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Total and partial differentiability in L*
by
MARY WEISS (Chicago, IIL)

1. A function f(z) = f(x, my, ..., x,) defined in the neighborhood
of a point #° = (a2, ..., &%) and of the class L7 there, 1 < p < oo, is said
to have a k-th differential in I” at a° if there is a polynomial P(f) =
P(ty, ..., ;) of degree % (or less) such that

1 1p
{—;r flf(w°+t)—1’(t)l”dt} =o0(") (¢—~0).
e 1ti<e
Ifp= oo, the expression on the left is to be interpreted, of course,
a8 esssup |f(a°+¢)—P(#)| for |t| < o. The definition has been introduced
in [1]. The domain of integration [{| < ¢ can clearly be replaced by a cube
containing the origin and of side tending to 0.
The main result of the present paper is the following
TrEOREM 1. Let f(%) = f(2y, ..., %) belong to IP, 1 <p <
the unit cube

{Qo)

and suppose that ai each point © of a set B < Q, the function f has a k-th
differential in L®. Let m be o fiwed integer satisfying 1 < m < n. Then at
almost all poinis weE the function f has a k-th dszermtml in IP with
respect to the variable ' = (1, Ty, ..., Tp).

The sets and functions that oceur in the proof below are all Lebesgue
measurable, even if it is not stated explicitly (the proofs of measura-
bility, when needed, are routine). The cubes will be always closed cubes.
‘We may restrict our argument to the case 1 < p < oo, sinee if p = oo
it is not difficult to see that the function f* which coincides with f at the
points of set Z where f(x) is the derivative of its indefinite integral
and elsewhere is defined by the condition f(#,) = limsupf(x) for = tend-
ing to @, through Z, satisties the relation f*(z,+1)—P(#) = o(|t[*), and
it is enough to observe that the m-dimensional measure of the intersec-
tion of the complement of 7' with almost all subspaces @, = const, ...,
&, = const, is 0.

o0, over

0<% <1l (j=1,2,...,n),
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2. We begin by simplifying our problem. By a known result (see [1],
p. 186, Theorem 9), if f(z) has a k-th differential in I” at each point of
a set E of positive measure, then given any ¢ >0 we can find a perfect
subset B, of B with |F—E,| < ¢ and a decomposition

fle) = g(@)+h(x)
with the following properties:

1° g (=) 0",

2° g(z) = f(z) on K.

Theorem 1 will therefore be establighed if we show that A (x) hag a k-th
differential in I” at almost all points of E,. Since, by 29, h(z) = 0 on Iy,
the polynomial P(t) = P,(}) associated with b is identically 0 at every
point of density of E,, and so almogt everywhere in B, we have .

1/p
[ o] = o).

{ 1
¢ Iti<e

Thus replacing [k (2)|” by f(«), B, by B and setting « = pk we reduce
Theorem 1 to the following

TEEOREM 1'. Set &' = (1, ..y Tm)y ¥ = (Bpryry .-+, ¥y) and lot f(x)
= f(@, ..., an) = f(a',5") be non-negative and integrable over the unit
oube Q: 0 <@ <1, § =1,2,...,n. Let a be a positive number and let Q
and 1 denote respectively arbitrary n-dimensional and m-dimensional
cubes with edge h. If at each point © = (@', &) of a set HeQ, we have

[7(eae = o™ (h>0)
Q

for cubes Q containing w, then at almost all points » = (', a”') of B

If FE, &) dE = o(K™) (k- 0)

for cubes I containing «'.

. 3. Theorem 1'iy easily deducible from the following result which is
of independent interest; the notation here is the same ag in Theorem 1.

TrEOREM 2. There is a positive constant A, depending only on the
dimension n and having the following property. Let f(w) == f(@y, ..., o)
defined in a cube Q° be non-negavive and integrable. Denote by 1T the set of
points 2eQ° such that there is a cube Qox with ) '

[F(&)as = (3ny,
Q

and by V the set points x = (2, ') eQ® such that for some Inw' we have

JfE,anag s pme,
I
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Then
Ul = A|V].

We first show that Theorem 1’ is actually a simple consequence of
Theorem 2.

Suppose that the assertion of Theorem 1’ is not true. This means that
there is a positive constant ¢ and a subset Z, of F of positive measure
such that

Limguph~ "+ ff(f’, z')dE > 0.
Py F

By multiplying f by 2 constant we may assume that ¢ = 1.

Now we can find a number %, > 0 and a subset H, of B, of positive
meagure such that for each z¢H, and any cube @ containing z and of
edge < hy we have

[f(&as < @nye.
Q

Let 4° < B, be a point of density of B, and let Q° be a cube with center
2° and edge h; < hy. Let U and V be the sets of Theorem 2 for this cube Q°.
If h; is small enough, the density of B, in Q° exceeds 4. Since, obviously,
V 5 B, ~ Q" the inequality |U| > A|V| implies that the density of U
in Q° exceeds 4. But this is impossible if %, is small enough since U is
contained in the intersection of @° with the complement of the set F,
and 2° is a point of density of #,. This contradiction proves Theorem 1'.

4. The proof of Theorem 2 rests on two lemmas.
LemMA 1. Let f(x) = f(%1,..., %) be non-negative and integrable
over a cube Q° of edge hy, and suppose that

By [ flo)de < 279,
Qo

where a > 0. Then there is a- sequence of non-overlapping cubes @y, @, ...

contained in Q° with edges respectively hy, hy, ... such thai
& 20 £ (i) ff(m)dm <1l (k=1,2,..)
Qe

and f(x) = 0 almost everywhere in the complement of U Qx.

Proof. We subdivide ° into 2" equal cubes. If for any of these par-
tial cubes, call them ¢)', we have

() Wy e+ [fla)im > 27+,
J

we let all such @' be members of {@;}. Clearly we have for each such ¢’

(w)~0+ [fao < (3ho) ™) [ fdo < 20909 —1.
Q' . Qo
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Each of the cubes @’ for which (2) does not hold we split into 2" equal
cubes Q" and include in {@;} those @ for which

(W)~ [f@)de > 270+,
&

and so on. It is clear that the sequence {Q} defined in this way satisfies (1).
Each of the points of @ which is not in {@;} is included in a sequence of
cubes @ with edge % tending to 0 and such that

) ffda: < 2=,
¢

Hence f = 0 almost everywhere in the complement of (J@,.

5. LEMMA 2. Let f(x) = f(®y, ..., @) be non-negative and integrable
over a cube Q° and suppose that Q° contains a sequence of non-overlapping
cubes Qy, @y, ... such that

[ @) dw > i
Qe
where k. is the edge of @ and a is a fized positive number. Suppose, moreover,
that f =0 in @"— U Qx. Then, if H is the set of points m¢Q° such that for
some Q o x we have

(3) [f@)dw > 1,
Q

k=1,2,...),

where h is the edge of Q, the measure of H satisfies the inequality
H <0 | [f@)dwfe+,
kE Q

where C is a constant depending on the dimension n only.

The set H contains |J Q. Let us consider all the cubes @ for which
we have (3). For each such @ consider those among the cubes Qr, it any
such exist, which have points in eommon with @, and denote by § the
smallest cube concentric with @ and containing all the cubes @ having
points in common with Q. It is not difficult to see that

(4) @ <s{o+ > 10
QprQ#0

The cubes § cover the set H. It is a familiar fact that wo cayuibheu find
among the § a finite number of disjoint cubes, call them ', §?, ey &
such that

(5) D@ = elH],

where ¢ is a positive number depending on the dimension # only (see, e. g.,
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[2%],((3. 309, Lemma). Let ©° denote the cube generating Q°. By (5)
an )

| <o 10 <37 Y {17 + 2 e} <t Mg+ e},
8 Q@520 ® %

since no @, can have points in common with more than one Q°. For
any ¢ satisfying (3) we have

01 =" < ( [ ga)"),
which gives ¢

O m S S 0 S ey

8@ k9

Since the function f vanighes outside () @y, it follows that

nf(n+4a) nj(nta 7 -a
(Jra] 2 = 3 [aaaf'™ < 3 [ fganfpree,
Q8 Q@S0 Qr Qn@P0 U
This combined with (6)
0 =2-3%"
6. We will now conclude the proof of Theorem 2.

The function f of Theorem 2 ig non-negative and integrable. We
may agsume that

gives the conclusion of Lemma 2 with

hot !
QO

where %, is the edge of Q. By lemma 1, there is a sequence @, @,, ...
of non-overlapping cubes in Q° for which the inequalities (1) hold; more-
over, f = 0 almost everywhere in Q°—(J@,.

Let I, be the projection of @, on the space of ', and J; the projec-
tion of @, on the space of #"; thus @, = Iy+J%. Reserving the notation
|| for the m-dimensional measure of @ set ', we shall denote by | F

the m-dimensional measure of . Let fi(#) be the function defined by
the conditions

fi@) =fl@)+ b for  weQ, (k=1,2, ST
@) =0 in @'— U @x.

The funetion f,(2) = f,(«', #"') has the property that for any @' edy
we have

1 -
(6) g Jfl(w’,m”)dm’ >1.
¢ j/c
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Let U, V be the sets of Theorem 2 and let V, be the set analogous
to V but correspondmg to the funetion f;. Clearly,

(M Ul = Y@l  VI<IVAl

Tet V,(z'") be the intersection of V, with the #'' subspace (i. e., with
the set of points («', ") where z'’ is fixed and o' is arbitrary). hor any
given @' we seb & (z") equal to 1 or to 0 according as the subspace '’

does or does not meet the cube @. » .
Tn view of the condition (6), an application of Lemma 2 to the m-di-

mensional space gives
Mf (M-} a)
172" \GZek o) [ (@' 0y da "
Iy

Hence, denoting by J° the projection of @° on the @' space,
’ vt O g,
8 Vil = [17:@ i’ <03 [ele)| [file,ada ™" Via
kg0

Je Ty
}m/(1n+a) an”

=0 f{fflww

Ich Iy

since, for % fixed, e(#'') =1 if and only if 2" eJj.
By Holder’s inequality, the repeated integral in the last sum does
not exceed

(T el { ffl(m)dm}m/(mw) - h;(n—m)/(m+ﬂ){ f(f—|— hy)
Q1 Qe

< hz(n—m)/(m-}-a) {( j'fdw)mn/(m+a)+ h$:+n)m/(m—|-a)}
Qr

m}m/(m»\ a)

< h;(’n-m)/(m-g-a){thnq-n)m/(vrl-{.u)} — Zh}”
Hence, in view of (8) and (7),

VI <17l < 202 =2o 1Qxl < 20101,

i.e, |V} < 4|U| with 4 = 20, and Theorem 2 ig establighed.

?. We conclude by briefly describing a generalization of Theorem 1.

Let w = k+v, where k is a non-negative integer and 0 <y < 1.
Using the terminology of [1], we say that the function f(#) = f(ay, ..., @)
defined in the mneighborhood of a point o' satisfies condition 77 (z,)
if there is a polynomial P(t) of degree <k such that

{e f |fw+t)-—P<t Pa}’” = 0(g")

IH<e
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as ¢ — 0. Condition t5(2°) is defined by replacing here O by o. (The limit-
ing case y = 0, covered by Theorem 1, has somewhat special properties
insofar as it is known that conditions 7% and t are equivalent almost
everywhere; see [17].)

THEOREM 3. Suppose that f(x) belongs to IF, 1 < p < oo, in the unit
cube Q, and suppose that at each point 2° of a set B < Q, the function f
satisfies condition T5(2°), where w =k+y, k=0,1,..., 0 <y <1.
Then almost everywhere in E the function f satisfies condition Th(a") with
respect to the variables @, ,, ..., ¥y, where m <n. The corresponding
result holds for the condition L.

The proof closely parallels that of Theorem 1 if we use the fact (see
[1], Theorem 9) that the general case can be reduced to the case when f
satisfies the additional condition of vanishing in the set E.
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