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Existence problem of the osculating planes
of a curve in R,

by S. TorA (Krakow)

The linear elements of figures, particularly of curves, can be defined
in two different ways: the first we can briefly name ‘‘the limiting pro-
cesses’, the second one is based on investigating the order of contact
of the linear elements with respect to the given figure.

This paper deals with a certain problem connected with the second
method.

The result of this work concerns a theorem of Z. Moszner [1].

Let us take a curve C given by the vectorial equation
1) r=r(), vel(!)

in an w-dimensional Euclidean space R,.

In a neighbourhood of the point M(z,) (2) we choose a point M(z)
on the curve C.

We shall denote by L; any j-dimensional plane through the point M (z,).
By r*(tr) we denote the radius-vector of the normal projection M*(z)
of the point M (r) on the plane L;.

DErFINITION 1. We shall say that a plane L; has the order of contact
with the curve C at the point M (7,) equal to the number u > 0 if there exists
a finite and positive limit
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(2) lim P

—>7g |r—ro|" N
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where r = r(t), ry = r(z,) and r* = r*(z).

Now we shall give the following definition of the osculating plane
(of the order j of a curve C at the point M (r,)) (3).

DEFINITION 2. The j-dimensional plane L? through the point M (t,)

will be named the osculating plane of the order j of the curve C at the
point M (z,) if

(*) I denotes an interval (finite or infinite).
(2) M (z,) is the point of curve C which corresponds to the value 7, of parameter z.
(®) This definition is a slight modification of that given by S. Golab.
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a) either the plane Lj has the order of contact at the point M(z,)
equal to yy, and every other plane L; through the point M (z,) has a defi-
nite order of contact at the point M(7,) equal to u, u < py;

b) or Lj is the unique plane which has no order of contact at the
point M (7).

Now we can put the following problem: what are weakest conditions
of regularity of the curve C under which the curve C will have an os-
culating plane L.

A partial solution of the problem gives the following

THEOREM. Let j be a natural number satisfying the imequality 1 <j
< n—1. Let a curve C, defined by vectorial equation (1), satisfy the fol-
lowing conditions:

1. the function r(z) has continuous derivatives

dir(t) .

r, r®, ., r00 v el,  where I denotes —

2. the derivative r() exists at the point t,;

3. the wvectors {r3’} are linearly independent (i =1, ...,7); ry denotes
r(zo);

4. there exists at most one j-dimensional plane through the point M (z,)
which has infinitely many points in common with C, and these points have
M(z,) as an accumulation point. (In the following the plane described
above will be named the exceptional plane.)

Then there exists an osculating plane L of order j of the curve C at

the point M (z,) (in the sence of definition 2).

Remark 1. The last condition 4 of the above theorem is the neces-
sary condition for the existence of the positive limit in (2). Otherwise
there would exist at least two exceptional planes, and the limit in (2)
would be equal to 0 for every u > 0, which contradicts assumption a) in
definition 2.

Proof of the theorem. For any plane L; we can find the repre-
sentation

(3) r=ro+ ) Aa,,
p=1

where the vectors

(4) @), Qyy ..., G

are constant and linearly independent (4, denote the real parameters).

Denote by p the largest number ¢ for which every vector among
rPr®, L, Y, i <j is linearly dependent on the vectors in (4). If r)’
is linearly independent on the vectors in (4), then we put p = 0. We have

0<i<p <.
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We denote by H; the j-dimenasional plane through the peoint M (7,)

with the vectorial base ry’, ry, ..., r’. Its equation is

i
(5) r=rot D Ar®.
o=1
Of course the necessary and sufficient condition for the identity
L; = H; is that p be equal to j.
Now we shall prove that ,
I. Each of the plane L; # H, has the order of contact with the
curve C at the point M(z,) equal to p+1.
II. The order of contaet, if it exists, for the plane H; is larger than j.
We shall prove is this way that the plane H; will satisfy all the con-
ditions required in order that it should be an osculating plane of the
order j.
Let us number the vectors in (4) in such a way that the following
equality holds:

(1)
0

(6) j =ord(ay, ..., a) =ord(ry, ..., r?, ap.y, ..., a;) .

To get (6) let us take into consideration the following facts:

1) The plane H, with the vectorial base ry’, ..., r’, p <j is the
linear subspace of the linear space ;.

2) The vector ri*" does mot belong to IL;, thus it belongs to the
complement of the space L; (to the whole space Rj).

It is possible (in different ways) to number the vectors in (4) in such
a way that the vectors a,.,, ..., a; do not belong to H,. Then the set
of the vectors
4" e, rP a5, ., 6
is also the vectorial base for the plane IL;. It yields the condition (6).
(In the case p = j the set of the vectors a,., 6542, ..., 6; is empty.)

Hence by (6) the equation in (3) of the plane L; can be written in
the form

P i
(3) r=ro+ ) A+ D ha,.
e=1 r=p+1

For a given system of linearly independent vectors in (4) we can

find the set of linearly independent vectors

(7) @Bjit1y oy Op

which satisfy the conditions

(8) ak'al:() (Iczl,...,‘n, l=j+1’oo.",3)
for k #1.

Annales Polonici Mathematici XIV 14



194 8. Topa

When instead of (3) we take (3’), conditions (8) will be transformed
into the form

reai=0 (o=1,..,p, l=j+1,..,0),
(8) a.a;=0 (v=p-+1,...,5,1=7+1,..,1),
ap-qp=0 (k#1, k,l=j+1,...,n).

Let us denote by H,_; the (n—j)-dimensional plane through the
point M (z) of the curve C whose vectorial base is given by (7). Its equa-
tion is

n

r—=r- 2 Aray .

k=j+1
It is obvious that the only point of the planes L; and H,_; is the

point M*(z).
- Now we shall find the radius-vector r*(r) of the point M*(r). We put

n P 7
(9) r+ D ke =ro+ D A+ D Aa,,
k=j4+1 e=1 r=p+1

where the parameters 1;.,, 4;;2, ..., A must be computed.
Multiplying (9) scalarly by e; and using (8’) we obtain the equa-
lities
e =—(r—rg)ay, (k=j+1,..,n).

Hence
n
mre 3 lr—roaar.
k=j+1
Therefore
) r—rl _ |2, (r—ro)adad
lr—rol® |r—rol*

According to the conditions in 2 and 3, which have been assumed
for the function r(zr) we can apply to the difference r —r, in the numerator
of the fraction in (2’) the formula of Peano up to the order j. To the dif-
ference r—r, in the denominator of the fraction in (2’) we apply the
same formula with order 1 of the derivative.

Writing h =7t —7, we have

2) o kérl[(cé:lz_:rge)+%e) ak]ak == f(Mb).

r—rol* IBIr +e,)
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It may easily be verified that (using (8')) we get in the case p = j
and 0 < p<j

| Ik 2,‘+ l(eak)akl
h) = =7 _—
1 PR rS) 4 e ho

This means that the plane H; which occurs in this case has the order
of contact larger than j, if it exists.
Now in the case 0 < p <j—1 we have (using (8'))

pil n i ha—p—l © hi—p-l
k) kZ_H[ S )+ (eak)]ak
202 = .

f(h) =

R 1 + ey

which for 4 = p+1 has the limit, by »—0, equal to

n
| 3 (PP ar)a
det k=741

(p+ 1)1 r P

Remark that (because of the linear independence of the vectors

@i, @2, ..., @y) the necessary and sufficient condition for the equality
y=0is
(10) r?Ma, —0 (k=§+1,..,n).

But the vector ri’*™ is not equal to zero because of the assumption 3.
On the other hand it does not belong to the space L;, so not all the re-
lations in (10) are satisfied.

That means that the number y is larger than zero, which implies
that for p = 0,1, ..., j—1 there exists an order of contact of the plane L;
and it is equal to p+1.

The theorem is proved.

Equation (5) is the equation of the osculating plane L of the order j
of the curve C at the point M (7).

Remark 2. If osculating plane L} of the curve C (satisfying the
conditions 1-4) exists at the point M(z,) then all the osculating planes
LY, L, ..., L9, exist at that point.

This fact follows immediately from the proof of the theorem.

Remark 3. If there exists a plane I, of ¢ dimensions (¢ =1, ..., n—1)
for which there is a neighbourhood of the point M(tr,) on the curve C
contained in L, and if we write g, = ming (%), then there may only exist
osculating planes Ly, (in the sence of definition 2) at the point M(z,) of
the order m equal to g, at most.

(*) Where min is taken over all the planes L, having the property in the question.
14*



196 8. Topa
References

(1] Z. Moszner, Sur quelgues théorémes concernani les hyperplans osculateurs,
Rocznik Naukowo-Dydaktyczny Wyiszej Szkoly Pedagogicznej w Krakowie 13
(1962), pp. 17-37.

Regu par la Rédaction le 23. 9. 1961



