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Introduction

1. In the present paper we shall be concerned with an infinite se-
migroup ® on a countable number of generators b, the elements of G
generally being denoted by a. We suppose that they are distributed into
classes H; (1 <j < h) forming a group I', and that the number of classes
satisfies

1) 1<k D,

where D is parameter > D, > 2 which may increase indefinitely. Using
a homomorphism ¥ of ® into the multiplicative semigroup of real numbers
2 1 we denote the images Na, ND, ... (called norms ofa, b, ...) by a, b, ...
We take for granted that for any # >1

(2) D1 =wr+ 000, =D,

aeHy

asz
where the constants I, ¢,, # do not depend on j (0 : l<€l;0<e <1,
0 < & <1). In a previous paper (see [4]) it has been proved in particular
that for ¢ > } (actually for any ¢ > 0 if % is odd) in every class H; there
is a generator b which in norm does not exceed D°M. In the case of an
even %k and & < % the same estimate was proved supposing that for
a suitable constant ¢, > 0 we have

1 1
(3) lim ( - —-) > D%,
T>00 ; @ g a
a<® agz

where I denotes any subgroup of the group I' with the index 2.
In the present paper we shall use a homomorphism into the multi-
plicative semigroup of complex numbers

(4) Vae™ (@=Na>1, 0<a<l).
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‘We suppose that there is a single a¢® with ¢ = 1 and that ¢ = 1 implies
a = 0. (For this particular a we shall sometimes write 1.) Now we take
for granted that the images (4) of the elements ae ® next to (1), (2) satisty

(®) Y 1=t 0(D),
aeHy
a<z,0<a<p
(with ¢ independent of j) uniformly in 0 <¢ <1.

Our present task is the proof of some estimate for the least norm
of a generator b lying in a fixed angular region

(6) o {o = a+04 (modl)}, 0<6<1, DD< A<

0< 9 <H)

with an arbitrarily large constant ¢, < 1. To this end we shall prove
the following

THEOREM. (i) If & > %, then there is a positive constant ¢ (depending
merely on Gy, €1,1, ?, 0') such that for any x > 1 and any H; in the region

(@< a<aD:, acst), D,= Diosloss/d

there is a generator beH;. For an odd class number h the conclusion holds
as well in the case of ¥ < 3.

(ii) Let b be even and 9 < %. If (3) is true, then the conclusion of (i)
holds (with the constant ¢ depending also on ¢y).

. For 4= 1 the theorem reduces to that of the previous paper [4]
(with ¢ = 1). The result has been -announced in [5].

COROLLARY. Let m(w, o/, H;) denote the number of generators beH;
with aesl and b < o. For appropriate constants ¢;, ¢, > 0 and any = > DP
we have
(7) o (s, o, H;) > w/Dflogax. .

If z > oo and some other conditions are satisfied, then the theorem
holds for regions

(® < o< aDi aesd)
with arbitrarily small positive & This will be proved in §§ 13, 14.

(*) In order to illustrate the inequality ¢ < & let us take, for example, the
semigroup @ (with h = 1) of ‘the ordinary complex integers a with norms a = [af?,
considering the integers a and a4 as identical. Then x = n/4 and we may take D = 4.
The number of integers a in the sector

Say {o <, a =oy+0/z(modl)} (0<0<1)

iy evidently = V5+0(1) for ¢y = 0 and < Vot-0 (1) for any other ¢y. In the present
instance (5) holds with 4 = % (cf. [7], (675)) but it is not true for & > } (since there
ig no a in Se, with a positive a < 1/8V). On the other hand (2) holds with ¢ = ¢
(see, for example, [7], (682)) and thus & < &. -

icm
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The theorem is of interest chiefly in the case of D — oo and 1 /4 <1
(see (6)). If on the contrary 1/4 — co and D < 1, then better results
can be obtained by a simpler method. I hope to return to the latter case
in another paper.

An application of the present theorem for primes represeﬁta,ble
by binary quadratic forms will be given in a continuation of this paper.

The method used in this second paper is the same as that of the
previous one (the density method of Yu. V. Linnik)., For the proof of
the main auxiliary theorems we will uge the method of Turin ([x01).

Further on B, C,¢,04,0,,... denote positive constants which may
depend on I, 9, ', 6, ¢; and ¢, (if & is even and & < %). Generally they
retain their meaning only throughout the same paragraph.

By dja we mean that b, ae® and that thereis an a’«® such that a— da’.
If b is in norm the largest element of ® for which 9|a, and d |ay, then we
write b = (a, a,). By (ay, a,) we shall denote the corresponding number
in the semigroup of norms (or sometimes the interval a, < @ < a,). For
the norms of a,5,,... ¢® we shall write a,b,d, ..., respectively.

The complex variable will be denoted by s = o+ it (0 =7res,t =
= ims). -

The functions ¢(s, X) and their zeros near the line ¢ = 1

2. Lemma 1. Let the sequence of real mumbers o, (n =1,2, oy N)
be distributed uniformly modl with the remaining term < R, that is to say,
Jor any @e[0,1] the number N, of numbers «, with =, = fp(mod1)
(0 <0 <1) satisfy N,—oN < R. Then for any integer m + 0

(8) , N ginen < m| R.
ngN
Proof. Writing
(9) ¥, — ¢N = E(p)
we have
(10) B = max|R(p).
: ool

By (9) and Abel’s identity (see [8], p. 371)

1 1 »
(11) e — [ (0N +R(p)} 2mi6*™dp+ N = —2ni [ R(p) ™™ dp.’
®
ne N 0 0

Let R, (p) (foi' any fixed positive integer m) denote the last term in (9)
when the sequence @, is replaced by ma,. Then, by (11),

1
(12) 2 P R, T f Bonlp)e™ dp.
nE<N . T
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Let A, (for any fixed pe[0,1]) be the number of solutions @, of the
inequality
(13) maz, = fp (mod 1) (0 <0 <1).

By the definition of R, (¢) we have

(14) Ay = QN+ Bp(p).
Now, (13) is equivalent to ma, = k4 09 (% integer), i.e.

/
(15) m,,=l-+9i’”-

The last condition is satisfied only by those », which lie in any of the
following intervals mod1:

2] [2220) 2 =z
’m b m? m y v m ? m .

Hence, according to (9), the number of the solutions @, of (15) is

sl L reaffte) afl) o

n ? ViR (m-1+qa) MR(m—l)
m m
1<i=m—1

m
m m l
From this and (14) we deduce

Rnlp) = R (5;’7) n N {R(”—L"’) _R(?_)}

Igj<m—1

= ¢N+R(i”—) +
m

Hence, by (10),
max | By ()| < 2mE.
i<l

Using this estimate in (12) we get (8) for a positive m. And the case of
m < 0 can be reduced to that of m > 0.

3. Let » have a higher order of magnitude than (D [x)!?. Then
¥y (2) and (5) the numbers
a=a, {n=1,..,N; N = xz+ 0 (Drg' =)}

correspondmg to the points (4) (with o < =) of any class H = H; are
distributed uniformly modl with the remaining term R < D%z'?,
Henece, writing .

E = g(a) —_ éz;:ia
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we have by Lemma 1 for any integer m == 0

3

(18) & < |m| Dorapt~?

acH,age
Now let us introduce the function
(17) L(s, H, &™) 25 "0 (0 >1)
aeH
and the number
P—n (0<yp <} if m=o0,
2 if mo#0.
LovMa 2. The function (17) is regular in the half-plane 6 >1—9,,

ewcept for a simple pole at s = 1 with residue » in the case of m =0 and
we have wuniformly in the strip @ (1—9, <o < 2):

0(s, Hy1)—n(s—1)"" < 77_1-Dc|3|7

(18) & =

(19)
C(s, H, &™) < D%ms|  (m #0).

Proof. For m = 0 this has been proved in [4], §3. Further let m
be a fixed integer s 0 and f(2) denote the sum (16). Then in o >1

L(s, H, &™) = Z e = ff.(ﬂ-i dw =829n(3);
1

el

(20) it

f(=)
In(8) = ;[ sy dw.
Now we can find a number z, = @,(m) >1 such that
(21) @y = (DU u', wy < (|m] D[

Then, by (16), for any n > @, we have in @

bl

gals) < DA1|m| f S Ao < D] {1~ P — (1)

Hence by (20) t(s, H, £™) is regular in o > 1— &, and (19) holds, since

by (20), ( (2), (18) and (21) in @
f(@) np4 D' ~? P do 4+ D
Zyns)“ a+1d ‘<f"—"rar*dﬁ<"!;f_71 2
ngwy

< nw*’l-F-D"l < g * 4 D < |m| D™

Acta Arithmetica X. 4 . =
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4. Let y denote the characters of the group I, y, being principal
character, and let y(a) = x(H) for all acH. Write

(22) X(a) = z(a) £(a)™ = g(a)e*™™.
Now we introduce the function .
(23) L8, X) =L, 2, €)= D) a(E)E(s, H, ")
H
v z(@)E@)™ 1 X(a)
=Z-—;,;——~—Z  (e>1).
Since
b ity =y,
; #(H) = IO otherwise,

by Lemma 2 the function (23) is regular in o > 1—,, except for a simple
pole at s = 1 with residue hx in the case of X = X, (when g = y, and
m = 0). By (1), (23), (19) we have in G (1—% <o < 2)

(24) £(s, %, €M)~ eohn(s—1)7" < (8—0) D (14 |m]) (L4 [¢])

where
1 if y =y and m =0,

6y == .
0 otherwise.

® being a semigroup with the generators b, in the half-plane B (¢>1)
we have

t(s, X) = [ [ 1—x(6)5~)*
b

whence there are no zeros of ¢(s, X) in E.
Let u(a) = (—1) if a is a product of » distinet generators, and = 0

if ¥|a. Further let
logh i a=D0H" nx=l
Afq) = g ‘ ( )s
0 otherwise.

Using the product-form of £(s, X) we can prove that

1/e(s, X) = D X(@)u(a)a™,

(25) e
zitis, X)= ~Z‘ X(@)4@a™® (o> 1).
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Hence by (24) for any 75¢(0,1]

26) LE(L4n-+it, X) < hoep™ + D°(1+ mif) (1 + 1)
Now taking
n =1/D(1—|—]m[)(1+|t0|), So = 14-n+it,
and using (24) and (26) we can prove (cf. [4], (19)) that in ls—so] < 39,
Y f 1
@n s, X)+8—__~1 - (s—0)™" < log D(1+ |m])(1+ [t,))

le—8gl< By /2

where ¢ runs through the zeros of {(s, X). By (27) and the arguments
used in [2], §11

18'[2 00y Xo)] < 3 (p—1)72

where g, = 1+4-¢;/logD and ¢, is small enough. For any positive r < 1
we have (cf. [4], (21))

&1+, X)) <1jr-+o,logD.
Let »=9(r, X,%) denote the number of zeros of £(s, X) in
Js—1—dty] < r. If
05 [10g D1+ |m|)(1+ ) < 7 < 8,/4 —1/D(1+ ml)(L1+ %)),
then (cf. [2], §10)
(28) v <€ 7 1og D (1 |ml) (14 [t,)-

, By the arguments of [4], §6 (with ¢, instead of #) we can prove
that the number of zeros of £(s, X) in the rectangle (1—4,/2 < o <1,
t—1,) < %) does not exceed < log D(1+ [m]) (1 + [4]).

5. Now we can repeat the arguments of [4], §§ 7-10 with D(1+ [m]),
X instead of D, y (and with g = 1). Considering that by (22) a real X
implies m = 0 we get the following

FunpAMENTAL LEMMA 3. For appropriate ¢ in the region

(29) 0> 1—oflogD(L+|m)(1+[t]) (>1—0'j24)

there are mo zeros of {(s, X) with a complex X — % (a) E(a)™. For at most
one real X in (29) with m = 0, t = 0 there may be a simple real zero

(30) o =1—48<1.

o’ (if it exists) will'be called the exceptional zero of {(s, X). If the
conditions of the theorem of §1 are satistied, then we have in (30)
8" > D= (see [47, §19, Lemma 22).
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Further on in (22) let m satisty

(31) Im| < D*»,

¢, being defined by (6). Then by the arguments used in [4], §§ 20, 21 we
can prove the following ‘

FUNDAMENTAT LEMMA 4. Let &' be defined by (30). For appropriate
A <1 and
oA e[d, dlogD]
SlogD 7’
there are in (1—AflogD <o <1, |tj < D) no other zeros of the function
[Ic(s, X) (with m satisfying (31)) than at most the exceptional zero (30).
X

(32) & = min(6', AflogD), A = Alog

An upper bound for the number of generators

6. LEMMA 5. Let
(33)

a, ®m=1,2,..,N)

be a set of elements ¢® such that for any fized qe® we have

D1 = Nif(a)-+ By

. alan,

where f(q) is a positive funetion satisfying F{(a.0) = f(q)f(q.) whenever
(a1, 0z = L. Purther lot N, (for any = > 1) denote the number of those ele-
ments 0, of (38) which are nat divisible in © with any generator b in norm
less than z. Write '

(34)

a « _ A _ #a)
F(a)=2ﬂ(b)f(;), s= 3y o= D
’ = ek
lu(ﬁ) []—1/f®) 8.8 if o <z,
Ae = bla
0  otherwise.
Then
(35) N NSt D lhghayRaygyiiaapl-

a1,a9
a1<2,dp <%
This may be proved by the sieve method of A. Selberg ([9]). Cf. [3], § 3.
7. LM 6. Let (33) in the previous lemma be all the elements of
any class H; of & for which in (4)

a<®, o=qg-tipmodl) (0<6<1; ¢ fived, D" [ua” <p<1).

icm
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If 2 22" and » > D* (where ¢, < 1 is large enough), then the main term
in (38) does not emceed cypm[hloge.

Proof. By (5) we have
(36) N = xgw+ O (D22 ?).
By (5) and (36) the number of elements (33) with q|a, for any qe® is

1-% Py o
mpf_w(pcl(ﬁ) )= N+ 0(D%2* )+0(Dc1(£)‘ "‘)
q q q q
[\ 1= 0
E~|~0(D”l (f) )
q q

Hence (34) holds for

2 1—%
(37) f(Q) =4q, Rq < D4 (E)
and thus '
N #(9) (1 1 1
8, = ——— = 2 )= =
. %q”(l_llb) Qea]] b+b2—{"‘) o
2] blq QF{Z blg as(®)

where (2) denotes the set of elements ae ® such that the product of all
different generators of any a is in norm < 2. Hence

z

) 1 1
8, > §—> E ~—>f
@ a
a _ﬂ

Ve

v

()
yz

dy
a=g

Vica<ge

where »(y) = }'l.
a

a<y
By (2) »(9) > }hxy (for a sufficiently large ¢;) and thus

2L o Ca

hologew ~ Rloga’

1 1 N
8, > i hilogz > 50 hrxlogz, 5 <t

8. Lmmma 7. Let W denote the remaining term in (35) and let in Lemma 6

&
, @
(38) =g WA DHoga’ 6 = 146 +max(c,l), ¢=>a

for any positive constant 9, < &' and for © > D with o sufficiently large
¢y = 03(Py) <€ 1. Then

W < espwfhlogm,  ¢s =05(, 0).
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Proof. Since |3, <1 (cf. [3], (38)), by (35), (37),

’ (a1, “2))1_5’
0 ol §
W< Dha ( A1y ’

ay,ag
1<8,09<P

and thus we have to prove that

D U
O (e az))l 4
(39) 2/ ( @y Gy <(ph.l)cllogaa'
alé‘,},’gégs
From (2) we can deduce
(40) Za—l—ﬂ' < huzﬂ', Za~1_0' < _Dc“_cl,
u;z aasn
whence
1— & 2 ,
S R
a),09 Gy a
(a1,05)=1 ase
) <2, 09
Writing
19
Gy O
8,(2) = 2 (( 1 2)) 7
i Ay
AL Z

we have, by (41),
P 2\ . )
By(2) = a='+"s, (—J) < d7HRRE (E) =W a1’

Hence, by (40) and (38),

(a1, “2))1~w — 2,20" -1t
Ve < ) Be) < (he)e d
Z a,ay bZ ;1

4

a1,0
A <B, Ao <E d<o ase
Y
_Dcd."“l h 2,20 @
< (ha)'s™ = {PhD"llogw"

which proves (39).

9. LevmmA 8, Let mg(®, @, a,) denote the number of gemerators be H
with

b<o, a=a+0p(modl) (0<6<1),

On the absiract theory of primes II 343

where @70 < @< 1 (for any positive constant B, < ¥, ©> D%
and 65 = 03(%,) large enough). Then for appropriate o5 (which does mot de-
pend on ap)

(42) 7ig (@, ¢, ag) < 6spn/h logm.
Proof. Since, by (38), z < &, it follows from Lemma 6 that all
the generators larger in norm than #z and satisfying the eonditions of

the present lemma are in the set of the ¥, elements as defined in Lemma 5.
Hence, by (2) and Lemmas 6, 7

wg (%, @) ) < Ny+am (2, @, a0)< Nyt xge 0(D42*~") < o,m/h logm.
COROLLARY. If ¢ > o7%, © > D%, then

(43) D logh < cgulh,

beH b
a=ay+0p(mod 1)

~

(44) A(a) < espmfh.

aeH o<z
asiagt-Op(mod 1)
Proof. The left-hand side of (43) being < zg(z, @, a) logz, the

estimate holds by (42). By (43) and the definition of A(a), (44) follows
from the estimate

Z logb-+ Z logh+... < c,p2/h,
b2eH b2 B3eH b3<z
2ammag+Op(mod 1) 3asag+0p(mod 1)
which ig evident (for a sufficiently large ¢, < 1), since the number of term
on the leftiis < D% log®, none of them exceeding {pxVz+ 0(D% 23~ 2} loge
(cf. [4], §14).

A density lemma

10. Let X 5 X, and let the exponent m in (22) satisfy (31). Then,
by (27) and (28), the conditions of [4], Lemma 16 (i) (with 9, =_§791)
for the functions F(s) = ¢'[¢(s, X) are fulfilled. Further let for any real =,
for 4 > 1 and any integer % > 2

1 24de0 gMs__ gt \E pr
(4B) JIx(z, b, 4) = ..mz~im (W) ?(84—1—]-@1:, X)ds.

Levma 9. Let in (22) m| < M (L < M < D*0) and in (48) |7| < D.

If " > D%, where o, s the constamt of §9, then

(46) D 1Tx (v, oy A)* < e loge M.
X
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Proof. Writing

24000 ¢ 345 As\k
l (6 —6 ) 6—slogads
o H
2nt . 24s

we have, by (45) and (25)

Tx(e, by ) = 3O )

E 6. X(a)

a
A g pBld

(say), since R(a) = 0 outside the interval ¢4 < o < ¢4 (see [4], (61)).
Let S denote the left-hand side of (46). Then

(47) 8= 3 65, X0)X@) > > >
X ay,a9¢H ap,ap Imi<M %
- Z{ Z‘ Z‘ E gFrimay e~2m‘ma2}’
H |mi<M az,a; ageEl
since
3 kit H is the principal elass H.
(48) D) = . h
3 0  otherwise.

Now using an integer ¥ >1 and considering that ¢, = A(a) R(a)a™ "%

does not depend on a, we can write the sum U in brackets of (47) as

follows:
2

aeH
|a—ay|€[1/NV 2(N)

U= o 3 a3y
H m

ayeH

+ood)-

ae.
la—ay|< 1N

Since for any real ae[0,1)

6*™™ 2 min {M, 1/min(a, 1— a)}
s

(ef. [8], p. 189), we have

U< e Y \eal+l-;7-

ayeH aeH
la—a)[<1/N

o +---)-

> e+

ael
la—ayle[ 1/, 2/N)

2

aekl
la—ay ([ 2/, 8/ V)
Using (44) and the estimate

[R(a)] < /4 e

for 4 ca<a

icm
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(see [4], (61)), we deduce
kA
o A@ _ ¢
6yl € —
g; ol < g Z <l :v+1)
¥ kA
fa—ay | elFJN(f+1)/NV) eIcA a< eau e
la—ay |[f\V, (7-+1)/N)
e"s"’ kea5k
< =T
Hence
- 703"5’° 1
U< Dl ( + + Fot )
éﬁ 1 V)2
ees" (M ke's® (M lee®s*
2 oo N 2 i
< \y Tl ) lo] <=3 (N HogN) 3
ael
k 2
= () o (5 +10e).
Taking N = M we get
U < b 2eloge M.
From this and (47) follows (46).
Now let » = w(r,,4) for any selected vye[—D,D] and let

Aelcg, 6;log D] (with appropriate ¢, ¢,) denote the number of functions
t(s, X) (with |m| < M; M < D*) having at least one zero g = ¢(X)
in the square @ (1 —}./logD <0<, [t— 7| <A/2logD). Then for at least
vfegh funetions F(s) = £'/{(s, X) we have, by [4], (49),

| (0, &, A~ log D)| > 6~%*

with the same % = &, << ¢;A. Hence, by (46),

v ., p -
— g2t <_§j | x (%o, Ty, A

. Yog D)* < e*loge M,
) .

whence
v < 10t loge .

Combining this with (28) and arguing as in [4], §18, we can prove the
following
FUNDAMENTAL LEMMA 9. Let N, denote the number of zeros of the
Sunction IT¢ (s, X) (with m in (22) satisfying |m| < M; M < D™) in the
X
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rectangle

R, (1—AflogD <o <1, |i| < é/logD) (0 <A <} logD).

Then for appropriate C(?)

(49) N, < ¢ logeM.

Proof of the theorem

14, Lemma 10. Let r denole any fived integer = 1, and let 0 < 4 < 4,
0 < ay—ay; < 1—24. There is a periodic function f(a) of the real variable
with the period 1 such that (i) f(a) =1 in o <a < apy fla) =0 in
+A4<ae<1+a— 4 and 0 < f(a) < 1 for other a; (ii) it has the Fourier-

eLPANSTON
20? dmeznima’
M= —0Q
where
(80) dy = a—ay+ 4, dp <min(de, |m|™ 47" w7 for |m| =1

This is an immediate consequence of I. M. Vinogradov’s lemma
([11] I, Lemma 12). Cf. [6], p. 514.

Now let L,, denote a broken line in the strip

1~ —1/elog? D(1+[f]) < 0 < 1—p &'

(with appropriate ¢) such that (i) for any s = o+iteL,, we have
¢')t(s, X) <log3D(1+t]) (when m in (22) satisfies (31)) and (ii) the
length of the piece of L, between any two of its points o+,
o' +i(t+1) is < 2. Write

.‘;'xzﬂ9 (g”li) oy =1—g.
From the identity
X(a)Afa : v e
2 ( ).,A( ) exp(—mg a/w) =i/ L g (s, X)a*~"166-0" g
[ at 4::'/ T 2—1ic0 <

(x>1,y>0)

(®) Any possible improvement of (49) would imply a corresponding improve-
ment in the theorem of § 1. If, for example, the factor logeM could be dropped, then
the theorem would be true for D, = D. Cf. the proof of (80) and (62).

icm
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(cf. [1], p. 299) and (22), (48) we deduce

A 2
(51) hZHT(?—) £ Xp(—— 1°g4;/””)

= z]/—— %_— (s, Xyt~ 1ee- 0 g,

2—100

Let # denote the interval
o =a—4+-204(modl), 0<<h<1

with a fixed a; and 4 satisfying the conditions of Lemma 10. By (51),
(22) and Lemma 10,

A(a) log*a/» A(a) log%a/z
= exp( 417”)/ e f(a)exp(— o )

aeH E aeH i

ces ) - ( log® a/m) 2 d,¢(a

aeH M= —00

(52)

2 +h2 = 0,+7T,,

wel  |ml<M aeH (m|>M

gayy, where M stands for D¥, which is the right-hand side of (31).
By (51)

(53) Ul_q,]/y V“H) D) dn

Imi<M 2—100

24100 :

= (s X)a*=e16¢-0% ds

= 2V;y$”e”2”do—2 l/;:_g; ) d,, Res 5 (5, X)a —516(3—01)2U+

s=eym ¢

+'b]/ Zx i, f:

I’"'LIQM Lym

% (H)

x im|<M

where g,,, runs through the zeros of [(s,
of Ly,.
fies

X)(X = g£™) on the right
Supposing 1 < y <log*’D, the remaining term in (53) satis-

<y D) |dullog’D [ 6~log’ (2+1)dt < hlog*Dlog M < D logD,
s b
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by (1). Further on we shall use the notation
¢ =1-—0+1y, o =1-¢,
¢ being a typical zero of []t(s, X) and o' the exceptional zero of £ (s, X)
b4

with a real exceptional character X = y’ (cf. (30)). Writing
(54) 8§ =1-H x’ (H) g% g~ oW

(where B, = 1 if o' exists, and B, = 0 otherwise) and

(55) 8 = Z%( H) 2 o m-—dG{—-d(Zrl—d)—vz+Ziv(ﬂ-6)}1l+'iylogm7
% M oy m(we)
we have
(56) U, = 2Vrya® & (d,8 — §')+ 0 (D log*D).
Write
s=1D £>0; y=rnlogD (n=mn>2).

Let Ip denote the integration B times repeated with respect to ,
the range of integration being (», n-+1). Then, by (56) and (55)

U .

o0 Tn | 2 Al =138~ D'"0log'D,
0= 8+ y*)log D}

58) Ip8'| < v £ 0xp {—mlg _m

( ) | B ‘ ( ) | q| |g5—|—2i’y(q—é)|B TI }'Tz“f'Ts:

where d, (with ¢ = ¢, ) stands for the d,, and Ty, T,, T; denote the
parts of the previous sum obtained by dissection of the region & (say)
on the right of every L,, as follows. '

Let @, be the part @ with |¢] > 1. By (58) and the cstimate for the
number of zeros of {(s, X) (mentioned at the end of §4)

Ty < D dyo "0 < hMd, f 60" 08D 2100 1) log 1) (1 -+ 1) @t

e

< hMdylog* D [ 6™ %P 2 10g (2 1) dt
1

< hMd, log2D [ 6="%D 4t < 4, D~"hM log D.
3

icm
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Let G, be the set of points s = 1—2/log D+iv/logDeG with 1 > 4,

(see Temma 4) and |7 <7, = 7,(4) = min(e*, log D). Writing
¢ = 1—AflogD+izflog D,

A= lgy T =1,

we have, by (58) and Lemma 9

(59) T, < Z |dy) 690 1= F 2 |, ¢~ +omo
Gy &
2glogD
< f (4 gno) e~ E1 My (2) A+ =206+ 008Dy, (9 log D),
where
1/)(7,[,) e 2 V/{,A (04 <u<? l[ IO}Z.D)
Aogu,k10|$61l‘

Having chosen 4 (D%, 1], le’c us pa.rmnon all the integers m numer-
ically < D™ into classes (]m] = A" and (jm| > M,). By (49)
in the sum u(A) there are < eoz logex terms d, = du(o = gym)
with |m| <o and by (50) (with a, = a;) d, < min(4, |m|™!). Hence

logem logeM

) < e Alogi/d.

dz+

(60)  p(A) < Aemlogelllﬂ—e‘”( f
My

From (59) and (60) we get (for a sufficiently large », < 1)
' T, < 6~ C+3m% 410g1/4.

Let Gy denote the remaining part of G and let 4, < log log D (otherwise
there is no g # o’ in G3). Then, by (68) and (60)

Ty < 3] ()70 o7 < o=Cxm0h 3] d,| o]~
0:6'3 2eGgy

loglogD
< o—(HU'Io)"u[ |

4o

6~y (A) dh-+ e~ oF%Py (loglog D)}

« g~ E+Imoldy e~ B-0% 4 logl/4 < e«(EHano)ﬂg Alogl/d,

supposing that B > 0+2 and 7, <1 is large enough.
From (54) an(l Lemma 4 we deduce

(61) IBS ¢~ 08mlogD >1— o~ PonolosD >1— o~ (00l4)108D ~, aji log_D

For a sufficiently large 7, < 1 the remaining term in (57) taken
together with 7, is in modulus << dy(8,/84)1logD ( (since dy = A4 > 3D~
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and 8, > D~%, by §5), whereas by (32)

Tyt Ty < ¢e™ET10% 4 logl [A < esdye™ 0000 10g1/ 4

eA
= — —— |logl/4
6y GXP( $gm, A log % logD) ogl/

=d, (fﬂfg)mlt ese ¥4 1ogl 4 < do—é%logD,
provided that
oge™ 04 log1]4 < §,
whence
(62) 7 = ¢; log logl/4.

Let U denote the left-hand side of (57). Then, by (61) and (58)
U> dp-2logD
{63) gz 080

12. Introducing the number
e=we' = D¥Hn,
we divide the sum U, (say) on the left of (52) up into four sums

logd 10 b o
(64) Uy = 8yth 2 b§1 ( g /)

+ 81+ k8,

fc<b<a L

logh log?h o
so=n ) S en(— ),

beH
bz aef

2
(65) 8, =h Z A;a(i) exp (_lm_og,;;/w)7

aell
az2,aef

. A(a) log*a/w
B = Z a1 QXP(” dy )

a=b"eH n32
a<guef

where

For a sufficiently large 7, < 1 and any T > D% we have, by (44),

(66) > a) | fmtl“(z“’)dt—f— /1) < 41711,

aeH DS
D‘-'3<a<T,us.f

icm®
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whence
r log’t/x\ logt/z
67 f ex; ( dt
(67) P 4y ) 2yt

o

log?t/x logt
f ( g +glogt)(0g f@ —-i—i——g)dt
2yt

log®t/a 1
<oaf exp(--.iuimgt)(_o_gﬂzﬂ_ﬂ)m

) 2yt t
== 2/ exp (~ el +¢ logz) =24¢"Y = 941:0”0“‘““7’”
y (65), (66) and (5)
logd
(68) So<h e =
B beH beH ,aes
btt, ae s b D8 acs Dbz

€ AhoeD%+ Ao < AV

Since 5y =1—g,0 < g < ;,—,, we have for any positive constant ¢ < 1-—2¢

logh log*b [z .
) e <« S
H7eH,n22 Y aeH
Vgt aes aes

F w4 D _
< f A gDt < D,

t2+ﬂ’
1

whence for a sufficiently large n, <1

(69) 1S, < A6tV
Now, by (67), (68) and (69),
8+ 8+ hS, < Aa? 610
and thus
1 ~i0%n
(70) Iy (St B ) < D

Having chosen the number 4e(3D~%, %], we take M = D*0 and
> 4. Then for any m in absolute value > M we have |m|4 > }m|**,
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whence by (50)
dm| < M~

imi{>M

and thus in (52)

-y A(a log*a/®
TR ()exp(__g__/__) Z |dom]
ael

0] 4
o YT s

- log*a/®
< D—rcnh Z {1_10?201{1) (__. __.g._/..)
neH @

4y
— 24400 C'

=D ]/l ZE(H) f = (8, p) 2" 160NV g = D "0
T x 2—100 l,'

(say). In order to get an upper bound for ¥ we may use the same method
of residues as the one we used in dealing with U, (except that in the pre-
sent case m = 0, dy = 1 and there are no other coefficients d,,). Arguing
ag in (563)-(61) we can prove that

U, <
2Vmy a? ™

Let us denote by Jp the operation

—1Cq

(1) Ig

1

I e —_— g

BZI/-ny af ™

Then for sufficiently large r, 75, <1 we have by (63), (64), (70), (52)
and (71)

1 logh log®b |
(72) Ig———h —o—eX ('—
Z o Vryat ™ Eg, b O\ gy
s<b<s

=dJp Uo“JB(So+Sl+hsz)
P JB(U1+ Uz)"JB(So“{" ;5'1—|—h;3'2) = JBU1+JB Uz"JB(So’FSl‘I’hSI)

%

14 108D — 6D "*0— 6, D=i

2 [Ip Uil — |5 Usl — [T 5(8s+ 81+ 18,)| > d,

> dy(8,/84) log D.
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Since # < @D with B = 4(n,+ B) and 5, = ¢, log log1/4, by (62), the
theorem follows. If z > Di® (with appropriate ¢,,), then by (1) the left-
hand side of (72) does not exceed

D logz

P )
;

n(z,#, H)

which implies (7).

Improvement of the theorem for z ~» co

13. Further on we suppose that (3) holds for any ¢, > 0, D > Dy(c,)
and that for arbitrarily small positive constants e, &' and any D > D,(¢’),
x> 1 we have

hye > D7, E 1 < cy(e) D ptter,
age
These conditions imply the estimate for execeptional zero o =1—¢":
(73) 8'>D72 (D> Dy(sy))

with an arbitrarily small constant &, > 0 (see [4], §25).

We shall prove that if (73) holds (which is certainly true for an odd
clags number), then there are positive constants ¢, ¢’ depending merely on
Cos €1, 1y 'y & such that for any positive & < ¢ and any D > Dy(e), x > =,
= D€ (where D, = D'5'%4) 4 every class H there is a gene-
rator b with the image (4) lying in the region

(# <a<aDj, aed),

o being defined by (6). And if » > m,D5, then n(z, «, H) > z/hD¥® log.
The proof beging as in § 11. But now we use

v = TlogD, 2 <n <7 <loglogs/d,

(74) 1

1 .
¢, log log8/4’

v =v(§) <wmin(e¥,logD), k=

A

where ¢, < 1 and 7, are large enough. Considering that

1 i &> & = (3+a)g,

Ty~ Y2 g0 < o~ 0%nol) logD <
BY Drmin <D™ % it £ &1y v = 2(&1),
we deduce that the remaining term in (57) satisfies

Tpy~"26~ 0 (2~ D log* D) < dy D"

Acta Arithmetica X. 4 ’ =
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Let @, be the part of & with [f| >logD. Then in (58)

(=]
7T, < 2 =il o p 3y f ¢~ 1Dy 2 100 D Tog Didi
i>TogD lozD

©0 oe
< D" log* D f o~ (ol)logD g2 logidt < D% f e—mo/v)tzlow-x-slogtdt

logD logD
DlO 2 o0 Dcs )
<D [eFar< D% [ ¢ = e D7
102D lokD G 108
whence
T, < dy D7

In the previous definition of &, we now take 7,(1) = min(e*, log*D).

The corresponding part of (58) is

T, < (2?)‘8 2 |dg]e—iﬂ£~(nolv)al(gl)—.8 < o8 lde] g~ E+0mg)a

oy A<A<20]0gD
2glogD N
< [ (E+gmlp)eCOON g (3) -t = mR0ED (5 10g D))

< WP e =g 10p1 |4 < dyem om0 ~Nalog ] [ 4

doe @M log 114 it £ > 3C
dye= BT o114 if £ < 3C, 5, > 207 0(30).

In any case
Ty <€ dye~Cl+mi?i 007 /4.

Next, we have

B v\B 1
T, <y 2 lda! Pt 02 m_c,i—lf — (__) o~ E+omahig 2 Idal |T]—-B
g

oGy ey
2loglogD \
< B G+ { f w(A)e B in- ¢ 2Bl0B108D 1) (9 o logD)}
)

< »Pg ErI B0k 1001 /4,
Hence, for a large 7, < 1

Ty < dye=CP oM 1og1 /4.
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This proves the following analogue of (57):

75 U= |Ig— U (613 +mg/29)2,
(75) = Béljw = (I8 —0,67C M/ 1001 14— o, D),
where

Ig8 = 1— g% grotnoh)9'logD_
Hence, by Lemma 4,
(76) Ip8 2 1— g 0D 5 o=~ lagtonD >¥qu.
v

We may suppose that & < A/3 (see (74)). Then there is a number
£ (0 < & < log log8/4) which is the least positive & such that

L > L
k&+log(4c,logl/4).

3
If £ > &), then

e < ! —— M
4e,logl /A

whence, by (74)
ot~ P log1/4 < 14w,

(17) oo™ P+ 1001 14 < 6,678 10g1 /4

& ed } (6 log D\44*
= ¢,;0Xp)— — A log——tlogl/4 = 2
- p{ 3 Ogdologl) 0gl/d = ¢ i ) logl/4
8y logD)“E/s e 8, log D
= |— e~ logljd < =
( A % 0gl/4 < 44y
Taking %, large enough:
(78) 7o < log logl/4,
we have :
1
fgmede™ > 17
k&, +1og(4e,10g1/4),

whence for any &e[0, &]
gAmef2v > 1,

o0l 1 — kg

< m e, (’—,8”‘”‘4’"’/2y logl /A < 1/47
add
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and thus (cf. (77))
o~ EBH0M0 Tog 1 (A < ¢, 670% log 1[4

3 log D )”4"0’2"
_ (""I’

8o logD
e~ 0400 og 4 < 22
e, ogl/ i,

Hence in any case (77) holds for appropriate 7, satisfying (78).
Since by (73)

e D7 < (8y/84%) log D,
from (75) (76) and (77) it follows that for any ¢, < 1/84

(79) U > dy(cy[») 8y logD.

14. Using the number z = we we divide up the sum U, on the left
of (52) into four partial sums as in (64). By the arguments of §12 we
prove that

8ot 8+ b, < Aa eV,
whence
1
2]/7Cl/7'” 02”
Hence, by (71) and (79)
1 logh log?b/x
(80) Igmhmgj bi exp(m iy/ )

x<b<e

= Jp Uy— 0,d D700 > | Jp Uy — |5 Uy| — 0,4 D0

(8- 8, + hiSy) < AD0™0,

= {}(6/v) 6, log D — 041)—1721;0/21,}[] '
‘Writo
B = 4(ny+ B) < ¢loglog8/4 ¢ = (kloglog8/4)™*, D= plolons4.
For any fixed positive & < ¢ let

(81) " = ofe.

Then 1 <» <logD, if D> D,(¢). Further on let & > DFW8EH; then
& > k7' log(e/e), whence

cle < 6",

©

icm

On the absiract theory of primes I 357.

and, by (81), (74), », satisfies the conditions imposed on ». Writing
& = ¢%s/2¢, we have by (81)
2 2
g N
< .
12 29,

<

l

(82) g =

Lo

From (73) and Lemma 4 we deduce that

(83) 8y > e5(e') D"
and, if D > Dy(¢'),
Gbs(e) D1,
de,
Hence, by (82), (83)
%) Cy "s( ) 9 ) :
——— 3§y logD = d, DR - O ngl2vy,
dogm, O 2 404 o > 0, D" >D*> D~

This proves that
041)””2"0’2”1 < }(eyfvy) 8y logD.

Now denoting by V the left-hand side of (80) (with », instead of »), we
have

(84) V > 44(ey/v,) 6, log D.
Consequently theve is a generator beH with ae# and
be (1,2) = (z, 2e") = (z, 2D = (2, aD 0B
= (@, #D®") < (&, 2D} < (@, #D3).

(80) combined with (84) gives an lower bound for 7 (z, ., H). This proves
the results stated, the transition from intervals .# to &/ being a simple
matter.
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Errata to the part I oy this paper (Aeta Arithm. 10(1964), pp. 137.182),

p. 165%: read J, instead of y,,
p. 172%: read o ) instead of ¢ 3,
p. 1773: read 4(g—&') kni instead of 4 (9—08") glms.
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Some remarks on a series of Ramanujan
by
W. StA§ (Poznat)

1. In my previous papers [7], [8] I was concerned with the Rama-
nujan series

\48

(L 5 = 34 e
N

=1

]

where p(n) was the function of Mobius and 8 a real parameter.
G. H. Hardy and J. E. Littlewood have proved (see [1]) that

1
(1.2) 8() =08 %, B> oo,

is equivalent to the conjecture of Riemann.

At present we shall prove by Tur4n’s methods the following theorem,
which is stronger than my previous result (see [8]), based on Riemann’s
hypothesis and on the conjecture that the f-function has only simple
Zeros.

TueoREM. Suppose Riemann’s conjecture. Then for T > C

-3—00)
(1.3) max |S(B)| =T * .
pl-o(Dper ’

In the proof we shall apply the method of Turdn, namely we shall
use the following modification ([2]) of Turdn’s Satz X ([11]):

LevmmA 1. Suppose that m =0, 2,,2,,...,2y are complex numbers
with

(1.4) l=lzgl >kl z...2l=... 2%l 2. >
and

N N
(1.5) len) > 2 Tom' o, | < lewl — N

Then there exists am integer u with
(1.6) m < u<m+N
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