+ [ 1fe—oPi+ [ 1f(e+)—flo—1)Pa
AR B(z,h) 0
h—x
= [ 1fora+ [ Ife+0—f@—nra,
b 0
where o
A(@, h) = [0, h—a] ~ {t: a—teF},

Bz, b) =[0,h—a] ~ {t: -+t I},
C(x,h) = [20—h,h] ~ {t:20—1tF}.
We know that if » is in B as well as [0, $b], then

h—z

(36) [ et t)—fla—0Pat < s(h—a)* < oh°.

If we show that there exists an # in B ~ [0, 4h] for which

(3.7)

h
f IfyPar < 3 f If()7ae,

C(ax,k)
then (3.3) and (3.7) will imply that f |f()[Pdt < 26n°, which together

}mth (§ .4) will imply (3.3) and so complete the proof of the lemma. Thus
;1: fgtﬁces to show that there exists an # in B ~ [0, 4] for which (3.7)
olds.

4. Denote by yp(v) the characteristic function of the set F and write
= f (%) 2r (v},
< h. Since 0 is a point of density of H, we

s(u,v)

where —h
have

<u<h —h<w

h
f;. 1w (0)do =
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where ¢ = ¢(h) tends to 0 with h. Hence
h & h )}
[ [ls(u, v)Pdudo = eh J1f)Pdu < 2eh [ |f (w)"du.
—h -k -k 0
k} and dL,

Let L, be the linear segment {(t,2z—1), 28—h <? <
the element of length along L. Clearly,

[ Irra:

C(z,h)

h
= [ xr@o—w)if(w)du
2x—h

h
f |8 (t, 25—1)[Pdt =

2z—h

f Is (u, 0)["2~ "Ly,
and
hyz

h h
[ { [, PaLas < [ [ ls(u, 0)Pdudo.
Ly Zh =k

[]

Hence

18 (., v)|Pdudo

{ [ roraa f:

En[,k2] Cih)

T

< 2he f If@®Pds.

0

This inequality implies that there exists an in E ~ [0, 4] for which

|B ~[0,3R]] [ If(0)°ds < 2he f If @) Pde,

O(z,h)
and since

|8~ [0, 3h]] < $h(1—2¢),

the preceding inequality implies that
D 45 - ¥4
[ e <=5 [1fora.
1-—2e
C(z,h) [

Since ¢ tends to 0 with h, the factor preceding the last integral is
< } for h sufficiently small and the last inequality gives (3.7). This
completes the proof of the lemma.

5. We now pass to the proof of Theorem 1. The hypothesis of the
theorem is that, for each z in E,

h
(" [ {f o+ 1) + (— 1) (0— 0} —Pad)Paf] = 0(b")
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and so also, by Hoélder’s inequality,
h
B [ L@+ (— 1 (a— O] —Pa)}dt = o(K).
0

If F is the indefinite integral of f, the last equation may be written
HP@+1)+(—1)"F(a—h)}
h
= L+ (—1)PF () + [ Po(t)dt+o(W*H),
0

(5.1)

which shows that F has a (k-1)-st symmetric derivative at « for all »
in E.

By Theorem A, the function F has an unsymmetric (k+1)-st deriv-
ative in a subset & of F, with the same measure as . Apply Theorem B
to F(z) and &. Let us fix a perfect subset II of &, with measure arbi-
trarily close to that of &, and consider the decomposition F(z) = G(x)
+L(x) given by Theorem B. Since F has a (b4 1)-st unsymmetric de-
rivative in I7, F"(z) exists in 17, and so also L'(z) exists in I1. Since L(x)
vanishes over /7 and I7 is perfect, it follows that L'(#) = 0 in II. Hence,
writing @' (z) = g(z), L'(#) = l(»), we obtain a decomposition

(5.2) fla) = g(@)+1(=),

valid in the set where F'(z) exists and equals f(x) (and so almost every-
where). Here g(2) has k continuous derivatives and I(z) is 0 in the subset
IT of E.

Since [T is perfect and L(z) is 0 on I7, we immediately see that at
each point x in II the polynomial part (of degree k+1) of L(z+1%) is
identically 0, and so the polynomial parts of F(z-t) and G(x-+t) are
the same. But, as we see from (5.1), the polynomial part of }{F(z-+1)
A+ (—1)**'F(z—1)} is obtained by integrating with respect to ¢ the poly-
nomial part (of degree k) of }{f(z+1)+ (—1)*f(x—1)}. Hence, conversely,
the polynomial part of the latter function is obtained by differentiating
the polynomial part of the former. It is obvious that the polynomial
part of ${g(m+ 1)+ (—1)*g(s—1)} iz obtained by differentiating the poly-
nomial part of }{G(w+t)+(~1)*'G(s—1)}. From this and (5.2) we
see that the function I(#), which vanishes on I7, has a k-th symmetric
derivative in I” everywhere in I and that the polynomial part of 4 {I(w--1)
+ (=11 (=—1)} is 0 at each point of /T. In other words,

h
= f Ma+1)+ (11— )Pdf™ = o (")
[}
for xell.
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Applying the lemma of Section 2 with a = kp+1, we see that I(x)
has an unsymmetric %-th derivative at almost all points of J7. In view
of (5.2) the same holds for f. Since |E—II| can be arbitrarily small, f
has @ k-th unsymmetric derivative in I” almost everywhere in & and
Theorem 1 is established.

Chapter II

1. We shall now apply the main result of Chapter I to the theory of
trigonometric series and begin, for simplieity, with the casé of convergent
series.

Suppose that a trigonometric series

o0
(1.1) a,+ 2 (ancos nw+ b,sinne)

n=1

converges at the point z, to the sum s. Suppose also that the series

s
Ja,m+ Z (@n8i0 02— by, COSTUT) 10,
=1

(1.2)

obtained by the termwise integration of (1.1), eonverges almost every-
where in some neighborhood of z,. Call F(z) the sum of (1.2). A known
result asserts that F(x) has at z, a symmeiric approwimate derivative
equal to s, that is,
F(zy+h)—F (®,—h)
-
2h

8

as h tends to 0 through all points of a set having 0 as a point of density
(see [4;], p. 324). We shall show below (see Theorem O) that F has
a stronger property, namely, F has at z, a symmetric derivative in I?,
equal to s, for any p << oco.

Hence, if (1.1) converges in a set B of positive measure (which
implies that a,, b, — 0, so that (1.2) converges almost everywhere) then,
by the result just stated and Theorem 1, the sum # (=) of (1.2) has almost
everywhere in F an unsymmetrie first derivative in any IP, p << oo
This strengthens the familiar result of Lusin (see [4;], p. 325, and [4y],
p. 2197) that F has almost everywhere in E an unsymmetric approximate
derivative.

Remark. The hypothesis that (1.1) converges at z, and the sum
F(2) of (1.2) exists almost everywhere in some neighborhood of xz,, im-
plies that F(w,-+1t)—F(2,—1) is in L* in some neighborhood of ¢ =0,
for any p < co. To see this, suppose, for simplicity, that z, = 0. Then,
the convergence of (1.1) at & = 0 implies that a, — 0. About the b, we
know nothing. The odd part Zanfn‘lsinmv of (1.2), having coefficients
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o(1/n), converges almost everywhere and by the theorem of Hausdorff:
Young represents a function which is in I for every finite p. About
the even part 3b,n"" cosne we know only that it converges almost every-
where in some neighborhood of # = 0. Its sum, however, being even
contributes nothing to F(f)—F(—t), and hence F(f)—F(—t%) is in I?
near ¢ = 0.

2. We now formulate the main result of this chapter.

TemoREM 2. Suppose that the series (1.1) s summable (O, r—1)
(r=1,2,...) at each point of a set B of positive measure. Then the series
obtained by dntegrating (1.1) termwise r times converges almost everywhere
to a funciion F(z) which is in every LP, p < oo, and which has almost
everywhere in K an unsymmetric v-th derivative in IP equal to the (0, r—1)
sum of the sertes (1.1).

According as 7 is even or odd, the series obtained by integrating (1.1)
r times ig

. 1 mf o
(2.1) 397 + (—1)"22 (ancosne+ b, sinnz)n~",
* 1
or
(2.2) ErJz v —f—(—l)(’_’)/zzm’(a sinne— b,cosna)n="
. 3% n — bpcosnm)n",

1

and has coefficients o(1/n), so that it eonverges almost everywhere and
its sum is in I”. In view of the remarks made above about the special case
7 =1 of Theorem 2 it iy immediate that the theorem is a corollary of
Theorem 1 of Chapter X and the following

TEEOREM C. Suppose that the series (1.1) 4s summable (0,r—1)
(r=1,2,...) at the point z, to sum s and that the series obtatned by in-
tegrating (1.1) termwise r times converges almost everywhere in some neigh-
borhood of %y t0 sum F(x). Then F has at @y an v-th symmetric derivative
in IP, p < oo, equal o s.

Theorem C is stated without proof in [5]. To make the proof of Theo-
Tem 2 complete we prove Theorem O here and the rest of the chapter is

devoted to that proof. Part of the argument that follows is familiar
(see 4], p. 66).

3. Suppose that r is even; for » odd the proof is the same. Hence
F(z) is given by (2.1). We may agsume without loss of generality that
%o =0 and a, = 0. Since the hypothesis implies that a, = o(n™?), the
even part of (2.1) is in I” and the odd Part contributes nothing to F(t)

+F(—t). Thus we may JDeglect the odd part and assume that both (L.1)
and (2.1) are cosine series.
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Let us set
p(t) = t""cost,

and denote the Cesaro sums of order % of the series 0+4-a,+ay-+... by

: 1 k
s&. For any sequence {u,} let us write Adu,= A'u, = upy—up,,, AU,

= A(4* ). Clearly,
P(e) = (~1)™1 fw(nt),
w1
and summation by parts gives
(3.1) F(t) = (—1)"%’5732,‘%’7) (n¢)

n=1

at each point of convergence of the preceding series. We will use the clas-
sical formula

k
(3.2) A*u, v, = Z (f) Aug o,
8==0

and the fact that if «(t) is a % times differentiable function and w,(t)
= #(nt), then

(8.3) A*uy (8) = (—1Yu® (ni- 6%s),
where 0 < 6 < 1.
Let
£ I o) = cosz—P(x)
P(m)=zo' (1 G M) =
Clearly,

y(nt) = A(nt)+P (nt)(nt)™",
s0 that, by (3.1),

ri2—1
(3.4) Fi)= ) o7 TIRO = PO+ TR,

where

. .D, — (_l)rlz.,.v Zs;—ldrnzv—r,

R(t) = (=1 Y a5 A" (ni).

Since 4"n*”~" = 0(n”*") = 0(n~>""), and s; ' = o(n™"), the series
defining D, is absolutely convergent.

Studia Mathematica XXIV. 1 7


GUEST


98 M. Weiss

We want to show that the function F(¢), which is even, has an »-th
symmetric derivative in I” at 0, equal to 0. Since the polynomial P()
in (3.4) is of degree strictly less than », the result will follow if we show that

13

1
(3.5) = [P = o),

0

for all p > 2. It is enough to prove this for h taking the values 2~
N=1,2,...

4. We write
1 =N 0 Pl
(4.1) . f \R()Pdt = 2”2 f \R(t)Pdt
1 JoN 471
(=<} o0
< 2Ne? U425 3V,

where

gi

U= [| Y aima,
9—7—1 1
=] =
V= | lgs;-IA'z(nt)]”dt.
2=7=1 of4y
Since A(t) has all derivatives, (3.3) shows that A"A(nt) = O("), so that
2—1 o .
Uy = f ‘O(f)zo(nr—l)}pd’ = 0(27")0(2/"Y) = 0(277),
9—i—1 T
and
(4.2) 2V DT =2" Yo =o@1).
=N =N

If we prove a similar inequality for 3'V;, Theorem C will be established.
N

5. In view of the definition of A(2),

2, = —7 o0
7 2
(6.1) V;<2? Es::"" c(ostytt 427 f _S_s:;’A’PWr) "
3771140 ™) 9=7=1" 9l 41 (n?)
= V;+V{,

say. 'Sin'ce P()#™" is a polynomial in ¢~ beginning with term #-%, an
application of (3.3) shows that 47{P (nt) (nt)~"} =10 ()~ "= 0@t %),
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so that

e

(5.2) vy = 0(2¥7) 2f_ ! o(n ) dt = o(27).

2=7=1 g

2.

+1

On the other hand, using (3.2) we have

r
cosnt r 1
5.3 A e = A®cosnt A" ————,
(53) =2 () arcosm -+
Observe now that
(5.4) A’cosmt = + (2sint)’Z,

where we have Z = cos(n-+4$s)f or Z = sin(n+4s)t, according as s is
even or odd. Fix s and suppose e. g. that s is even. Then the contribution
of the s-th term on the right of (5.3) to the first integral in (5.1) is

9—7 oa

N 2sinit)®
(5.5) < Const Ls?‘i Za,,eos(n+§s)t|”dt

9—7-1 LY AR
2—F—1 "
= Q(2/-97) f IZa,,eos(Zn—l—e)t dt,
1
o—i—2
‘where
1
Uy = s 4™ TR = o(n™HO (¥t = o(n® Y.

The right-hand side of (5.3) increases if we replace the interval of
integration (27772, 27™") by (0, =). Hence, if p >2 and p’ = p/(p—1),
an application of the Hausdorff-Young theorem shows that the right-hand
gide of (5.5) does not exceed

oo Sasp P = oute-m{ Slou-rmp
A1 241
=0 (21'('-5)50) 0 (27‘[s~r_1)pl+1)p_1 =0 (2—]') .

Collecting the results we see that
7{ = 0(2_j)}

which together with (5.1) and (5.2) gives V; = 0(27%). Hence V; satisfies
an inequality analogous to that for U; in (4.2) and Theorem C follows.

Added in proof (27.I1.1964). 1. The following result generalizes
Theorem C in the case when the frigonometric series is of power series
type (i.e., is of the form cy+c;e”-+ey6™+...):
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TreoreM C'. If the series (1.1) in Theorem C s of power series type,
then the function F has at @, an r-th Peano unsymmetric derivative in L,
p < oo, equal to s.

The proof parallels that of Theorem C. The generalization obviously
adds nothing to our Theorem 2.

9. The coneclusion of Theorem 1 holds if the hypothesis is replaced
by the following one: at each point @ <F we have (1.4) with O instead
of o (the polynomial P(f) may then, of course, be of degree k—1 or
less). The proof remains unchanged if we note that the conclusion of
the lemma on p. 91 remains unchanged if we replace the o in (2.3) and
(2.4) by O, provided a > 1.
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The canonical commubation rules of the quantum mechanics of a
system with N degrees of freedom have the following form:

QnPom—. mDn = ©0pm; '
Py Pp—PpP, =0, (myn=1,2,..., )
Qan_‘Qan =0,

where Q,,P, (n=1,2,...,N) are self-adjoint operators in the Hil-
bert space H. For zeB”, weE"* we define

N ~
U(&) = exp (‘i 25?3"@,,), V(z) = exp (1: Zm,.Pn).

The commutation rules were put by H. Weyl in the following correct
form:

U (@) U(&,) = U(dy-+,),
V(@) V() = V(2y+ ),
V() U (%) = U(&) V(z) exp(iZénm,,).
Let us notice that @ — exp(i 3 #,2,) is a character of the group B,
We assume that the algebra generated by the operators U () is eyclic.
This assumption means that this algebra has a simple spectrum. In
the language of physics we say that the operators @, form a complete
set of commuting observables (cf. [6], p.122). From these assumptions
it follows that there exists so called Schridinger representation of the
operators ¢ and P. This means that there exists an isomorphism
BL I*EY)
such that

a
(IQI7'p) () = ¥a0(¥), (IPI7'9)(y) = —i—azw(y)
for g CP(EY) « I*(BY).
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