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Applications of elementary topological methods
to existence problems for bounded solutions of systems
of ordinary differential equations

by J. LEwowIcz (Montevideo)

1. Introduction. This paper contains essentially two results, of
which we give elementary topological proofs. The first one refers to
a non-autonomous system with the trivial solution z = 0; the second.
one concerns the autonomous case, although the nature of the conclu-
gions and of the arguments used allows us to state it as a theorem on
dynamical systems.

These results generalize those obtained recently by N. Onuchic [2],
and P. Mendelson [1] as applications of the method of T. Wazewski [4]
and of the theorem of A. Pli§ [3] (plus results of algebraic topology).
We thus find two new examples of problems in which it is advantageous
to replace the latter methods by an elementary topological approach.

I am indebted to Professor J. L. Massera for his generous assistance
and guidance. His valuable suggestions have had a significant influence.
on the final statements and proofs of the theorems.

2. We shall assume that the systems considered in this paper satisfy
conditions which ensure existence and uniqueness of the solutions and.
their continuous dependence on the initial conditions.

Consider the system

(1) &=f(t,z), xeR", teR =[0,00), f: R'xR'->R".

Assume that f(t,0) =0, te R*.

We shall denote with z(?,¢,, z,) the solution of (1) through the.
initial point (¢,, x,), i.e. (o, &y, &x) = @, and with a(ty, #,), B(y, z,) the
endpoints of the maximum interval on which (i, t,, ,) is defined.

Let @ be an open set in R x R" containing R* x {0}, and let H be-
the hyperplane {0} x R". We shall denote by dw the boundary of w.

A point (¢, 2,) edw—H is a point of ingress (T. Wazewski) (with.
respect to w and (1)) if there exists 6 > 0, such that (t, z(t, &, &,)) € o,
to<t<t,+0; it is a point of strict ingress, if it is one of ingress and if,.
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for every 8 >0, (t, (1, &, %)) ¢ @ for some ¢, —38 <1 <1,. The points
of egress and strict egress are defined in a similar way. The sets of points
of egress, strict egress, ingress, and strict ingress, shall be denoted by
E, E*, I, I*, respectively. In the applications of the method of Wazewski
the assumption E = E* plays a fundamental réle while we shall assume
instead I = I*. In this connection, it is to be remarked that if no solution
has an arc on ow, then E = E* if, and only if, I = I*.

THEOREM 1. Let w,C w ~ H be a bounded open set which conlains
the origin. Suppose that for every n =1, 2, ... there is an arc I'y contained
(except for one endpoint) in o~ {{t,x): t > n} that connecls x = 0 with
a point of I. Assume moreover that I = I*. Then, there exists (0, x*) € w,,
a* # 0, such that (t, z(t,0,*) ew, 0 <t <p(0,2*).

Remark. There exists such a point z* with either z* ¢ dw, or
(0, 2*) < oo.

Proof. Let I’ (n=1,2,...) be an arc which satisfies the condi-
tions mentioned in the statement of the theorem. Consider the following
disjoint subsets of IT:

An = {(tm Ty): (t’ z(t, t, mo)) ew, 0 <t <Y, (01 z(0, to, 6'70)) € wo} ’

B = {(to, m): (t, #(t, 1, ) e w, 0 <t <1y, (0,2(0,1,x)) € 2wy},

Cu = {(to, @): @(t, 1y, ) exists on [0,1,] and either (0, (0, t,, @,)) €
€« H—w,, or, (i, x(t,1, 2,)) ¢ @ for some #,0 <i<t,),

Dy = {(ty, @o): (2, ty, 2,) is not defined on the closed interval [0, ¢,]}.

From the continuous dependence of the solutions on the initial con-
ditions we easily infer that A, is open in I';, and it is not void because
it contains the end point of I, with z = 0. Similarly O, is open, and
obviously C, v D, contains the other endpoint of I, (which belongs
to I*).

Consider the set C, v D,, and suppose first that for some n it is
not open. Then there exists a point (¢,, 2,) € D» and a sequence (fym, Zom)
in I, such that lim(fom, Zom) = (Y, %)y (fom, Zom)¢ Cn v Dy. Then
#(0, tom , Tom) is defined for every m = 1,2, ..., (0, #(0, tyn, Tom)) € Wy, and
(t, x(l, tom, .’L‘om)) ew, 0 <t<tym- Let (mi) be a subsequence of (m), such
that (0, (0, tom, , Tom,)) converges to, say, (0,a*)ew,. Continuous de-
pendence on the initial conditions obviously implies that (0, z*) < ¢,
(hence 2* # 0) and that (¢, «(t,0,2*)) ew, 0<t< B(0,2*) so that in
this case the statement and the contention of the Remark are proved.

Assume now that Cp v D, is open for every n. We claim that
Apw Bav Cpu Dy =TI,. Indeed, if (¢, x,) ¢ An v By v Dy v 0w, then
@(t, ty, T,) is defined on 0 <t <1, and, either (0, 2(0,,, %)) ¢ H—w, —
in which case (t,, 2,) € Cn — or (t"', x (1, 1y, :vo)) € dw for some 1*, 0 < I* < 1,.
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Since (fy, %) € w, there exists #**, 1* < t** < #, such that (t**, z(**, t,, a:o)) €
edw, (t,x(t, 1y, %)) e 0, ¥ <t1<1, and therefore (i**,x(1**,1,, z,)) e I*.
Then, (, z(Z, t, %)) ¢ ® for some ¥, 0 < i <1, and (&, @) € C.

Since I, i8 a connected set, B, is not void, and consequently it is
possible to find @, (0, s) € 0w, such that (t,z(t,0,2s)) e w, 0 <t < m.
If #* is a point of accumulation of the sequence (z,), then (t, xz(t,0, w*))e ,
0 <t< p(0,2*) as follows easily from the continuity of x(t, iy, z,).

Remarks. (a) If the projection of @ into H is bounded, we can
assert the existence of z* € dw,, such that the solution issuing from (0, 2*)
remains in o in the future.

(b) If w is defined as {(t,#): |j|° < @(1)}, where @(t) is a positive
real function twice differentiable for ¢ > 0, the usual way to check the
assumption F = E* consists in proving that if (¢, z), £ > 0 is such that

lel* = @(t), 2[z,f(t, ®)]—¢ ) =0,

2[1 (¢, w)[|2+2[m7 flt, 2)] +2[z, J (¢, 2)f(t, 2)]—@ () > 0,

then

where J (2, z) is the Jacobian matrix J (1, ) = (af‘g;’ m)) (i, =1,2,..,n)
J

and where we have denoted by [#,v] the inner product in R". In this
case we also obviously have I = I*.

(¢) Onuchic obtained a result less general than Theorem 1 using
the hypothesis ¥ = E*, w being the cylinder ||«|| < 1; he assumes, further-
more, that dw —F contains a generator of this cylinder.

(d) Mendelson’s result is also less general than Thecrem 1; he con-
siders an autonomous system with a critical point at # = 0, and under
the assumption E = E*, he proves the existence of a non-trivial semi-
trajectory contained in the cylinder w = {({, 2): # € wy}, w, C R" being
an open topological x-cell.

3. We observe, furthermore, that in Mendelson’s paper the assump-
tion E = E*, which is fundamental in his proof, is in fact superfluous;
as the following theorem shows, Mendelson’s conclusion can be even
strengthened, without using this assumption.

Let M be a metric space and f(p,?) a family of transformations
of the space, —oco < t < oo, such that the pair (M, f(p, t)) is a dynamical
system.

THEOREM 2. If w C M is a domain with compact and non-void boundary
which contains trajectory arcs of arbitrarily large time-length, then there
exists a semitrajectory issuing from ow, which is contained in w.

Proof. Let wp,= {p: f(p,)ew, 0<t<n}; n=1,2,... By the
assumptions w, is evidently open and non-void, w41 C ws. If wp=w
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for every n, then, for each p ¢dw the positive semitrajectory must be
in . If w, # o for sufficiently large n, since o is connected and w, not
empty, there exists pn € w ~ dwyn. Then f(pa,?) e w for every ¢, 0 <t < n,
and since w, is open, p, ¢ ws, and there exists #,, 0 <, < m, such that
qs = [ (Pn, ts) edw. We may choose a subsequence (n;) of (n), so that
¢n,—>¢* and either —1,, >— oo, or n,—i, —+ oo; then either f(¢* t) ew
when ¢ <0, or when t > 0.
THEOREM 3. Consider the periodic system

& =f(t,z), xzeR"',teR, f: RxR'—->R",
@+, 2)=f(t,2), >0, —co<t< o0.

If o CR" is a domain with compact and not void boundary, which con-
tains trajectory arcs of arbitrarily large time-length, then there exists a semi-
trajectory issuing from ow which is contained in .

Proof. The previous argument applies, with (¢, 0, p) in the place
of f(p,t) and choosing (nx) such that (¢,,) converges modulo z.

References

[1] P. Mendelson, On Lagrange stable motions in the meighborhood of critical
points. Contributions to the theory of mon-linear oscillations, vol. V. Ann. of Math. Stud.
No 45. Princeton, University Press 1960, pp. 219-224.

[2] N. Onuchic, The existence of solutions bounded in the future of systems of
ordinary differential equations, Portugal. Math. 21 (1962), pp. 37-40.

[3] A. Pli§, On a topological method for studying the behaviour of the inlegrals of
ordinary differential equations, Bull. Acad. Polon. Sc¢i., Cl. III, 2 (1954), pp. 415-418.

[4] T. Wazewski, Sur un principe topologique de U'examen de Vallure asymplo-
tique des intégrales des équations différentielles ordimaires, Annal. Soc. Polon. Math. 20
(1947), pp. 279-313.

INSTITUTO DE MATEMATICA Y ESTADISTICA
UNIVERSIDAD DE LA REPUBLICA
MONTEVIDEO, URUGUAY

Regu par la Rédaction le 2. 2. 1963



