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Primes, polynomials and almost primes
by
R.J. Miecm (Trbana, Il.)

A set of almost primes is @ set of integers each of which contains
no more than a fixed number of prime factors. An integral valued poly-
nomial F(n) which is of degree & and which has % irreducible factors,
for example, will generate a sequence of almost primes, the bound being
approximately (9%2/5--klogk), [3]. I propose to show that the sequence
{F(p)}, where p is a prime, contains an infinite subsequence of almost
primes. To be specifie, I shall prove:

THEOREM. Let F(n) be an integral valued polynomial. Let K be any
integer and let ¢ be any integer which is relatively prime to K. Then there is
a constant A which depends on the polynomial F{n) such that there are an
infinite number of primes p congruent to ¢ modulo K for whick F{p) has
at most A prime factors, multiple prime faclors being counted multiply.

The constant A4 of the conclusion of the theorem is not readily com-
putable.

Several comments regarding assumptions and notational devices
are in order. First of all, we shall assume without loss of generality that
F(n) has a non-zero constant term, for if n” is the highest power of n
dividing P(n) we can apply our theorem to the polynomial F(n)/n* and
replace 4 by 4L to get the same general result. Secondly, we shall
suppose that F(n) has %k distinet irreducible factors. Finally, the letter
p will always denote a prime.

The Theorem will be proved by & main-term versus remainder-term
type of argument. We shall actually prove that there is an integer H
which is a multiple of K and & positive constant B which depends on the
polynomial F(n) and the integers H and ¢ such that there are

Bz(logz)™**+0(z(logz)~*7

primes p congruent to ¢ modulo H which do not exceed » for which F(p)
has at most .4 prime factors. We shall use Brun’s method [1] to obtain
the main term and then use of result of Renyi’s [5] on the distribution
of the zeros of the L-series to evaluate the error term. This paper is accord-
ingly divided into three sections: the main term is developed in the first,
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the second contains the results we shall need to evaluate the error term,
and the third deals with the estimation of the error.

I would like to express my thanks to Professor Paul T. Bateman
for suggesting this problem to me and for the advice he gave me during
the preparation of this paper.

1. The main term. We shall begin by defining the integer H mentioned
in the introduction. Let H,; be the least common multiple of the denomi-
nators of the coefficients of F(n) and let H, be the product of all the
primes less than or equal to m--1, where m is the degree of F(n). Let H,
= H,H,F(0)K. We can suppose without loss of generality that (¢, H;) =1
and that F(c) = 0, for if ¢ does not satisfy these conditions we can re-
place it by a sufficiently large prime of the form ¢+ tK which does.
Since (¢, F(0)) =1 we have [c, F(c)) =1. Thus (¢, HsF(c)) =1. Now
let H = (H,F(e))’ and let G(?) be the polynomial defined by the equation
F(H-c¢) = F(e)G,(t). That is

G,(t) = 1+b1t+"'+bmtm7

where by, by, ..., and b,, are integers, all of which are divisible by (H 317’(0)).
This last divisibility property implies that the congruence G.(t) =0
modp has no solutions if p divides H; thus if p does not divide H then
p—2 > m and the number of solutions of this congruence does not exceed
p—2 for any prime p. We can also assert that if the congruence G, (1) =0
modd does have solutions then (d, H) = 1. These facts will be of impor-
tance later. We shall also assume that the polynomial @,(¢) has no repeated
irreducible factors; if it does replace it by its square free kernel in the
following argument.

We have to prove that there are an infinite number of positive in-
tegers ¢ such that tH+ ¢ is prime and such that G, () has a bounded num-
ber of prime factors. We shall fix ¢ and drop the subscript ¢ appearing
in the expression &,(f) at this point.

Several other notational devices will be used throughout this paper:
p(n) will denote the Mobius function, ¢(n) will denote Euler’s function,
x will be a positive number, z will be a positive number which depends
on z, D will represent the product of the primes not exceeding 2, and a,
will be equal to (logp)exp(—plogzr/zr). &(x) will denote the number of
elements in the set

{t: 0 <tH+4c <a; tH+c is prime; (G(1), D) = 1}.

‘We are now in a position to outline the method that will be used to
obtain the main term. We shall begin with the definitions and get

1.0.1)
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Then, following Brun, we shall introduce a set of square free integers B

such that
=1 it G@®,D=1,
(1.0.2) Y o=t E EODI=1,
d[(%ﬁ,ﬁ) <0 if ((r(f), D) >1.
&

If we put (1.0.2) in (1.0.1) and reverse the order of summation of the
resulting double sum we shall have

(1.0.3) S(r)loge = Ypud) N q,.
db IH +C=psix
deE Giti=tmedd

We shall then show, roughly speaking, that

(1.0.4) Vog,=0@ N a,
i e=p<x P
Gif)=0modd p=wmoddi

where w(d) is a certain multiplicative function and w« is an integer such
that (w, dH) == 1. At this point we shall assume the results of the second
and third sections of this paper, i.e.

Y . .z
z * g(dH) logr

P
p=wmed dH

Relations (1.0.3), (1.0.4), and (1.0.5) lead us to the inequality:

1 = u(dyol{d) <
1.0.6 D (x)logx = Y . +an Error.
(L00) OS2y 2@ o
dE

(1.0.3) +an Error.

After reaching this point we shall employ Brun’s method to show that
the coefficient of x{logx) ' above is greater than Cl(logz)'k, where )
is a positive constant. Thus, assuming we have set 2 equal to a fractional
power of x, we shall have

(1.0.7) @ (x)logz > Cyx(logz) ™'+ an Error,

where (', is a positive constant.
Let us turn to the details, the first being:
LEMDIA 1.1, Using previously introduced notation, we have

P(r)logr = 2 a,.
iH+c=p<T
(G()), D)=1
Proof. This is immediate since

a, = (logp)exp(—plogx/r) < logx.
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We shall now define the set of integers EF mentioned earlier. Let g,
be a fixed prime greater than 3; the only other conditions g, must meet
will be given in Lemma 1.4. Let @ be the product of all the primes less
than or equal to g,. Let exp(y; a) = y° (We shall also continue to use
the notation expa = ¢%.) Let h be a fixed number greater than 1 and let
2(h, i) = exp(e; h~U"), where 7 is an integer and [y] denotes the integral
part of . By definition, & will be the set of integers {d} such that & divides
Q or d = d*p,...p, where d° divides @, p, > Ps > ... > P, > ¢ and p;
<z(h,d) for i =1,2,...,7. Note, first of all, that if b is the integer
defined by the inequalities =(h, 2b+2) < ¢, < 2(h, 2b+1) it follows that
r < 2b--1 since we must have g, << p, < 2(h, ). Secondly, if d is in E
then d divides D since D is the product of the primes not exceeding z.

We must now prove

Leava 1.2, Let B be defined as above. Then

=1
<0

if
if

(G(t)y D) = 4y

d
—E x(a) (@), D) >1.

a6, D
G

Proof. The proof is immediate if (G(t), D) = 1. If the square-free
part of (G (1), D) is equal to @*p,...p, where &* | Q,d" > 1,andp; > ... >,
> ¢, then, since all of the divisors of d* are in K,

.
D wd = 3 u(d) Y ula)=0.
aidep).. vy Ay Ty ajdx
deE deE

If the square-free part of (G (1), D) is equal to p,...p, where p, > ... > p,
> ¢,, then

.
D w@ =3 u@— 3 p@+ D p(@).
apy...07 dipy..Py_1 AP Py_y dpy.pr_1
deB dely del e, 0p 4 B

If the last sum on the right is empty we are done. If it is not it is not
difficult, using the properties of the set K, to show that if d | p,...p,_1,
d B, and dp, ¢ F then d has an odd number of prime factors, i.e. u(d) = —1.
This will complete the proof of the lemma.

The first two lemmas can be summarized as:

(1.2.1) D(r)loge = E',u(d) E ay.
deE tHyc=p<a
Gt)=0mod d

See formulas (1.0.1), (1.0.2) and (1.0.3) for the proof of this inequality.
The next step in our argument consists of proving:

iom®
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LeMmMA 1.3. Let uy, ..., u, denote the solutions of the congruence G(t) = 0
modd such that (dH, ¢+u;H) = 1; lef o(d) = s. Lel o;(d) denote the number
of solutions of this congruence. Then

w{d)
(1.3.1) D ap=) N 4, 6(en(@loga),
tH+C=p<T i=1

P
Git)=0modd p=c+uHmoddH

where 0 < 8 < 1. In addition, w(d) is a multiplicative function and w(p)
= w,{p) for all but a finite number of primes p.

Proof. Let r be any solution of the congruence G(f) = 0modd.
We are interested in those ¢ = v jd such that tH-+¢ = (¢+-vH)-+j(dH)
= p. Since the left hand side of (1.3.1) is equal to

by 51114— v(l,.

P pram 2 P i
3 tH-¢=pzx [3 [ 92 SN
(@d c+vH)=1 {=rmodd (dH e~ vHY 1 f=rmodd
equation (1.3.1) follows easily.
The fact that o(d) is multiplicative follows from the Chinese Re-
mainder Theorem.
If o(p) # o,(p) for some prime p then there is an integer ¢ such
that G(r) =0 modp and (pH, ¢+vH) > 1, i.e. the system of equations

G(1) = 0 modp,
¢+tH =0 modp

is solvable. Since F(c-+tH) = F(c)G(f) and F(0) 0, G(f) and c¢+(H
are relatively prime polynomials. Consequently there are polynomials
a(t) and b(t) with integral coefficients and an integer B such that a ()G () -+
4+ b(t)(c+tH) = B for every integer ¢. Thus the number of primes p
for which the above system is solvable does not exceed the number of
prime divisors of B. This in turn implies that w(p) = w;(p) for all but
a finite number of primes p. The proof of Lemma 1.3 is complete.
Later on we shall show that if (d, H) =1 and if (w,dH) =1 then

1

e
2 W= ;(—fﬁf)_—— +R{dH , ),

o
(1-3.2) logx

where R(dH, ) is an error term. We shall also show that if d is in E
then d < z*(2QH)™'. Since w,(d) = 6(d") where 5 is a fixed positive
number (see [3], proof of Lemma 5.1), we have

(1.3.3) N oy(d)logr = 0(a** "loga).

deE
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Thus formulas (1.2.1), (1.3.1), (1.3.2) and (1.3.3) imply that

(1.3.4) D(x)logz
)

1 d)w(d F
il ol S ]
deFE

deld i=1

Let us turn our attention to the sum D u(d)w(d)/p(d). We want
to show that this quantity is greater than C,(logz)~*, where (, is a positive
constant. The first lemma we shall need to accomplish this is:

Leava 1.4, Let b and by be fived numbers with 1 <h < h,. Then
Jor any y > g, where ¢, is a sufficiently large fizmed prime, we have

(1.41) ”‘%hw(p)/q»(p) < kloghy,
(1.4.2) [l-w(p )] k.
IZ; s 1™

Proof. These two inequalities can be proved by making use of the
formula of Landau:

D @i(p)fp = loglogz+B;+0[(loge) ],
==
where w;(p) is the number of solutions of the congruence G;(f) = 0 modyp,
Gy(t) is an irreducible factor of G(f) and B; is a constant which depends
on Gi(t). (See [3], Lemma 3.10).
To be specific, the relations

ilp) = logh+0{(logy)™),
:'l<1)gyh
w;(p) i (p) [ v 1 ] 1
3l 3 ]
v<p<yl 7(®) y%h P yiyh (n—1)(n—1) Y
imply that
wi(p) _ 1Ogh+0( 1 )
y<p<y® v(p) logy

gince 0 (p) = o1(p)+ 0y (p)+...+ wp(p) for all but a finite number
of primes (.see [3], Lemma 3.2), we can choose ¢, sufficiently large so that
this equation holds for all primes P =4 >q, Thus

M= klogho+klog(hhg)+0 (k(logy)™)
(p) ° ° gyl )

y<p<yh

iom®
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Since & < h, the quantity klog(h/h,)+O0{k(ogy)~") will be less than zero
if ¢, is sufficiently large. Hence

N o@)ep) < kloghs,

yp=it

as asserted. Equation (1.4.2) can be established by writing the product as

)

exp Z 10g(1~
yep<yt
expanding the logarithmic function as a power series and using what
has been proved; g, may have to be increased.
We shall also need:
LevMyA 1.5. Suppose that y' > y > g, and suppose that k, has been
chosen so that klogh, << 1. Let

139,y ={d: d=p1e-Ps Y <P; < Pjoy < oo < P2 <Y}
Let
TG;9,9) = > odg@d.
del(7;0.9°)

Then T(j;y,y") and T(j;gﬁ-l,z(h,Qb)} are decreasing functions of j
for j=1,2,... We also hare
(1.5.1) T(2f; y, exp(y; 1)) < (Rekloghe)!, f=1,2,..3
(1.5.2) T(2b+2; g+ 1, 2(k, 1)} < (Bekloghe"**.
Proof. The definition of T(j;y,y’) implies that
(1.5.3) Ty, )T (15,4 2iT0G59:4)-

Thus, if we set y" = ¥ (or y = ¢o+1 and ¥ = z(h, 2b)) and then use
(1.4.1) the first assertion of the lemma follows. Repeated applications
of (1.53.3) will yield

(1.5.4) TGy, y) <T@y, ) /il

Inequality (1.5.1) (or (1.5.2)) is a consequence of (1.5.4), the inequality
jt>(jley, and (1.£.1)..

We are now in a position to prove:

LEavA 1.6. There 48 a positive constant C, such that

pld)old) (1* w\’.p))
(1.6.1) s __—_—rp(cl) = 0440115 e !

4,Q)=1
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Proof. Let us call the left hand side of (1.6.1) S; let 2’ (%, 4) = 2(h, 9)
for 1=1,2,...,20+1 and let 2'(h,20+2) =¢o+1. Let g(a)
= p{d) o (d)/e(d) and let
2f—1 ih
..
(1.6.2) E(f)=2(7/§ 9@, f=1,2,..,0+1,
j=0

where the superscript (f, f) means that the summation is to be restricted
to those d having precisely j prime factors all of which are greater than
2'(k, 2f); the sum corresponding to j = 0 is equal to 1. Note that £ (b 1)

= 8. Let
J(f) = (1~

2(h2f)y< p<e (i ,27-1)
o by

(1.6.3)

w(p))
ep)

We want to show that, for f=1,2,..

(1.6.4) E(f+1) = J(f+1)E(f)— ek (loghy) [2)+2.
Once we have the inequality (1.6.1) will be easy to prove.
Let us turn to the details. Let

TG, f) = Depdld)y  i=1,2,.my,
d

where the subscript (4, f) is used to indicate that the summation is res-
tricted to those d having ¢ prime factors, all of which are greater than
#'(h, 2f+2) and less than or equal to z(%, 2f), and m; is the number of
primes in this range.

Note that |T(i, f)| is equal to the quantity |T'(i; 2’ (h, 2f+2), 2 (I, 2f)
of Lemma 1.5. Note also that the terms of 7'(i, f) are terms of § if ¢
does not exceed 2f+41, for if all the prime factors of d = p,...p; are
less than or equal to 2'(k, 2f) then

Vo <zl(h52f><zl(h7l)’ (58} pi<3’(71$2f)<z’(h77;)a

ie. py...p; is in B. Let T(0,f) = 1.
If we refer to the definitions of the quantities involved we see that

%)
=

+1

Bf+1)=3 3. 0@ Y@,
d

ed
i / dels

(1.6.5)

T

I

j=t

where 30g(d) = 0 if j > of. If we set

deE
8G,H = D"g@

deE

(1.6.6)

iom®
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equation (1.6.5) can be written as
21 i
E(f+1) =% Y T(—j. N8
i=0 j=0
Now, (1.6.3), (1.6.2), and (1.6.6) imply that
TE+ER = (X 760 (Y 8G.9)
i=0 j=0
. 2f—1 ' 2f-1 e
— B+ Y TEF-2-4, 86N+ Y 8GN Y TEfF+3—j+1.0).
=0 i=0 1=l
The quantity
a5-1
N TEf-2—i. 086
v

is, by definition, made up to terms g(d)g{(d’) where dd' has precisely
2f+2 prime factors, all of which are greater than 2'(k, 2f+2). Come
quently it is less than or equal to T(2f+252"(h, 2f+2), 2'(h, 1)) thch,
by Lemma 1.5, is less than or equal to (ek (loghg) 2172, Since 8 (]', 1
= (=118, f, T, f)= (=1 T f), and T(i,f) is a decreasing
function of ¢, we also have

K & L
_;n S(j,ﬂ% T(2f+3—j+i,f) <0.
i= =

Therefore aos
E(fJ(F+1) < E(f+1)+{ek (loghy)2)7 7,

j.e. formula (1.6.4) holds.
Since
o(p)

e(p)

2
2k 2)<p<(h,1)

E(l)=1— —Eloghy,

the inequality being a consequence of Lemma 1.4, repeated applications
of formulas (1.6.4) and (1.4.2) will lead us to the inequality

i {ek (loghy) 2} ]
1—hE(ek(loghy)/2)* 1

provided that h, has been chosen so that R% (ek(logh0 [2)2 < 1. If we set
By = exp((3k)7Y), let f =), and make use of the fact that 1 > J(1) we

shall have )
P
§ = E(p+1) 3 CJ(1)...d (+1) qH( o)

E(f+1) = J(f+ 1)...J(2)|:1—-k10g110—

Cy

where €, is a positive constant. This completes the proof of Lemma 1.6.


Pem


44 R.J. Miech

We now have:

3 p(d)o(d) [ w(q) ):l AR w(d)o(d)
sk Sl At et . 1—
Z ¢ (d) n( o)/ & ¢ld)

d<E a<qy @01
~ B o (p) N o))
[T 22 o S 22

= O (logz)~*.

The first equality follows from the definitions; the first inéqua;lity
is a consequence of Lemma 1.6, and the last inequality can be obtained
by making use of the formula quoted in the proof of Lemma 1.4. Thus,
(see (1.3.4))

(1.6.7) @ (z)logx
o(d)

Ty Tos Toes +O1(> X @, e wam)] 400 oga).

deE i=1

WV

2. Some estimates. In this section we shall bring together the results
which are needed to estimate the sum

P(z;d, w) = Z ay,

P
p=wmodd

where d =d'H, d’ is in B, (d',H) =1, and (w,d) = 1. The lemmas
that follow-v are, for the most part, modifications of statements which can
be found in Renyi’s paper [5]; outlines of the proofs are included for the
sake of convenience.

. L]«E:MMA 2.1. Let d, be the primitive modulus not exceeding exp [¢, (logz)' 7],
which is unique if it exists, for which an L-series L(s, x), formed with a real
character modulo dy, has a zero B on the real line with f > 1— ¢, (logz)™ '
Then for d < exp[e;(logx)*] we have

1 z

211) P(r;d, w) = ——— —n . ”"
(211) P(@;d,0) = e +0(pexp (— asfloga)! ) +0 (a"),
wh(:‘.?”ff F = 1—c(e)d;" The last O-term appears iff d, divides d; e is a fived
positive number, and c(e) is a constant that depends only on = The O-esti-
mates hold wniformly for d < exp{c,(logz)"*.

The numbers ¢, ... appearing in this section will denote positive
constants.

Lemma 2.1 can be proved by means of the classical result of Page

w(u; d, w) =

(@) Li(w)+4d(u; d, w),
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where wz(u; d,w) is the number of primes of the form di--w which are
less than or equal to u,

1-¢ 1+e
i =t ([ + ) 50
o 0
and
1 a N
A{us d, w) = 0(—— uf 4 TIGXP(*—Q(]Ogu)l/z))_
g{d) '

These relations are proved in [1]; see chapter IV, Theorems (6.7), (7.4),
and (8.2).
To obtain (2.1.1) note, first of all, that

Z a, = f(Iogu)exp(—ulogr,»’r)d[:r(u;d, )]

LT
p=wmodd

_ [ ep(wogry)
7(d)

du = f (logu)exp(—zll()gx]r)d(d(ﬂ; d, w)).

Then integrate the last integral by parts.

LEMDIA 2.2, There is a positive constant c; such that P(x; d, w) < esxfg (d)
uniformly for d < x'?, where x > 2.

Proof. Make use of the formula ([4], Chapter 2, Th. (4.1))

N\’ 1< G| L
o S g(d) logx/d’

p=wmodd
Most of the sums P(r;d,w), where d is “large”, will be reduced
to a sum to which Lemma 2.1 can be applied. The reduction will be an
interative one and it will be done in terms of the sums K (x;z), where

E(w;z) = ) 2(@)
BT
The next lemma will deal with these sums, but we need one more
definition before stating it. Suppose that d =p-g, where (p,q) =1,
p is a prime, ¢ =¢'H, (¢, H) =1, and ¢ is square free. Let yxq be
a character modd. From the theory of characters we can write

Xa = XpXa

where X,, (X,) is a charaeter medule p (modulo ¢). (See [2], exercisfe 4
for Chapter 111, page 244.) If in this decomposition X, is not the principal
character modulo p we shall say that x. és primitive with respect to p.
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LemyA 2.3 (Renyi). Let g = ¢'H, where (¢, HY =1 and ¢’ is square
free. Let x be a sufficiently large number, and let A be a number such that
exp(logz)*® < Ag < «'?[2. Let p be a prime such that (p,q) =1 and
such that 4 <p < 24. Suppose, in addition, that

ky = (logg)(log(p/2))'+1 < log’4.

Then for almost all primes p under consideration, i.e., with the possible
exception of at most A** exceptional primes, and for all characters y which
belong to the modulus p-q and which are primitive with respect to p, the
Jollowing inequality holds:

K (25 1)] < e, XF,

where P = 1—a(k,+1)"
is less than 1.

This lemma is almost identical to Lemma 4 of [5], the chief difference
being that the ¢ of Lemma 4 must be square free. Lemma 2.3, however, can
be proved by the same method that was used to prove Lemma 4; small
changes have to be made in the proofs of Lemmas 1 and 2 and Theorem 3
of [5].

Let

Y, ¢; and o are absolute positive constants, and a

B, ={d: d=aH,d <B,d,H) =1}.

We shall also use the following notation. If d is in B, then d = d'H
=p1...0,"H. Set d = p,by, by = Pybsy ..., by = p,b,, b, = d*H. The
numbers by, ..., b, will be called the diagonal diwisors of d; it follows
directly from the definitions that they are in F,. The next few lemmas
will deal with the properties of the set E

LevmMa 2.4, If d is in By, if = = &%, where R is o constant greater
than 2, and if v(d) denotes the number of prime factors of d, where the mul-
tiple prime factors of H are counted multiply, then v(d) < Bloglogx, where B
is a consiant whick depends on h, ¢y, and R.

Proof. Make use of the facts: d =p,...p,d*H, » < 2b-+1, and
o < 2(h, 2b).
Levma 2.5, If d is in B, and if p; < exp(e; h™"), where n is @ non-

negative integer, then
d < QHexple; B (2n+14-2(h—1)77).
Proof. By our assumptions we have for 1 =1,2, ..., 2n+1,

P <py < explz; b,

while for j = 2,3, .

Poni < 2(hy 20+ j) = exp {o; BV,

iom®
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Therefore,
< QHexple; A 204+ 1+2(h—1)7 )],
and the conclusion of the lemma follows.
COROLLARY 1. If d is in E,, then

; 1 h+1
d rgQ'Hexp{r;—E-—iIL:}.

Proof. Let n = 0, where » = %, in Lemma 2.5.
COROLLARY 2. If g, is the J-th prime then the set E has at most

I

; 1 h
2°Hexp l.x; z

1 ]
]~ elements.

Lexwa 2.6. If d = p,b, is in E; and if p, < (b)), where t is a pos-
itive integer, then d < exp(z; cgth™2), where ¢y is a constant that depends
on gy and h.

Proof. Suppose that g, is the Zth prime and that
exp(z; ") < py <exp(s; R7Y),
where n i3 & non-negative integer. Proceeding as in Lemma 2.5 we have
by <Pa-e-Ponoreo-PQH < pi"Fexple; 207" (h—1)71],
where 2’ = i-+2(h). Thus
d = piby <expls; A" (2n+ 2+ 1+2(h—1)7Y)
< expls; k' 2n+ A+ 2k (R—1)7Y].
We also have

PL< by < explpy; 20+ +2h(h—1)"1],
ie.
t<2n+i'+2h(h—1)""
For convenience, let 2'-+2h(h—1)"" = II.

Since A%~ takes on its maximum value at =1 or = 2n -+ M
for 1 <t < 2n+3, we have

(2n4-2M) B2 {2"“[ e 20 RO ")f~}
A . < h /
" g Smax 7 " 2n+ M
2nt+M
< max {{ma,x W}" exp(h; M/Z)]
nz0
= ¢.
Consequently,

d = pib, < explz; ™" (2n-+M)] < explz; ('svth"/z},

whieh is the inequality we set out to prove.
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LeMMA 2.7. Let {p'} be a sequence of primes with the property that no
interval (A, 24) contains more than A** terms of the sequence {p'}. Then
for any number M, > 2,

),

D'>My

where ¢, is an absolute positive constant.

Proof.
o 1 Y (27 0,)%
Moo= NN Oy,
LJ p’— L ] —1 i M —1
»>M; i=0 27"[1/1) <of + 1ar, j=0
Levya 2.8. There is a positive constant ¢y, which depends on the po-

lynomial G(n), such that

yli

ﬂ<15

CO n .
( < e (logar)’.

To obtain this inequality first obtain the summatory function of
the series

by comparing the series with the product of the zeta functions of the
fields associated with the polynomials G;(¢), where G;(t) is an irreducible
factor of G(n). Then proceed by partial summation (see [3], section 3).

3. The error term. We are now in a position to estimate the sum

3w

DT
p=wmodd

P(r; d, w) =

where d is in By. If d is small, i.e. if 1 <d < 2exp(logz)?’, the sum in
question can be evaluated by means of Lemmsa 2.1. The approach to the
problem is less direct if 2exp(logz)”® < d < #'2/2.

Suppose that d is large, fixed, and in B,. Let by, ..., and b, be the
diagonal divisors of d. Let y; denote a character formed to the modulus d.
Let

A(d) = {ta: %a = ¥p,Av,s %y, is Prineipal},
B(d) = {xa: xa = n, 2,y %p, i§ DOt principal}.
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Now,
1 1 ————
Px;d, w) = v v- = Y‘ V
(z;d, w) s a’pq_(d) ot sa(w) za(p) g (d) — )!d(“‘);_i. zalp)a,
<z 7y % p<r
1
= 2 ) 1,0 Y 7,0 1,5V,
¢ 2¢4(@) <z
to N N sa)a
o~ )x‘:ﬁ(ldj a\% pé{ldp 7
# <

[Nb yM(w)Zzb ey -

= 1
To@ [ylbl( )7&1(1’1)] a,+ o
1

‘I(Pl)

D 1) E(2; 72)-
x (B(dl

That is,

(3.01) P(x;d,w)

=———P{z; by, w)—

Gf(jp C(p1s b)) ——

V K
ST @ O 2

245 <B(d)

where ('(p;, b)) =1 if p, = wmodd, and is 0 otherwise. If p1 is not ex-
ceptional with respect to b, in the sense of Lemma 2.3 we can estimate
the last sum on the right hand side of (3.0.1); to do this we must define
the number 4 and check out the assumptions of that lemma.

As for the number 4, since

21 > 0 > expl(logz)™ ju(d)] > exp[(logx)*®/Blogloga]
> exp (logz)'

for z sufficienfly large (see Lemma 2.4), we shall set 4 = 2'3, where
M, = exp(log#)* and I is a non-negative integer; we will not need to
know the exact value of I. The assumption (of Lemma 2.3) that

1a

exp(logz)® < 4b, < 2'?)2
follows since: *

1) 4by <piby = A <22,

(2) Ab; > (p,/2)b; = d[2 > exp(logx)™.

Acta Arithmetica XI1 4
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The character y; will be primitive with respect to p, sinee y; is in B(d).
The fact that &, < log®d follows from the definition of %, and the inequa-
lities
bl < plla(fl) < zg%ﬂuglogm.
Thus the assumptions of Lemma 2.3 hold. Since we have also assumed

that p, is not exceptional with respect to b; we can apply Renyi’s lemma
to get

(3.0.2) 1 \ lya(0)E (25 1a)] < .0,
p(d ). 5 sB(d}

where ¢; is an absolute constant. Relations (3.0.1) and (3.0.2
that a, /o (p,) = 0(1) imply that

) and the fact

(3.0.3) P(r;d,w) = P (@5 by, w)+0(ah),

o(p1)
provided that 2exp(logz)”® < d < 2" and that p, is not exceptional
with respect to b,.

Suppose that b; > 2exp(logz)™’® for i =1,2,...,5—1 (s >2) and
that p; is not exceptional with respect to b; for ¢ =1,2,...,s, and sup-
pose that b, < 2exp(logx)™ or ps,, is exceptional with 1espect t0 beyy

Applying (3. 0 3) s times we have
®(Do---Pi—1) ’

fe=1

1
Pr;d,w) = -—

T P(; by, 0)+0
g T 040

where d = p,...psby, Py =1, P({) = 1—a(k;+1)", and % = (logh;) X
X (log(pe/2)) 7 +1. T b < 2exp(logz)™ we can apply Lemma 2.1 to get

1 x zexp[—e¢;(logz)?] ]
Plx;d, w) = —-- 0[
@5 d, w) (@ Togz © P(P1---Ds)

mF $ (1)
ofa] S )

1

the second O-term appearing iff d, divides d. If p, +1 18 execeptional with
respect to b,., we would have, by Lemma 2.2

1 z z - 250 ]
Pasd,w) = —— % 1o(=") 1o :
580 =T Toga T (m(d))+ [Z AT T

i=1

We would also employ Lemma 2.2 if p, were exceptional to b,.

b'm@

+
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The last two equations show that we have four types of error terms
to evaluate when we estimate the error. Keeping in mind that we are
working with the sum

w(d'} e’y 1
Wl Y s B
3 F a, = ‘ [~ 7 ,r,A - an an]
“ ) i d o
i=1 p<r 4 T=1 7 ((> 0g.r
p=wimod

where d = @"H, we see that they are terms of the form:

o(d) (d)rexp[ —e;(logr)®]
1) &I 2 - :
( ¢ () ) 7(Pr---pe)

4')((1 ) p J:E‘([)
3 H 4 () e
) (@) G e )?(]’An- Pi)

Let R(1) denote the sum of the error terms of the first type, the
summation being extended over all those d in E, for which terms of the
first form exist; define R(2), R(3), and R(4) similarly.

R(1) is made up of terms of the form

w(d')

—_—
F(d)

where d = d'H, d = p,... PsPsrbs_1, and p,_, is exceptional with respect

to be.;. That part of R(1) arising from those d == p,...p.p. b, where

both p;...p, and b, ,; are fixed is

0[“% Do) ;:?!f?s«;,i],
F(Pre--Dehesy) — APsa—1)

115._1;ne:«:p(]ng-.r)’“i
where b;., = b,.;/H. This last guantity is, by Lemma 2.7
51 521 | 3 PR »

0[ 2Py Pshsy)
7{P1-- psb\ 1)

exp {——~(10frr“] J

If we now sum on the p,...p.b,.; we have, according to Lemma 2.8.

YRS of{d) [_i - _ml,)
R(1) = ’)(:1:_/}:l @) EXP\ 4(10,,4) &
| s

=0 ((loggc)"expr—%1 (loga)" ’ .z-)

= 0(z(logx) "3,

The constant in the O-term will depend on the polynomial &(n).
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Let us turn to R(2). We are dealing with terms of the form

o(p1--.Ps)
@(p Ps)

where by = bo/H < 2exp(log:)c)2/S Since w(b;) = O((bs)’) and sinee there
are at most 2exp (logz)*® numbers b, associated with each fixed p;...ps

o (bs )o:exp[—c3 logz)'*],

it follows that that part of R(2) arising from each fixed p;...ps is
022 gexp—yloga) Pexp L+ £)(loga)™1).
@(P1-+-Ds)

If we now sum on the p,...p, and apply Lemma 2.8 we shall have

R(2) = O[x(logz)™"*].
The terms of R(3) are of the form

o (Pr..Ps) w (Ds) o
@(P1---0s)  (bs)

where F = 1— ¢(s)dy?, d, divides bs, d; is & unique fixed integer depend-
ing on , and b, < 2exp(logz)’’. Thus that part of E(3) stemming from

a fixed p;...ps is, with d; = @/(dy, H),
] *(n)w(n
o[ 22 Lol )mp],
PPrps) | L s ¥
dyin
whieh, by Lemma 2.8, is
o(P1-.-Ps) w 0)(dq) akgs
0(———-————a: (logz)*™*}.
@(p1.-.Ds) (dl)
If we now sum on p;...ps we shall have
o (d,) s F)
R3=0( logz)*Fz").
(3) =0 7 oeo)

But 1/p(dy) < Cylogdifdy, o(dy) <Cpdy, and d, <z imply that
o (@) fe(dy) < Onln(ogd)di™ < 0. (loga)dy 1+e. Consequently,

R(3) = O((loga)™*+ ar *e)

: —C
=0 [m (logz)*® exp( (—15(6) logw— (1— ¢)logd, )] .
. 1.
The function
7 = S togat 1 1oga,
1

hn..@
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has a minimum value of

1—- L [1—e ‘(’c(a}s)
( . )loglog.ti (he )log( —

4= (ec(s)logw)’f‘
1—¢

at the point

If, therefore, we set ¢ = 1/(4%k4-3) we shall have
ER(3) = Ofr(logx)~*3).
R(4) remains. We are dealing with terms of the form
__7_(&_ P
¢{Po-- Pi-1)

where d = d'H = pop;...pi_1p:b;;, PE) =1—e(k+1)"Y and k=
logh;(log(p;/2))~'-+1. Split R(4) into two sums, B(;1) and R(4;2);
the first is to contain those terms for which k; < 4, the second those for
which %; > 4.

XNow,
(P - _OiPo---Pi-1) 1) Y‘ , .
R(i 1) O[ m(‘pibi)x!’(i) A
Z . 4; #(Do--Pic1) =
pﬂopl 1 I'L<4,170_.J:fllxiibizE1

We have: P(3) <1—a/5, since k; < 4; cu(p1 b;) = (°*) by Corollary 1
of Lemma 2.5, where § = (h—'—l)(R(h—— 7!, and the number of w(p;b;)
entering our caleulations is O (z%), by the second corollary of Lemma 2.5.
Thus, the inner sum above is Ofexp(z;1—a/5--8+6-2)). If now we
sum on the 7 and the p,...p;., we shall have
RB(4;1) = O{(logz)exp(x; 1—a/5+ 6+ 6-¢)).
We shall want to have
1—latdtde<l—ya.

Since ¢ = (h+1)R™*(h—1)""
demanding that

and &= (4k--3)"" this is equivalent to

R>—

10 4k—,—4(h+1)
a 4k+3\R—1/"

Thus, supposing we have selected R properly, we have

R(4;1) = O[z(logz)~*2].
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We shall now estimate R (4; 2). Note that R(4; 2) is made up of terms

for which

.., (B+1)(oglogz)/2] = B(x).

20 < k< 2042,

This ob:ervmion is a consequence of the facts that:
€8] (logb;)(log (p:/2)) " +1;
(2) If d = p;b; then b; < pi@ < pPlosless,
Note algo that if 2¢ < k; then p; < (bl)” Y. This follows for if
= (logd;)(log(p:/2)) 7'+ 1 = 20
then
P < Zexp[bg; (20—1)"'].

If we assume that 2exp[b;; (20—1)7'] > b;" then

D —
logh; < 1( ; 11) log2 < (204 2)log2 < ((B+1)loglogz+ 2)log?.
Since
(9:/2) > (exp (log2)'"’)[2 > exp (loga)"/"
we have
logb; B—+1)loglogz+2)log2
k= o8 +1<((+)gg3/:)r) g +1<4,
log(p:/2) (log)
for x sufficiently large. But we are assuming that k; > 2v > 4. Thus
2exp[by; (20— 1)1 <Y, or p; < (B
‘We have
S w(Po--.Pi1) ;
LR DD o
1+ Pi

v=2 =1 Pg..Di-1E WO‘-J"il\—lpibifEl

W k<242

Let us hold », 7, and p,..
—a(20+3)7"

.Pi_; fixed. Then, since k; < 20+2, P(i) <1-—
Since p; < (b:)"", we have by Lemma 2.6,

C v
o (p; 1,) = O(QXP(W, “E h'u/g 5))5

one more application of Lemma 2.6 yields the equation

Cg K

’ i a
(e = 0[exp o 1- o+ S5 ()

D3b;
k<202

iom®
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When we select R we shall insist that

ie.,

S o2(2r-3)

Assuming that R has been chosen with care, we have:

B
R(4, )_U[v VY elen) p(: L« )]
= e 9 Pebiny) (20 —3)
If, now, we sum on the s and the p,...p;_;’s. and then sum on the ¢’s

we shall have

°

SREGIT d))] Ulr(loga) F2).

The constant R has to satisfy three conditions:

R(#:2) =0 [B(x)(logm)’“exp (‘r; 1—

(&) R>2(h+1)(h—1)" = J,.

This inequa}ity must be satisfied because we insisted that if d is in £,
then d < 2'*/2. (See the comments preceeding formula {1.3.3) and Cox-
ollary 1 of Lemma 2.5).

10 (4h+4\ 1
@) R>—( ' )"

Py

This inequality was used in the estimate of R(4;1). The inequality

3) B>

a

2(’8(4k;4)(mal(n 0+2) ) J
1k+3 A 3

was used in the estimate of R(4;2). We also had 1 < % < h;, where
hy = exp((3k)7'). Let h =exp((4k)™} and R = [2+4+max{J,,J,, Js}].
Then R will be large enough for our requirements.

We can now prove Theoremy 1. If we turn to formula (1.6.7) set
2= 2B fix R, set 77 = 1/4, and then use the results of this section we
shall have

D () > Cor(loga) ™ +0 [x(log) ™1,

where €y in a constant which depends on the polynomial ¢(n) and the
integer H.In words, there are more than (';3 z(logz)~*~* primes p congruent
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to ¢ modulo H which are less than 2 for which G(f) has all of its
prime factors greater than z'%, ie., G(f) has at most R-m prime
factors, m being the degree of the polynomial. Sinee the polynomial F(n)
of Theorem 1 is equal to F(¢)3 (%), the theorem follows if we set

A = Rm-+4,,

where 4, is the number of prime factors of F(c).
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On Mordell's theorem
by

I. SH. SLAVUTSEY (Leningrad)

1. Suppose that R(}d) is a real quadratic field with fundamental
diseriminant d, main unit E; = T,-T;¥d and class number h{d). Fol-
lowing Berger and Leopoldt ([6]. [21]), we introduce the generalized
Bernoulli numbers Bf; belonging to a primitive residue echaracter »
modulo f >1 by the relation(?)

L]

LR B o
Ntz gt ;f;<—2}’-1.

o zﬁy
r=1 k=0
Then the results we find in some Mordell’s articles ([24]-[27]), and
in the article by Ankeny and Chowla ([4]) demonstrate the equivalence
of two facts
U, = 0(mod p),

B2 = 0 (mod p),

where f =1 for d = p = I1(mod4), and f = 4 for d = 4p, p = 3(mod4).

This fact was first stated by Kiselev ([15], [16]) and later independ-
ently by Ankeny, Artin and Chowla ([1], [2], [4]), but Mordell succeeded
without Dirichlet’s formulae which have not up to now been proved
with the help of elementary methods.

In this note, by extending Mordell’'s method of p-adic logarithm,
there is, demonstrated the

THEEOREM. Let R(Vd) be a real quadratic field with fundamental discri-
minant d = np, p > 3, an odd prime number and 1 <n < p. The con-
gruence

(1) U, = 0(modyp")
(*) As for arithmetical properties of B;‘, see articles [9], [18], [19], [21], [29].

‘We remark also that for f = 1 and f = 4, generalized Bernoulli numbers correspond
to usual Bernoulli and Euler numbers.
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