

STUDIA MATHEMATICA, XXIV. (1964)

The preservation of Lipschitz spaces under singular integral operators

h

MITCHELL H. TAIBLESON (St. Louis, Missouri) *

The purpose of this note is to extend a result of Calderón and Zygmund ([3], p. 262, Theorem 11), to show that for periodic functions, Lipschitz (Hölder) continuity is preserved by singular integral operators whose kernels satisfy a Dini condition. It was shown in [3] that singular integral operators whose kernels satisfy a Hölder condition of order β would preserve Hölder continuity of order α when $\beta > \alpha$.

Let x be a point in Euclidean n space E_n . If $|x| \neq 0$ let x' be the projection of x onto the unit sphere Σ of E_n . That is, x' = x/|x| and |x'| = 1. With Calderón and Zygmund we consider kernels K(x) of the form $K(x) = \Omega(x')|x|^{-n}$ where $\Omega(x')$ is a complex valued function on Σ satisfying two conditions:

a)
$$\int_{\Gamma} \Omega(x') dx' = 0.$$

b) $\Omega(x')$ is a continuous function on Σ and there is a monotone increasing, non-negative function $\omega(t)$, t>0, such that $\omega(t)\geqslant t$ and $|\Omega(r)-\Omega(s)|\leqslant \omega(|r-s|)$ for $r,s\,\epsilon\Sigma$ and so that the Dini condition, $\int\limits_{1}^{1}(\omega(t)/t)dt<\infty$, is satisfied.

For a full discussion of these properties and their implications the reader is referred to [3], p. 249-252, and [6], p. 468-473.

Let the fundamental torus T_n be defined by

$$T_n = \{x = (x_1, x_2, \dots, x_n) \in E_n: -1/2 < x_i \le 1/2, i = 1, 2, \dots, n\}.$$

We will study here functions defined on T_n , or what is the same thing, their periodic extensions to E_n . That is, we say f(x) is periodic if f(x+k) = f(x) where k is any lattice point in E_n .

^{*} Preparation of this paper supported in part by the U. S. Army Research Office (Durham), Contract No. DA-31-124-ARO(D)-58.

For a kernel K(x) as above define for $x \in E_n$

$$K^*(x) = K(x) + \sum_{k \neq 0} (K(x+k) - K(k)) = K(x) + \overline{K}(x),$$

where the summation is over the non-zero lattice points of E_n . It is well known that the sum $\overline{K}(x)$ converges absolutely and uniformly to a bounded function for $x \in T_n$. Furthermore, we may assume (by subtracting a constant from $\overline{K}(x)$) that

$$\int_{T_n} K^*(x) dx = 0,$$

where the integral is taken in the principal value sense. (See [3] for details.)

For a function f(x) defined on T_n , assumed once and for all to be extended periodically to E_n , let

$$f_{\varepsilon}^*(x) = \int\limits_{T_n} f(x-z) K_{\varepsilon}^*(z) dz,$$

where $K^*_{\mathfrak{s}}(z)=K_{\mathfrak{s}}(z)+\overline{K}(z),\ K_{\mathfrak{s}}(z)=K(z)$ if $|z|\geqslant \varepsilon$ and is equal to zero otherwise.

We now define Banach spaces of functions satisfying Lipschitz (Hölder) conditions. For functions $f \in L_p(T_n)$, $1 \leqslant p \leqslant \infty$ (that is, $f \in L_p$ if f is measurable and $[\int\limits_{T_n} |f|^p]^{1/p} = ||f||_p < \infty$ if $1 \leqslant p < \infty$ and ess $\sup\limits_{x \in T_n} |f(x)|$

 $=\|f\|_{\infty}<\infty$ for $p=\infty$) and such that

$$||f(x+h)-f(x)||_{p} \leq C|h|^{a}, \quad 0 < a < 1,$$

where C is independent of h, we say that $f \in \Lambda^p_a$ and "norm" Λ^p_a with $||f||^p_a = ||f||_p + \operatorname*{ess\,sup}_{h \in T_n} ||f(x+h) - f(x)||_p |h|^{-a}$.

THEOREM. If $f \in \Lambda^p_a$, $1 \leq p \leq \infty$, 0 < a < 1, then f^*_s converges in the L_p norm to a function $f^* \in \Lambda^p_a$ and $||f^*||^p_a \leq A ||f||^p_a$, A independent of f.

Remarks. For $1 the theorem is an immediate consequence of the fact that the "conjugate" operator <math>Tf = f^*$ is a bounded translation invariant map from L_p into itself for 1 . (See [3], p. 250.)

Considerably more than the above theorem holds (see [4], Chapter 10, and Chapter 1 for background material, or [5] where some results are stated without proof). In particular, we infer that the maps we are considering preserve all the Lipschitz spaces A(a; p, q), a real, $1 \le p, q \le \infty$, for distributions on T_n/E_n with a substitute result holding over E_n . The essential idea, however, is contained in the theorem stated here,

which can be proved without the introduction of the cumbersome machinery of [4].

The idea of our proofs is to modify the argument of Calderón and Zygmund so as to use a second difference characterization of Λ_a^p classes.

Proof of the theorem. For definiteness we will do the $p=\infty$ case. The other cases are proved in essentially the same way.

Suppose $f \in \Lambda_a^p$. We have

$$f_{\epsilon}^*(x) = \int_{z \in T_n} (f(x-z) - f(x)) K_{\epsilon}^*(z) dz$$

using (*) above.

Since $||f(x-z)-f(x)||_{\infty} \leq ||f||_a^{\infty}|z|^a$ we see that

$$\|f_\varepsilon^*\|_\infty\leqslant M\,\|f\|_a^\infty\int\limits_{z\;\varepsilon\;T_n}|z|^a|z|^{-n}dz=O(1)\quad \ \ \text{as}\quad \ \varepsilon\to 0$$

for an appropriate M. Similarly for $0 < \varepsilon_1 \leqslant \varepsilon_2$ and small enough

$$\|f_{\varepsilon_{1}}^{*}-f_{\varepsilon_{2}}^{*}\|_{\infty}\leqslant M\left\|f\right\|_{a}^{\infty}\int\limits_{\varepsilon_{1}\leqslant\left|\varepsilon\right|<\varepsilon_{2}}\left|z\right|^{a-n}dz=O\left(1\right),\quad \ \varepsilon_{1},\varepsilon_{2}\rightarrow0\,.$$

Therefore f^*_* tends, in the L_∞ norm to a function f^* which is in L_∞ and clearly the constant M is independent of f and $\|f^*\|_\infty \leqslant M \|f\|_\alpha^\alpha$.

It will then suffice to show that for all |h| small enough, $||f^*(x+2h) - 2f^*(x) + f^*(x-2h)||_{\infty} \leq M ||f||_{\infty}^{\infty} |h|^a$ for a suitable M independent of f. (See [1] for a combinatorial proof of this well known fact that for $0 < \alpha < 1$ the conditions above on the first and second differences are equivalent.) We assume, for convenience that $|h| \leq 1/6$. We have

$$\begin{split} f_{\epsilon}^{*}(x) &= \int\limits_{\stackrel{|z|<3|h|}{s\,\epsilon\,T_{n}}} \big(f(x-z)-f(x)\big)K_{\epsilon}(z)\,dz + \int\limits_{\stackrel{|z|\geqslant3h}{s\,\epsilon\,T_{n}}} \big(f(x-z)-f(x+h)\big)K_{\epsilon}(z)\,dz + \\ &+ \int\limits_{s\,\epsilon\,T_{n}} \big(f(x-z)-f(x+h)\big)\bar{K}(z)\,dz = I_{1} + I_{2} + I_{3}, \end{split}$$

using conditions a) and (*).

Clearly

$$|I_1|\leqslant M\,\|f\|_a^\infty\int\limits_{|z|<3|h|}|z|^{a-n}dz\leqslant M'\,\|f\|_a^\infty\,|h|^\alpha.$$

In I_2 and I_3 we change variables and obtain

$$\begin{split} I_2 + I_3 &= \int\limits_{\substack{|s-h| \geqslant 3|h| \\ s \in T_n + h}} (f(x+h-z) - f(x+h)) K_s(z-h) dz + \\ &+ \int\limits_{\substack{s \in T_n + h}} (f(x+h-z) - f(x+h)) \overline{K}(z-h) dz, \end{split}$$

where $T_n + h = \{x: x = y + h, y \in T_n\}.$

If in the first integral we replace the domain of integration by $|z| \ge 3 |h|$, $z \in T_n$, and in the second by $z \in T_n$, we have

$$\begin{split} I_2 + I_3 &= \int\limits_{\substack{|z| \geqslant 3|h| \\ z \in T_n}} \left(f(x+h-z) - f(x+h) \right) K_s(z-h) \, dz + \\ &+ \int\limits_{z \in T_n} \left(f(x+h-z) - f(x+h) \right) \overline{K}(z-h) \, dz + g(x,h), \end{split}$$

where g(x, h) is an error term such that $||g(x, h)||_{\infty} \leq M' ||f||_{\alpha}^{\infty} |h|^{\alpha}$ with M independent of f and ε .

We therefore have (up to an error term)

$$\begin{split} f_{\varepsilon}^*(x) &= \int\limits_{\substack{|z| \geqslant 3|h| \\ s \notin T_n}} \big(f(x+h-z) - f(x+h)\big) K_{\varepsilon}(z-h) \, dz + \\ &+ \int\limits_{z \notin T_n} \big(f(x+h-z) - f(x+h)\big) \overline{K}(z-h) \, dz \, . \end{split}$$

Making obvious substitutions we obtain also that

$$\begin{split} f_{\varepsilon}^*(x) &= \int\limits_{\substack{|z| \geqslant 3|h| \\ s \in T_n}} \big(f(x-h-z)-f(x-h)\big) K_{\varepsilon}(z+h) dz + \\ &+ \int\limits_{\substack{s \in T_n}} \big(f(x-h-z)-f(x-h)\big) \overline{K}(z+h) dz, \\ f_{\varepsilon}^*(x+2h) &= \int\limits_{\substack{|z| \geqslant 3|h| \\ s \in T_n}} \big(f(x+h-z)-f(x+h)\big) K_{\varepsilon}(z+h) dz + \\ &+ \int\limits_{\substack{s \in T_n}} \big(f(x+h-z)-f(x+h)\big) \overline{K}(z+h) dz, \\ f_{\varepsilon}^*(x-2h) &= \int\limits_{\substack{|z| \geqslant 3|h| \\ s \in T_n}} \big(f(x-h-z)-f(x-h)\big) K_{\varepsilon}(z-h) dz + \\ &+ \int\limits_{\substack{s \in T_n}} \big(f(x-h-z)-f(x-h)\big) \overline{K}(z-h) dz, \end{split}$$

all with their appropriate error terms.

We add and gather terms and find

$$\begin{split} f_s^*(x+2h) - 2f_s^*(x) + f_s^*(x-2h) &= \int\limits_{\substack{|z| \ge 3 \\ z \in T_n}} \left(f(x+h-z) - f(x+h) + f(x-h) - f(x-h-z) \right) \left(K_s(z+h) - K_s(z-h) \right) dz + \\ &+ \int\limits_{s \in T_n} \left(f(x+h-z) - f(x+h) + f(x-h) - f(x-h-z) \right) \left(\overline{K}(z+h) - f(x-h-z) \right) dz + \\ &- \overline{K}(z-h) dz + l(x,h) = P + Q + l(x,h), \quad \text{where} \quad \|l(x,h)\|_{\infty} \le M' \|f\|_{\alpha}^{\infty} \|h^a\|. \end{split}$$

An easy calculation shows that

$$\begin{split} &\|Q\|_{\infty} \leqslant M'\|f(x+2h)-f(x)\|_{\infty} \leqslant M'\|f\|_{\alpha}^{\infty}|h|^{\alpha}, \\ &\|P\|_{\infty} \leqslant 2\,\|f(x+2h)-f(x)\|_{\infty} \int\limits_{|z|\geqslant\frac{3}{2}|h|} |K_{\varepsilon}(z+h)-K_{\varepsilon}(z-h)|\,dz\,. \end{split}$$

There is a constant C>0, which depends on K, such that $|K_{\epsilon}(z+h)-K_{\epsilon}(z-h)|\leqslant (1+1/C)\,\omega\,(C\,|h|/|z|)\,z|^{-n}$ whenever $|z|\geqslant 3\,|h|$. (See [2], p. 95.) Therefore

$$\|P\|_{\infty}\leqslant M'\|f\|_{\alpha}^{\infty}|h|^{\alpha}\int\limits_{3|h|}^{\infty}\omega\left(C\left|h\right|/t\right)dt/t=M''\|f\|_{\alpha}^{\infty}\left|h\right|^{\alpha}\int\limits_{0}^{C|t}\left(\omega\left(t\right)/t\right)dt=M'''\|f\|_{\alpha}^{\infty}\left|h\right|^{\alpha}$$

by our assumption b) on $\omega(t)$.

Since $f_{\varepsilon}^*(x+2h)-2f_{\varepsilon}^*(x)+f_{\varepsilon}^*(x-2h)$ converges in the norm to $f^*(x+2h)-2f^*(x)+f^*(x-2h)$ and our estimates are independent of ε we see that

$$||f^*(x+2h)-2f^*(x)+f^*(x-2h)||_{\infty} \leq M ||f||_{\alpha}^{\infty} |h|^{\alpha}$$

for some M independent of h and f and so $f^* \in \Lambda_a^{\infty}$ and $||f^*||_a^{\infty} \leq A ||f||_a^{\infty}$ for some A independent of f.

This completes the proof.

References

[1] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math. 4 (1961), p. 33-49.

[2] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), p. 85-139.

[3] - Singular integrals and periodic functions, Studia Math. 14 (1954), p. 249-271.

[4] M. H. Taibleson, Smoothness and differentiability conditions for functions and distributions on E_n , Dissertation, Univ. of Chicago, Chicago, Ill., August 1962.

[5] — Lipschitz classes of functions and distributions in E_n , Bull. Amer. Math. Soc. 69 (1963), p. 487-493.

[6] A. Zygmund, On singular integrals, Rend. Matem. 16 (1957), p. 468-505.

Recu par la Rédaction le 31.7.1963