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On the zeros of L-functions
by
E. FoGELs (Riga)

Introduction

1. Let L(s, 7) be any L-function of Dirichlet with a character z to
modulus D > 2. Using an unproved hypothesis in 1945, Linnik proved
(see [10], §17) that for any Ze¢[0,logD] and t,e[—log’D,log’ D] the
number of zeros of L(s, y) lying in the rectangle (1—4llogD <6 <1,
fy <1< 1,+1) in the plane of the complex variable 8 = ot does nob
exceed 0%, where ¢, (and later on €, ¢y €1, €y -..) stands for an appro-
priate absolute constant > 0(1). In 1944 Linnik [9] proved by a very
complicated method that the number of functions L(s, z) having at least
one zero in the rectangle {1—Z/logD <o <1, It < min (2%, log* D)}
does not exceed e*. Ten years later Rodosskii ([12}, pp. 333-341) gave
a simpler proof, but merely for the rectangles (1—iflogD <o <1,
it} < é*flog D). In 1961 Turén [13] proved by his new method a slightly
more general result: The number of zeros of the fnnetion Z(s) = TTL(s, %)

x

in the rectangle (1—i/logD <o <1, [i—14,] < é'/logD) with |t| < D2
does not exceed e’

The height of the rectangle considered by Turén or Rodosskii for a large
D and 2 < logloglogD (for example) is very small. In order to eliminate
this restriction I have combined Turdn’s method with some ideas taken
from Linnik’s paper [10]. By these means I have succeeded in proving
the following

THEOREM. (i} For any T > D and Ae[0,logT] the number of zeros
of the funetion L(s, y) in the rectangle

(1) A—-2logT <o <1, 1| <D
does not exceed ¢*
(i) The same is true for the function Z(s) = []L(s, x).
x

(1) Linnik’s proof is based on the following hypothesis: Any eircle of radius
1/logD with the centre in the rectangle (1—loglogD/logD < o < 1, il < log®D)
contains no more than ¢; zeros of L{s, y). He promised (see [10], pp- 111 and 118)
to publish another proof for the case in which this hypothesis does not hold. Twenty
years have elapsed since, but no proof of this kind has been published yet.
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The theorem and the proof hold as well for the product [](s, yx)
z

of Hecke’s L-functions on any algebraie field K with characters y modf
and D = |4|Nf (4 being the diseriminant), except that now the constant ¢
depends on the degree of K; see further §§8 and 10.

The theorem may be apphed to get an estimate for the sum Z 1(p

of the characters of primes (see §11). Once proved, the theorem prov1des
g rather short way to Linnik’s estimate p, = D°®) of the least prime

= I(mod D). In §12 by means of the theorem we shall prove a formula
(45) for the number m(z; D,I) of primes p = I(mod D), p < &, which
gives positive information for all # = D™ and represents the usual estimate
as @ — oo. For small #, however, we cannot prove anything better than
the inequality

(2) a(@; D, 1) > 5(e)a/kD'loga  (z > D% D > Dye)),

where & stands for any positive constant and » denotes the number of
reduced classes modD; it is understood that D and ! have no common
divisor > 1. A similar inequality but for # > DR, 0 < ¢ < ¢, D > Dy(e)
was proved in my previous paper [1] by a more complicated me-
thod.

As another application of the theorem in § 13 we shall prove the exist-
ence of an absolute constant 6 < 1 such thatif D > D,, then for any « > D%
in the interval (z, #-2°) there is a prime p = {(modD). This improves
the theorem of [1], where the interval is (¢, 2D°) and where the restrictions
D > Dy(z), © > D€ are used.

The corresponding results hold as well for primes » which are norms
of prime ideals of any class $ modf in any algebraic field K. In this case
the constants ¢,, ¢;(¢) and 6 depend on the degree of K (cf. §§11-13).

In different paragraphs the constants ¢, ¢,,... may have different
meanings. The constants implied in < and O are supposed to be independ-
ent of any parameters (as D, T, «, ¢~') which may increase indefinitely.

The proof of the theorem will be developed by two stages. We begin
in § 5 by proving a weaker theorem for a single function L (s, x); the result
will then be improved in § 7. The changes occurring in the proof for the
function []L(s, x) will be considered in § 9. For a sketch of the proof

X

concerning Hecke functions, see §§ 4, 8, 10.

The last section of this paper (§§14-16) will contain the proof of
an analogous theorem for L-functions of a semigroup @, used in my previous
papers [6] and [7]. By means of that theorem we shall improve the regults
of those papers about the distribution of the generators of ® (see §§ 14,
17 and 18).

The results of the present paper have been announced in [8].
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Preliminaries

2. The proof of the theorem rests on the following properties of the
function L(s, x):
(i) In the region

(3) 0= 1—coflogT(2+ 1)) > 2

for all characters y to modulus D (D < T) we have L(s, x) # 0, with at most
ane exception corresponding to a function L(s, y') with @ real non-principal
character y'; this function L(s, x') may have in (3) o single real “exceptional”
zero ' < 1.

(i) If v =w»(r;y, 1) denote ﬂze number of the zeros of L(s,z) in
Js—1—dt)] <7 (coflogT (24 1t)) < 2), then
(4) < rlogT(2+ [4,]).
(ili) We have uniformly in —3 <o <2

L’ 1 E, [

s ) =

T (s, 2) PR 1

[s—e|<1 h

+logT(2+ w)}

where o runs through the zeros of L(s, y) and E, = 1 if y is the principal
character y,, and = 0 otherwise.
For T = D the proofs are given in [11], pp. 130, 331, 225. Being

true for I' = D, the relations evidently hold for any T > D.

3. LeavA 1. Let T>D22 TP<e<l, T° <z <T®, where
4 <B <1 and let I be the interval [z, 2e] = [z, o+ 2] (s < 2’ < 2ex).
Denoting by =(I; D, 1) the number of primes p =1 (mod.D), pel, we have

(5)

(6) a(I; D, 1) < '[hlogz.

Proof. Let G be the semigroup of all natural integers a prime to D
and let a, (m =1,2,...,N) be all the numbers 4 =1 (modD), acl.
Then

N =x'|D40(1)

and for any d, prime to D, we have

D 1=1Nji+0(1)
o,
Hence, in the notation of [6], Lemma 12 (representing the sieve method
of A. Selberg)
fly=a, Rj<1
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and (ef. [6], §12)
1 h
8, > _2 - > cl—ﬁlogz.
Vica<z
Putting z = «"* we have 8, > ¢;hD™'log, whence
N (8, < (¢ [D+1)D[hloge < o' [hlogz.

The numbers |1, being <1 (cf. [3], (38)), we deduce

Z 12, Ay Rayanj(ay,ag) <€ (21) < =o' < o' [hloga.

al<z @<

Hence (6) follows by the arguments of [6], § 14.
COROLLARY. If B > 6, then
A(m) e
(1) P
m h
mel

m=1l(mod D)

Proof. By (6) the left-hand side of (7) is evidently

_ logz o &
w(I; D log*a)} € —— = <
{a(l; D, )+0(Valogha)} < — Wlogs < 7

logx
< g

4. LeMumA 2. Let O denote any class of ideals modf in the algebraic
field K with the discriminant 4 and the class-number h, and let D == [4|N§
(N being the norm of ). If T2 D, T2 <e <1, T% < o < T*% (where B
stands for a sufficiently large constant), I denotes the interval [z, xe’]
= [o, 5+2'] and n(I, D) the number of prime ideals P such that Nyel,
then

(8) n(I, ) < ¢,o [hlogn.

In this paragraph B, ¢, and other constants may depend on the
degree of K but not on 4, Nf or other parameters.

The proof rests on [3], Lemma 3 (Selberg’s sieve for ideals). In that
Lemma let a, (m =1, 2,...,X) be all the ideals aeH with Nae I and let
Q be the empty set. By [3], Lemma 1, the number »(f, H) of ideals aeH
with Na < ¢ for any ¢ > 1 satisfies

v(t; 9) = pt+0 (D),
where
= hT'Resi (s, x),
8=1

£(s, xo) being the Hecke L-function with the principal character modf.
Hence

X =v(ota', 9)—r(z, D) = pa’'+0 (D a'~).
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For any ideal b prime to f let »(z, H,b) denote the number of ideals
ae9 such that Na < # and bla. By [3], (11),

v{w; 9, b) = ,uw/NIJ-[—O(DZ""’ (l_\a%) -c),

whence
1—c
v(@+a'; ), b)—r(w; 9, b) = ur'[NbL0 (DEF“ (7%) )
and thus '
1—¢
1= /Nb+o(1)2/3 £) X/NbJro( (%) )
o i

Hence, in the notation of [3], Lemma 3,

f(6) = Nb and R, < D¥(z/Nb)~

Using # > 2'* and arguing as in [3], §4 we get the inequality
8, > e;hpulogz > e;huloga,
whence
X/8, < @' [hlogx.

It remains to prove the same estimatie for the term

N(ay, 0)\ "
1— 12
W=§ﬂicmm<W$°Z(ﬁﬁE'

1,80 Q.00
Ney Negs Noy,Rag<z

By [3], § 5 the last sum does not exceed ¢, D**(hu)%*. Putting

. o (o' [)
©) ¥ = D (hu)hlogz’
we get the desired estimate for W. Since z’[ze[T% 1], for a sufficiently
large B < 1 we have, by (9), 2 =o', s <™. Henee inequality (8) follows
(ct. [3], § 6).

CoROLLARY. Let A(a) = logNp if a is a power of a prime ideal P,
and = 0 otherwise. Then

(10) 2 Al 3
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~1
&)

Proof of the theorem for a single function IL(s, x)

5. Suppose that the fumction L(s,y) with x # y has a zero
00€Q (1—AflogT <o <1, [i—1g| <A[2logT), where ¢, < A <logT and ¢, < T
Then by [6], §15 (with 7' in place of D) for any real v with |v—1
< 2/2logT we have

(11) Y fe—1—i)| >,
where
(12) fs) = (4 —e™)245)", 4 =1 'logT

and % stands for a suitable integer [2--c,4, ¢3A] (63 > 2). Let N (4; u, 1)
denote the number of zeros of the function L(s, y) lying in the rectangle

(18) RA—AflogT <o <1, To<t<Tyt+uflogl) (Ty<T; 2<u <18,

Considering a series of squares @ = Qfo with a variable #, = 1+
+ (m+3)2flogT (m = 0,1, ..., [uf2]) for which there iy a zero g<Q),
in the corresponding mequahtles (11) we use those particular values of
T = 7({,) which differ from T, by positive multiples of ¢'/logT, ¢’ being
a sufficiently small constant < ¢,. (This restriction concerning = is neces-
sary merely during the first stage of the proof.)

Let &, be that value or one of those values of ¥ which appear in (12)
with the largest frequency; the numbers 7 corresponding to % = %, will
be denoted by

o =Ty+w;, @A<jgV).

Then by (4) (since % << ;1)

(14) N u, Tp) < 2V.
‘Writing
) 1 240 45 gds\k
(15) R(n) = o (W) eS8 qs  (n = 1)
2—100

we have by [13], Lemma I (or [6], §17)
ec4k/A it kA <n< 637(11
0  otherwise.

(16) [B(n)| < [

Let A(n) =logp if n is a power of a prime p, and = 0 otherwise.
Using (15), (12) and (3), (4), we deduce:

=Y y(n)A(n) 1 B r
Z nH—;«R) z_m_f 16) 5 (s 147, 7)ds

—3/2 4100

1
-2f(9—1—@'r>+;r—i f ——zZf(gwluir)—[—O(e‘(‘W)“”ﬂlogD).

—3/2—1c0 o
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Hence, writing
(18) B =B (a<B<dq)
we have, by (11), (12) and (16)

(19) 2L +0(T‘3B/21og1>)1 > e,

7B 3B

In proving the theorem we may suppose that 4 <2, = e,¢7 logT
(since for A > 1, the theorem holds Dy (4)). Then, by (19) and (18)

1

P

et

2 AE(R) |

nl-]—nj

7B T3B

Let ¢; denote the argument of the last sum. Then

_ips Z(W’)A ()Z)R(’}’L) 1 —C1
2 e Z i >—2—V6 o

1<i<V TB<n<TsB

whence, by Schwarz’s inequality,

S’ 2)A(n)R(n) P

)

(20) V< &
' 1<i<V TB<1L<1‘3B

i 2 (n)A(n)R(n) % (m) A(m)B (m) m wy
= £ ——nl—ﬂ‘,‘,.—o—‘—‘ 1 1,1‘0
TBon<T3B TBn<13B <<V
et A)A(m) Z ( m )“"J’
ST 5 — -
log*T nm S\

TB<n<m< 3B

(cf. (16), (12)).

Now let w; in (20) run over all the multiples of ¢ ' log T, not exceeding
uflogT. By the addition of new terms the right-hand side may increase,
but we can easily estimate it as a sum of a geometrical progression.

For any fixed ne(T%,T°%) let us write

m

(21) . — =¢ (0 <p<2BlogT)
n

and let us introduce the intervals

logT logT
8T u<arn==E

//,{z } 1=0,1,...; L <u).
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The last inner sum ) in (20) corresponding to 4, is evidently
7
{22) <u.

For any other .#; we use the estimate

¢ < 1/min(g, 2r—¢) (0 < @ < 2m)
NO<n<N

(ef. [11], p.189). Since now in (20) w; =jc'/log1 (1 <j < u) and
the value of ¢’ is at our disposal, we can take for granted that w,u
< (c'logT)2BlogT does not exceed =. Then for any ue.#; (I # 0)

(23) e’z’pwj < (,__. 1=
; < logT u

The numbers m, which by (21) correspond to the same .#;, are in
the interval
log?
I, {xz, Iexp (———g—)}
\u

logT log7 1
07“‘-—172—— ——%— < EIOgT.

where

. If w'logT > 1, then we divide M; into subintervals I (@, we*) satis-
fying the conditions of Lemma 1 (with D = 2). By (7)

A(m)
m

<&

mel

Summing over all I we deduce

A(m logT
( )< gl
i, m %

(If v 'logT < 1, then we apply Lemma 1 directly to M, and get the same
result.) Hence, by (22), (23)

-
Zy, ( m) il

llogT it =0,
i "ogT it 1<l<u

and thus

< logTlogu,

nm< 3B
A (71 . )
M

b

< log’Tlogu.

B
TP <ngm<T3B 7B LneyiB
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This combined with (20) proves the estimate
(24) V < elogu
for the rectangle (13) and the function L(s, x) with y = z,.

6. If ¥ = y,, then in the neighbourhood of s =1 Turén’s method
(by which we have proved (11)) does not work, since now on the right-
hand side of (17) appears a term —f(—it) corresponding to the pole at
s = 1. However, if |z| > Bi/logT where B < 1 is large enough, then
f(—iz) is much smaller than the sum in (11) and we may go on as before.

Associating with each square @; a number 7 = 7(t,) (ef. § 5) now we
leave out those < 2H4-2 squares @;, which are in the rectangle (1—A/logT
< o<1, [f| < BiflogT). By this we lose no more than 2--2F numbers
w;. For the quantity V' (say) of all the other numbers w; we can prove
(24) (with V' in place of V). Then for appropriate ¢ > ¢

V <21 2E+V' < 2+ 2B+ e logu < ¢“*logu,

which is an inequality of the same type as (24).
Therefore we may suppose that (24) holds for any z.

7. Let us now consider the rectangle (1), which is a particular case of
(13) corresponding to T, = —1, u = 2TlogT. By (24) the number V
of points w; for the rectangle (1) satisfies

V < ¢logT.

Tt is our aim to eliminate the factor logT. In doing this we may take for
granted that

{25) V> e
{otherwise there is nothing to prove); hence
{26) V < logT.

Now let m and m, be any fixed integers such that n<(T%, T°7) and
mge[n, T°%). Supposing that

27) myexp(V"0gT) < T°%,
we introduce the intervals
M = [mo, mgexp (V""10gT)] and = [u, Hal,

where
w=logmg,  pa =t V*1ogT.
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For any meM with A(m) # 0 let

61’wj(logm— logn) ,

(28) S =

1<V
the numbers ; being those which actually oceur in (20) by the process
described at the beginning of § 5. Writing

g(p) = 2 ity (u-logn)
I<f= TV
we have
iy 1o #a-logn
L B N e L D s g,
I ny 4,3 mp=logn 1,7

< (Mz‘—#l)V‘I'ZZ wjiw]-,

it oa>y

< V¥log 7'+ Vel log T < VerlogT,

since by (24)
1

Wy — Wy
(>3 7 7

From (29) and (25) we deduce that the measure of that set of points
pelpy pa] at which |g(u) > V"% does not exceed

(30)

1o,

iﬂ_ du < ¢logT.

< ¢logT f -
1

Y < Ve og T < V-1 logT.

Let us call these p the “exceptional” ones.
If meM is an integer with A (m) s 0 for which there is a non-excep-

tional u = pyes such that [logm— p,| < 2/TVPY* then by (28) (where

Sp = Z exp {ij (e + zngvl/Q_log%)} — Zeiwj(um_logn)_l_o (Zv—-llll)
I<isV 7 7
(18] < 1), whence

(31) [8m) << e, V.

Any pair of integers n, m for which (31) holds will be ealled a normal

one; all the others — exceptional ones.

Let us divide the interval .# into [TlogT] equal parts J,f,,...
of the length ¢3/TV* (1 < ¢y < 2). Suppose that there is an interval
containing merely exceptional points and denote by M; the correspond-
ing part of M. Since by Lemma 1 and (26)

Z A(m) < 1/TV1/4’
m

™meM;

iom®

-1
-1
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we have by (30)
A(m)

m

<Y < VlogT,

>

1<V

meM
n,mexc.

N1 Am)
L
meM
N,7M OXC.

Now let us consider the case in which m, does not satisfy (27) and
consequently

(32)
< 7PlogT.

Tog (T°% Jmyg) < V~Y*10gT.
Writing M’ = [my, T°") we have by Lemma 1

< < V¥*0gT.
m
1<V
Since the number of intervals M does not exceed 2BV, from (32)
and (81) we deduce that

meM’

A(m s
'En,) 2 (-'nl) | < V10gT
mén,T3B) 1552y n
Tn,M eXeC.
and thus .
2 Awmatm) 2 (ﬂ) 7\ < V**og'T.
7
7B ongm< T8 i 1<V
Nn,MEXC, . ' . 7/31 2T
The corresponding sum over all normal pairs n, m is evidently < V*¥log T.

Hence, by (20), T < YT
and. thus

84l

V<e

is estimatb that the number of zeros of L(s, z)
From this estimate and (14) we deduce e vwes the first part

lying in the rectangle (1) does not exceed €
of the theorem. . .

8. In this paragraph let £(s, x) be the Hecke L'f“n“f)mf 041111 1\??1 a{)
gebraic field K with characters y modf a»'nd let 11’3 > 2]~(l p /95_)
The properties analogous to those of»§ 2 being trl;e : Oy Eve n};a. ge1t ) e,
we can repeat the deductions of §§ 5-7. In place o (20)

inequalit; s
quality e 2 A(a)/l(ﬁ)\ 2 (E)wy‘
[ Vi
V< Tog’ T NaNb | &4 \Naj |

a,
7B No< Ni<T3B
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Using the estimate

4o
Na ’

Nael

which holds by (10), we may go on as before. Finally we prove that the
number of zeros.of {(s, y) lying in the rectangle (1) does not exceed ¢,

Proof of the theorem for the function Z(s) = T LG, g)
X

9. Let us now consider the function Z (s) and the rectangle (1 3), which
we divide into squares @i, a8 in § 5. By Turdn’s theorem (see [13], §T,
or [6], (65)) there are no more than e functions L (s, %) having a zero
i)cnlany @1» and by § 7 no function L(s, y) can have zeros in more than
¢*" squares ¢). Starting with the square § nearest to the line f = Ty we
associate with it some definite funetion L(s, x) which has a zeroeQ. If
there is no such function, then we leave thig @ out of account and pass
to the next one, etc. Also we leave out any square @ in which there are
zexos merely of functions already associated with former squares. In thig
way we geb a set of squares, say S(Q;,l, Qiy5 -..). For every Q1,¢8 wo choose
a number 1=r(to)e[towl/,?logT,to—]-l/210g1’] which differs from 7,
by a multiple of ¢'[logT (¢’ < ¢, < 4). Then for each 7(¢,) we write in-
quality (11) (where ¢ runs through the zeros of that particular L(s, y)
which has . been associated\wit}h Qio) and we mark the corresponding
exponent k in (12). Let %’ be that value of (e[esd, ¢,A]) which has the
largest frequency. The numbers + corresponding to k = %’ will be denoted
by To+w; (1< J'<'V). Under these circumstances the number N (say)
of the zeros of Z(s) lying in the rectangle (13) satisfies ‘

(33) N < Vlz e(cl—[-cz)l.

Let L(s, y;) denote the function associated with the same square
as thg number w;. Then, by the arguments of §5,

‘ 2 BAWRm) |
,'Zl-i-i'(—f,;vm)'“‘ 4 , i
T8 cn1B
whence
Coht }
Gy V<l AWAm |y g0 (2
log T T8 nem<TSB nm 1 2 (,m) n

)
< 2 A(n) 2 A(m)’ z—w(m)“”f
n s o .
1Bon 3B Umod D) nemerdB m 1si<V
M=l(nodD)
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Using (34) and (7) in the same manner as in § 5 we prove first that
(35) V < elogu (2 <u< T,

Having done this we pass to the rectangle (1). Using (34), (35) and (7)
we follow the method of § 7, except that now we first evaluate sums over
m =1 (modD) with a fixed I, and then we sum the results over the re-
duced set of residues modD. In this way we get the estimate V < e%*
which, combined with (33), proves the theorem for the function Z(s).

10. The proof of an analogous theorem for the product [JZ(s, x)

%
of Hecke L-functions rests on (10), on the result proved in § 8 and on the
estimate < ¢* for the number of L-functions having a zero in a square
@y, (which follow from [6], (65) and [3], (8)). These results enable us to
use the method of §9. In place of (34) now we have the inequality

Cal

P A@) | A40) | (Nb)"“'f
V<10g21' Z Na £ 2 Nb f £ \Na )

R [ 1<5<r
1B Ny 3B NogNb<T3B

Arithmetical applications

11. As an application of the first part of the theorem we shall prove
an estimate for the sum over primes of a complex character y modD.
The proof rests on the inequality (cf. [11], p.376)

7+iT . }

1
(36) D zmA(m)+ E_fr =S (s, 1ds

n<x

7
_r El-Ogis——!—logaa (>1,T>1,1<n<?2)

in which we use z > D%, 5 =1+41/logz and
T = Detzl/log:u’

where ¢, and ¢, are large enough. Then the right-hand side of (36) is
< T 'zlog*s.

Replace the contour of integration by the broken lines 0, C,, Cs
satistying the following conditions: (i) the distance between C;, C., Cs
and, respectively, the lines t = T, o = %, ¢ = —T' does not exceed 1/logT’;
(ii) the length of C,, Cs, Cs does not exceed, respectively, 1, 4T, 1;
(iii) any zero of L(s, x) is at a distance > ¢,/log’T from the contour

¢ = C,+0C;+0; (of. [4], §8).
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At every point of ¢ we have, by (8), I'/L(s, ) < log*Z, whence the
integral along € is
< %logaw—l— #*Ploghs < —;- log®z.
Denoting by ¢ = @, the region between ¢ and o =1, we have by (36)
o a° zlog*s
(37) Zx(n)/l(n) = Z Z 10 (,,,.;_’___)’
n<x 0sG Q -

where ¢ runs through the zeros of L(s, y).

Let the constants ¢ and ¢, have the same meaning as in the theorem
and in § 2. We may suppose that (loga)/logT > 2e. Writing ¢ = 1— 644y,
0 = AflogT (1 = 2,) and using Abel’s identity ([11], p. 371) we deduce:

a° s logn
(38) Z-Z)—<m2w _mZexp(~}lai—Og—T-)
oG 0eG 2e@

logz
log®

logT
logw l’ o Jogx
< — T logT
wcf log7 P\ (0 )} @A+l
0

1 logx
< EOR\ =G iger)”

For a sufficiently large ¢, the remaining term in (37) is of a lower
order of magnitude than the right-hand side of (38). Hence, writing

(39) & =6Xp(—£cﬂ——1&L_)
2 “logD-+e,V1ogw
we have
(40) Zx(n)zl(n) < .
<

Dividing the sum on the left into parts » <<er and s < n < o,

and denoting by P the number of primes p < « not dividing D, we deduce
from (40) that

1 1 loga
41y Ny <P{—»—-—_:_.: +exp (——~—c-———-~———;_~;—_—)}.
p% log D+Viogw 2 0log])—}-ogl/loggm

This result is of interest only for “small” 2e(D, 2,) where a7, = exp(log® D).
If % > @y or T > exp(log* D), then by a known theorem (ef. [11], p. 295)
the eonstant ¢, in (8) (which is also the lower limit of the integral in (38))
increases with 7' giving a stronger estimate. :

In any algebraic field an analogue of (41) holds for the sum over prime
ideals of a complex character 2 modf.
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For the possibly existing exceptional zero we are not in a position

to prove a non-trivial estimate of the sum ) y(p) in the case of a real
P

¥ # #%o and a small z.

12. In the present paragraph we shall apply the second part of the
theorem in order to get an asymptotic estimate of the funetion s (x; D, 1)
which is of interest for small 4. To this end we multiply (36) by % (1) and
sum over all y. Dividing by % we prove that

z 1 _ ot zlogx
(42) Z Am)"‘h‘*f XQ(Z)? +0( T )7
N [Ze
n=l(mod D)

where G denotes the sum of all the regions @, defined in the previous
paragraph, and y, (for any particulas g &) runs over all characters ymod D
such that L(g, x) = 0. If the exceptional zero p' (see §2) does not
exist, then by §11

@ D)= D Am) = (1+0(),

r=n=Il{mod D)
& being defined by (39). Hence, if » > D%, where ¢, is large enough,

then

log(hfe) |
(43)  m(w; D, 1) =7£é;{1+eca Togs T0(5)} 0 < 6<1).

If the exceptional zero p' = 1— 0’ does exist, then we use
T = D&’ ~%eV 15",

Now the principal term in (42) is
. »

€T B z ’
(44) —%—ql, where g =1—7 (75> ¢s8'log D,

]

and ¢, — 1 as @ -> co. The sum over the zeros g'e(‘%, 0 # ﬁ‘,‘may bei estu;a:-
ed ag in (38), except that now for the lower limit of the mtegla‘l; Bwe_th %
take max{c,, ¢slog(1/6'logT)} (see [11], p. 349, or [6], Lemma 25 Wi

in place of D); then

1
1 .2 1}2@?{ max (c clog ,__#._)}
;72 < ‘i{exl’{“ S logl o\ FOR log T
4

¢ logx _1{‘ loga
5'1_:;&?, g ° "mgT}.

= ?—min{(é’lOgT)
3

Acta Arithmetica XI.1
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Of the two terms in min{...} the first is the least for w<[D1, exp(log’D)].
And if ¢, is large enough, it is much smaller than (44).
For z > exp(log’D) we use the estimate

1 z 1 logm) T ..
— z — — g — | € — D7,
hZ <% eXP( 2%%0eT| =

e

This term has a smaller order of magnitude than (44), as D — oo, since
8" > ¢ D™ (cf. [11], p. 144). The remaining term in (42) Leing < (x/h)e,
with

& = 5'28“02'/55”,

we have by (44) and (42)
p(@ D, 1) = 2 (a0 +a),

where

lc loga

& = (((S’lt)gfl’)‘”ﬁ—{—e§ 0)_ logT'
Hence we can deduce that

fat 00, 220 ol 0 <0<,
¢; being much larger than s and the second term in the brackets being
>0, (45) gives positive information about the value of =(wx;D,1) for
2 > D with a sufficiently large ¢; <1 and D = D,(?). Using Siegel's
theorem (see [11], p. 144) from (45) and (44) we deduce (2). (If the excep-
tional zero does not exist, then a better estimate follows from (43).)
It seems to be worth mentioning that (43) is included in (45) if we
agree that whenever the exceptional zero does mnot exist, then ¢ =1
and & becomes the number (39).
Using the result of § 10 and an analogue of Siegel’s theorem for Hecke
L-functions (see [5]) by the same method we can prove an analogue of
(45) for prime ideals p of any class H modf in any algebraic field.

(48) n(z; D, 1) =

hlogx

) 13. Finally we are going to apply the theorem in the problem of the
least interval (¢, #-+a') in which there is a prime p = I(mod.D). By 0.,
6" and 6 we shall denote positive congtants << 1.

We start from the identity (cf. [6], §22)

(46)
‘ e Qe deo
1 . M . Y P 74 2, .
h An)exp | — —1log* —| = ,]/m f Z s, pate Y ds
D awm p( e m) i) 20 (5, 7)™
n=Il({mod D) 0 oo %

(*) This is not a sexious restriction, since for D < Dy the exceptional zero does
not exist.
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with

p>D, oy =g

Denoting by 8 the left-hand side of (46) and moving the contour of in-

tegration to the line v = —1 we prove that
11
— - 2 5350
(47) 8 = 2Vrylad'— 7M™} +-0(2 * ¥ Dlog Dar).
Ly

Let G denote the rectangle (0 <o <1, [t <T) with

26,
1—6,"

(48) T=a'1 ¢<2+
The part of the sum in (47) over the ¢’s outside @ being < £, we have
(49) § = 2Vmy fae'— 3ot 7,0) +0 ().

oG

First let us suppose that the exceptional zero does not exist. Then
the expression in brackets is >4z {cf. §11), whence

11
— S50
(50) 8> Vayn > >
Let
l+19’
(51) o =a'*, -where 0¢(0,1).
Then

2

z' .
—11—10g2(a:;l:a9')/m > cgm‘“"l—&}z— = e’ %,

whence it follows that in (46) the contribution of terms with n¢l (x—2’,
z+2') does not exceed x~*. Hence, by (50),

I

1
+501

> A >

nel
n=l(mod D)

%

and thus

: 1.1
5+301
(52) Z 1>a" % flogz.
pel
p=l{mod D)
()
After substituting o for z— ' the interval I takes the form (z, z+2')

with 0 <1 (ef. (51)). N s
In what follows we suppose thabt the except'lona‘,l zero f =1
does exist. Then the principal term of the expression in brackets in (49)
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is =o(l—a""/f') > wed'logD, whereas the sum 3 over all the other
e

oG by §11 satisfies

loga 1 logz

(63) < gmin {(6’10g17)c41?g?’ o TVIoeTy

The constants ¢, and ¢, depend merely on the distribution of the zeros
of the function Z(s) but not on the constant ¢; in @ > D, T = 2'/°1, Now
we take a sufficiently large

6 = 442,44 /e

and consider that for any ¢, > 4 there is a number 6, < 1 satisfying (48)
and thus by (51) the interval I (z—a', z44") is of the form (z, 2+ o)
with 6 < 1.

Our further arguments depend on whether the inequality &logT
< 1/¢; does or does not hold.

If ¢'logT < 1/e;, then the first term in the brackets in (53) satisfies

(8'log T)%°t < (8'log T)?,

whereas
1—a|p" = 1— e VVBT)g" > 10, 8'logT
and thus
L1y,
8 >¢a *(8'logD),
5% 510 D)
- x og
b4 1> ¢——-">""L
(54) 2,24; > 6 Togw
p=l{mod D)

If; on the contrary, 8'logT > 1/e,, then 6'logw >1 and 1—az~"/p’
1
>1~—e¢"'— &', whereas the second term in the brackets in (h3) is e 2
<e™™ In this case (50) holds true, whence (52).

By (52) and (54) we have proved the existence of a constant 0 <1
such that for D = Dy and any x > D (with a sufficiently large ¢, < 1)
in the interval (x,x-+a°) there is a prime p =1 (mod D)(3).

By the same method we can prove an analogous result for primes
which are norms of prime ideals of a given class $ modf in any algebraic
field. This improves the results of [4] and [5].

(%) This is of intevest only for small # or « < 1y = exp (D?), where ¢ ig any pos-
itive constant and D> Dy (e). If &> xy, then the result has been proved for 6 -—=§
(cf. [11], p. 323).

hm@
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An analogous theorem for L-functions of a semigroup (*)

14. The method of the present paper may be used as well for the
L-functions {(s, ) of a semigroup considered in [6]. Now an analogue
of the properties mentioned in § 2 holds by [6] (19), (22) and Lemma 11,
whereas that of § 3 can be proved by applying the sieve method as in § 4.
Then by the arguments of §§ 5, 6, 7 and 9 we can prove that the number
of zeros of the funetion []¢(s, ) in the rectangle (1—2/log? < o < 1,

x
M <T) (with T>2D and 0 <1< $0logT) does not exceed & Using
this result and [6], Lemma 25, we can apply the method of §§ 12 and 13.
This provides (i) a shorter way to the estimates [6], (10) and [61, §25
for the number = (%, H) of the generators and (i) we can prove the exist-
ence of a constant 6 <1 such that, whenever # > D%, in any class H
there is a generator be(x, z-+x°).

In [6] the estimate < ¢ for the number of zeros was proved only
for the rectangles (1—2flogD <o <1, |f| <¢'/logD). Applying this
weak result in a more complicated way we acquired merely the interval
(, ®D) containing a generator beH.

15. The remaining part of the present paper will be devoted to im-
provements of the corresponding results (proved in [7]) aboubt the two-
dimensional distribution of the generators of a semigroup ®. Now we sup-
pose that the elements of ® are complex numbers a = Vae®™, where
a=la>1, a= (2n) 'arga, and that a« =1 implies ¢ — 0. Nex we
suppose that the numbers ae® are distributed into classes H; (1 < j
<h 1 <7< D) forming a group I' and satisfying

D1 = +0(D%7), 120,
aeH;
ase

— sl €1 pl 9"

) 1 = xpx+0 (D7)
aeH,

AT 0L

x =D

(55)
O<¥<o<)

(uniformly in 0 < ¢ < 1), where the constants [, &, 4, ¢, do not depend
on j. In the case of ¥ < { and an even & we take it for granted that for
any subgroup IV of I" with the index 2

(3= 37)= 0

agl™
a<z a<x

(*) The subsequent paragraphes, 14-18, constitute in fact a continuation of my
papers [6] and [7] on the abstract theory of primes. But, since they are closely asso-
ciated with the arguments of §§ 1-13, it is more convenient to include this subject
matter here than to writé a separate paper.


Pem


86 E. Fogels

All the constants used further on may depend on 9, @, I, ¢, ¢;. Let y(H)
be the characters of the classes H and let for any aeH

f(ﬂ) — eﬁmia’
(56) X(a) = z(@)&(@" = z(@)e™™  (|Iml < M)

(m integer). For any
T>DA+4M)>1

the functions
ts, X) = EX(a)a,—*‘ (0 >1)

a
by [7] (§§ 4 and 5) possess properties analogous to those of §2, which
is the basis for the proof of the theorem.
Let A(a) = logb if a is a power of a generator b = Vbeé™ ™, and = 0
otherwise. The numbers R(a) = Rj(a) being defined by (15) (with «
instead of =), let us write

Aa)
e, = e (1, k) = P Ly, (a)

(=T <+ <.

Suppose that there is a zero ¢ = gx = 0,,, of the function {(s, X)
in the square Q(1—Aflog? <o <1, [t—1] < A/2logT) (¢, < A < ¢;logT).
Then for an appropriate natural integer k < ¢,

(57) X(a) ez 6‘_7.7rim,(u.-nl) > e-—csa
X(a) a%ay - ?
a,ay 1

by [7], §10.
For any fixed me[—M, M] let

fn(s) =[] (s, 28™.

Arguing as in [6], § 18 we can prove that the number of zeros @ of f,(s)
does not exceed ¢*. By N, we denote the number of zeros @ of the
function

Z(8) =

—M<mg<M

Fmls) =[] t1s, X).
X

Let f,,,j(s) (L <j < V) be all the functions f,, (s) which have a zeroe«Q@;
then

(58) Ny < Ve'e.

iom®
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For any m; we choose some y = y; such that the function T(s, 4 E™)
has a zero <@). Then for at least (1/¢,A)V of these functions inequality (57)
holds with the same %k = k;, whence

§ 2 Xi (a)__ e ?aleznfmj(u_al)
1<KI<T a0y Zj(al)

1(a)A(a —
= D R @ B w) Y

S Wi {a1)

Ve ae's' <

Zi (a) amimnj(a—ay)

——€

a,ag

7;(a)

ezm'mj(u—al)

et A(a)A(ay)
< log*T 2

0,0y oty 155217 2i(ay)
7Bca,0, <738
and thus
cg . )
©) F<im D A@AE) | N7 2(0) arimgoay
08" &= as, | ()

TB<a,a1<T3B

6082 A(QI) A(a) rim;(a—a.
Slong Z "——‘al ; % — Ilq_z;ez (. 1]%.

a1
TBca,<1r3B

i TB<a<T3B
Writing a—a; = ¢,
glg) = D) e,

1<V
we deduce that

1 1
f lg(tp)]qu‘ — fz‘eZniq(mj—mj.)d‘P - V.
0 6 7,7
For any fixed H and a, let ¥ be the measure of the set of points o
such that

(60) 9la—ay)] > T

then ¥ < V~'2. The points a satisfying (60) will be called the exceptional
ones.

Now we divide the interval 0 < a <1 into [MV'*] equal parts
&lyy Ay ooy Ly ... of the length ¢ [MVYE (1 < ¢’ < 2). If there is in 7
a non-exceptional number a = o', say, then for any a = g ¢ with
A(a) = 0 we have

(61) 2 e‘_’zim]‘(aful) < 2‘73/‘4_

1< T”
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The pairs of numbers a;, a will be called normal ones or ezceptional
ones according as (61) does or does not hold.
By [7], (44) we have

(62) Z A(a) < eyprfh
aeH ,a<T
a=ag-+Op(mod 1)

for any ¢, and any ¢ =z ™ (0 <9, <), provided that z > T°w
(010 = Clo(ﬂo))-

Further on we use (62) with @e<(T7%, 7°%) where B = B(d,) < 1
is large enough. Then ¢'/M V'™ > g7% (since M < T and V < ¢ log M
by [7], (49), and we may suppose that e < logM). This enables us to
use (62) for the intervals »7;:

by A(a __1 2
usii—g/@ (@) < en MV g
aefs k

Hence
A(a) 3B
¢ ¢ wd
63 2 A@)  en f ads )
) el ae ], a < WMV ) P +1) <
1‘B<c’z<TsB .

1
rarve 08T

. Summing over all the intervals .=/ containing exclusively exceptional
points (if there are such .7;) we have for a fixed a,

A(a) log? logT
=Y Sy
Py v d
7B g T3B
ay.aexc.
% a) &
2{ ’ 5 2mimng(a—ay) 7_1V1/210gT7
aeH 1< ‘/V
TB<;,<T3B <
ay.aexe.
§ 1 v ./1(‘1) eznimi(u--al) < Vl/zlo A
L a o gL
H aeFl 1<V
TB cq73B
ag,aexc.

The corresponding sum over the normal pairs a,, a being < V*logT, we

>y X -

B <a1<T3B

Aa
(a l)Va”logT < V¥0g*T.

<a<TsB TB<al<T3B

hn..@
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This combined with (59) proves that V < ¢‘12%, whenece by (58)
(64) No < &1,

No?being the number of zeros of the function Z(s) = H (s, X) (with A

in (56) satisfying M < T'/D) in the square @ (1— 2/logT 1, [t—1%l
< A[2logT) (t, < T), the estimate (64) improves [7], I‘undamenta.l
Lemma 9(%). Simultaneously it improves the theorem of [7], where D,
can now be replaced by D (cf. [7], footnote(?)).

An estimate similar to that of (64) can be proved for the number
of zevos of the function Z(s) in rectangles of the height < 7. This will
be performed in the following paragraph.

16. By the arguments of §§ 3-8 we first prove that the number of

zeros of any function (s, z&™) with |m| < M in the rectangle (1—AflogT

<1, || < T%) does not exceed %, Using this estimate by the method

of § 9, adapted for the function Z(s) = [1Z(s, X), we choose the numbers
X

w; (1 <j < V) in such a manner that if ¥, denotes the number of zeros
of Z(s) in the rectangle (13), then

(65) N, < V.

Next to this we may suppose that all w;’s are multiples of ¢’[logT, where

¢ stands for a sufficiently small constant.
By analogy to (34)

X;(m) _‘Jf_)iwj

¢ O Aa)A(a)
V<=

log’T % a0 1222 X;(a)

I’B<a1<a<TaB .
A(a1 v A() i (e _u)( a )‘“’"
& AN —_— .

log _T 2 2 1%};17 a; E\

TB<a1<TsB al<a<TaB

The interval 0 < o <1 being divided into L = [M V1% equal parts
oy (1 <k<L)asin the plevmus paragraphs, we consider that for all o
of the same .7, the values of ™™~ differ at most by < V~'*. Hence

st A(ay) A(a) o _y
e D e Z A9 3 () oy

H l<k<L ueH 1<igV

i
7B <ca,<T3B

‘6 A(@) (] a\"™ s
lcfg.’l‘ E a, ; 2 2 TQZ(}E) {J“V[‘)'

1<k<l el iS4 !
a1<a<T3B
asl

() I have found the method of the present paper after many attempts to im-
prove this unsatisfactory lemma.

TB<a1< 3B
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Using (66), Lemma 3 and arguing as in § 5 we can prove that

(67) V < eMlogu+ eV = (VP L logu).

Hence in the case of logu < V*® we have V < 267" V*?, whence V < ¢,
This combined with (63) gives the desired result.
It remains to consider the case of logu > V*7. Then, by (67),

(68) V < e"logu.

Before going on we need the following

LemMA 3. Lt T > D, I <e<L,p 2o (0 < ¥, < 9) and o > TE
where the constant B = B(¥9,) is large enough. If I and <7 denote respectively

the intervals [, 2] = [z, 2+2"] and a= g+ 0p (modl) (0 < 6 < 1),
then for a suitable ¢,y (which does mot depend on H and ay)

D A(0) < eypegnfh.
aeH
_ ael,aesd
The proof is nearly the same as that of Lemma 2. In [7], Lemma 5

let a, (n =1,...,N) be all the numbers acH with ael and aev. Then,
by (55), N = »{tpm '+0(Dz*~%) and

21 = N/d+0(D%(x]ay~"),
blnn
whence (in the notation of [7], Lemma 5) f(0) = d, R, < D (w/d)~*
Using # > 2 (with a small constant ¢ < }) and arguing as in [7],
§ 7 we deduce that 8, > ¢, hxloge and thus N/S, < g’ [hloge. In prov-
ing the same estimate for the term
&

W = Dfig—? 2 ((“17 D) )1_ ,
@y

1,02
013,00 <7

-consider that by [7], §8 the last sum does not exceed ey, DB~ (h) e,
whence W < D (hx) z'~ . Putting

g’ (@ [x)

(69) P R i il ek M
D% (hx) hlogs '

we get the desired estimate. Under the conditions of the present lemma we
have in (69) z> 2 and z < #**. Hence for the number of the gener-
ators b = Vbe"™" we can prove the estimate

2 1 < eypn’ [hloga < e;qexihlogn,

b sI ugd
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whence
(70) D A@)fa < egfh.
acH
ael jaer?

Let us now return to the funetion Z(s) and the rectangle (1), our
aim being the elimination of the factor logw in (68). To this end we use
(66), (68), (70) and proceed as in § 7. Finally we get the following result:

Let the characters X be defined by (56) and let T > D(1+3M). Then
the number of zeros of the function Z(s) = [[(s, X) in the rectangle

X

A=2logT < o<1, [y <T) (e <AL §0logT)

does not exceed e

On the two-dimensional distribution of generators

17. In this paragraph let o7 denote any interval ¢ < a < a. of the
length g@e[4,1—24], where 4 > D~% with arbitrarily large ¢ < 1.
We shall use the funcfion

f(a) — Z dmeﬂm"nm’
— 00 <O0

whose values are 3> 0, < 1 such that f(a) = 1if ades/ and f(a) = 0 outside
the interval (a;—A4, a,--4), and whose coefficients satisfy:

dy = ay—a;+-4,

=

(71) || < dyy A < min(dy, |m|™, 47" |m

for any integer 7 > 1 with the constant in the notation depending on r

(cf. [7], §11).
We start from an analogue of (36)

niT 1% 2
NMx@ae f 28 e X)ls < o 4 PO g
i 2t Joos 0 T(n—1) r
a<<e

l<yp<2;2>1;T>1),

with « > D%, 5 =141/logz, l’<1aﬂ, then the right-hand side is
< T 'xlog’z. Hence, by (56),
n-ﬂsz 1%
- H f 22 (s, g™ ds < T 'wlog .
(12) D) A@E@"+h Z‘y( Vo e g

aeH
a<z
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By the definition of f(«) we have, say,
(73)

N a@fa) = YA DY+ N v+

aell aeH — PO 0D aeH |m|<I aeld |m|>M
agw agz (< asm

Hence, by (73) and (72)

D dat@r =

n+iT

wr

Bt - i
L_”. ZZ(H) 2 dy, { %*' ° (s, %&") ds+0 (T zlog* xlog M).
x

2 N c
< |y M n—il s

U, = —

Choose
m _ s LeViegz
T = DfsgéVioer,

where the constants ¢; and ¢, are large enongh. If the exceptional zero
(see [7], §5) does not exist, then we use

1 logz 3
BzeXP(_EGO.IOg—T)7 4 =(ZUE7 JI:(CZDE)W', r=1

and arguing as in §§11 and 12 we prove that

U, = %do (1+0(e))+0 (T~ 'wlog* zlog M),

Ly 2
Ty 3 4707 = —dge.

Since for appropriate c;, ¢

zlog®slogM =
. <3%

the last term in U, is of no importance. Denoting by @ the left-hand side
of (73), we have

(74) ® = %do(l—i—O(e)).
From the definition of f(a) it follows that

o= D 40)+0+,
aefl
a6
where @, and &, do not exceed analogous sums over intervals Ay, Ay
(say) of the length 4. They may be estimated in the same manner as (74),
except that now a, = o;,+4. We have

bﬂﬁ’
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@z &
D +Dy <€ -4 =—
1+ D, < W A dye,
whence, by (74),
x i
(75) > A =7do(1+0(a)).
aeH v
a0

Denoting by =(e; H,s/) the number of generators b = Vbe*™@cH
such that b < and « is in the interval o7 of the length @, from (75) we
can deduce that

log(h/ep)
logz

x
w(w; H, o) =tph10gm{l—l—ﬁc7 —}—0(3)} (0<6<1)

(cf. §12). If the exceptional zero ' = 1— 4’ does exist, then

2 log(i/eg) . |
s H, ) = e, 0 0<h<1
1) s Hy ) = pr s 00, 2B o)) 0 <0< 1),
where
—3
fr = 1= (H) 5, e = {(&'log )"+ ey onsmoer

(x' being the exceptional character). For ¢ > D~ and =z > D% (with
a sufficiently large ¢, = c,(c;)) the right-hand side of (76) is evidently
positive; for large z it is asymptotically gz /hlogz.

18. In this final paragraph we shall investigate the existence of a gen-
erator b = V™ cH in a region (z < b < +4’; aes’) with a con-
stant § <1 and a small interval &7 of the length ¢ = 27¢ (¢ > 0).

Denoting by C, a sufficiently large constant we suppose that

z > D1,
Let

g=u59" o=1—g

and let f(«) be the function defined in the previous paragraph with a, = ¢,
and 4 = 4¢. Then for any y > 0 we have, say,

i A e, 4@
(77) h LHJ P exp iy og e 1521; P exp
Qe Qe

1 o @
(— Z;log ;)f(a)

aerd
A(a) 1 . O gy n
=h Z—&&l— exp (—— glog E) 2 dn&(a)
el —00LMID0
aeH |m<M ael jm|>3I
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By [7], §11
U= D z]/ f 5 (85 2E")ar e s
- -

oy @V (4,8 —8')+0 (Dlog D)

M

||

where

Y‘x (H) N dy D) a’expl(—8(2g—0)—y*+2iy (9—8))y +iyloga},

RIS ey, m(#ﬁ)
8=1—By (H)z "exp{—95 (29— 8"y},

Oym = 1— (5—}—7,«/ denotes the zeros of (s, x&") in general, ' the excep-
tional zero, y’ the exceptional character, and B = 1 or 0 according as x"
exists or not.

Further on we use

T =g, y=g0

with a positive constant 6, <1 such that

<2+

_91'

Let @ be the rectangle (1—2g < o <
does not exist, we have (cf. §13)

1, |t} < T). In the case where 5"

(78) U > 2Vmya’ ™V, (1— Zw)_%m‘)gm > }Vrya p— ¢, DlogD.

0@

4

We suppose that the constant ¢ in ¢ > #7° satisfies

¢ < min{g, (301)7"};
then
(79) U, > Wyalp.
By [7], §12 and (71)

U, < Vﬁ?w" 2
|m\>21
1 and r = 3. Then U, < $U,, whence by (7

1 A(a)
ILZ o ex

aeH
aerl

[ | <€ Vya®(AMY"
Choose M = /2% — 9) and (77)

9

110‘
p( 4y &

a 1 -
— > = Vyap.
w) Vit

iom®
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Putting o’ = &"**"" (where 6, < 6’ < 1) and arguing as in §13 we
can prove that in the last sum the contribution of terms with a ¢l (—a’,
xz-+a') does not exceed &%, whence

1
- ~+§01+a

(80)

asI lls.if

Since o; > ¢, the contribution of terms with a =%, 6%, ... does mnotb
exceed O(D'w~Y"log’z), which is mueh smaller than the rlght-hand side
of (80), whence

e
(81) ) 2 10%11) >_£m_§'“381 ‘7.
& b 16
bel aed

If the exceptional zero g/ = 1— & exists, then the expression in the
Dbrackets in (78) is > ¢,8'logD (cf. § 13), whence U > c;p¥ya?6'logD,
U, < 3U,, ete. and finally

1.1
-+§91+0

logh , -3
h E 5 > ¢s(6'log D)gm *
b
bel,uest

From this and (81) we deduce that for appropriate constants 6 = 1—¢’,
¢, 0 (which may depend on the constants ¢, ¢, &, 9, I of § 15), for any a,
and any class H in the region
z = DY

2<b<zt+s’; gy <e<a+a° (modl)} with

there is a generator b= Voo™ < H.
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O Hynsx amamiTHYecKHX QYK C 3a7ABHON apupmernroii Ko3(dumuerToB

Recu par la Rédaction le 4. 6. 1964

H OpeNICTABJIEAHA 9HCe]I

A. 0. Texngonx (Mocksa)

§ 1. Hymn amaimredeckux ¢yBKIME ¢ Oeabmvu roypdammenTamu. Fcan
LeN0INCIeHHOCTh AHANMTHIECKOH PyRKIMY Ha KaroM — muGo [1] Roabme
Cpasy BHSHBACT OTPAHMYEHHA HA €e POCT B TOM HJIH MHOM CMEICHe,
TO HEIIOYHCIEHHOCTE KOIYQUIHEHTOB ay, n = 0,1,2, ...

£ = Dad, fi() =

UPAaKTUIECKH He HAKIANBIBACT HAKAKNX YCIOBHE Ha apHfMeTmiecKylo

NPUPONY MX HYIeH.

HoxaseM, B MOATBEPIKIEHAE STOr0, DAL TEOPEM.

Teoesma 1. Ecau ay, ay,...; ozl < 1, nocaedosamemsHocms deifcmen-
memHbIY Yucer U m =1 yeaoe, Mo MOMCHO Halimu nocaedosamemsHocmMb
yeavly Uucen o, by tyy <oey I, # 0, [t <m, k=0,1,2,... marywo, umo

(1.1) Jlog) = 0,
npu yeaosuu

(1.2)

E=1,2,...,m,..

n
1+m>niak]"1, n>=1.
1

Smo yeaosue He meHAemes U 6 cayuae Kpammwix kopHeld, f™(a) = 0,
w=0,...,p—1 Tozda ¢ nem Hado Gpamb |ox® emecmo |oz|.

3amMeuaHNe K TeopeMe. EClIM IpeAnoNaraTs 9ucia a; KOMIIEKCHEI-
MY, TO ycioBHE (1.2) 3aMeHNTCA YCIOBHAME

n ki3
@3)  14m>[]lel, T4m>[[lal™, k=1,2,3,...,
1 1

. i’ I
€CITM, COOTBETCTBEHHO, [f] < m Leible Win |iz] << m, [t} < m, &, = f;+ ity ,
THe f U t IedHe PANEOHATLHLE.
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