icm[©]

Since $0 \le s < r$, from (5.8) $k \ge 1$ and k = 1 only if $s \ge 2$; in this case however $r \ge 3$ and then (5.9) is not satisfied. Hence $k \ge 2$ and so from (5.9) $2r^2 < 2(r+1)$, i.e. $r \le 1$. Thus r = 1 and s = 0. From (5.8)

from (5.9) $2r^2 < 2(r+1)$, 1.e. $r \le 1$. Thus r = 1 and s = 0. From (5.8) $k \ge 3$ and from (5.9) k < 4 so k = 3. Now when r = 1, s = 0, t = 3

we have $(r+1)(s+t)+s+1 > 2(s+t)+2-\frac{t}{r+1}$ so the only case for

which $\frac{n}{m}$ is a better bound in the range m+2 < n < 2m is r = 1, s = 0, $t = 3, \theta = 6$, i.e. n = 9, m = 6.

References

[1] L. J. Mordell, On the inequality $\sum_{r=1}^n \frac{x_r}{x_{r+1} + x_{r+2}} \geqslant \frac{n}{2}$ and some others, Abh. Math. Sem. Univ. Hamburg. 22 (1958), pp. 229-241.

[2] P. H. Diananda, On a conjecture of L. J. Mordell regarding an inequality involving quadratic forms, Journ. London Math. Soc. 36 (1961), pp. 185-192.

Recu par la Rédaction le 27. 4. 1964

ACTA ARITHMETICA XI (1965)

Further developments in the comparative prime-number theory IV

(Accumulation theorems for residue-classes representing quadratic non-residues mod k)

by

S. KNAPOWSKI (Poznań) and P. Turán (Budapest)

1. In the second and third papers of this series we introduced a new approach instead of that of Chebyshev, in order to find a sense in which there are more primes $\equiv l_1 \mod k$ than $\equiv l_2 \mod k$ if and only if l_1 is a quadratic non-residue, l_2 quadratic residue $\mod k$. We succeeded in obtaining results in this direction when the Haselgrove-condition is satisfied for k, i.e. when there is an E = E(k) > 0 such that no $L(s, \chi)$ belonging to the modulus k vanishes for (1)

(1.1)
$$\sigma \geqslant \frac{1}{2}, \quad |t| \leqslant E(k) \quad (s = \sigma + it).$$

For the sake of brevity we shall call such k-values "good" k-values. We made a comparison in the second paper for the residue-classes

$$\equiv 1 \mod k$$
 and $\equiv l \mod k$

(l quadratic non-residue mod k) in the third one for the residue-classes

$$\equiv 1 \mod k$$
 and $\equiv l \mod k$

(l quadratic residue mod k).

In this paper we shall pass to the more general case, when we compare the residue-classes

$$(1.2) \equiv l_1 \bmod k \text{and} \equiv l_2 \bmod k$$

 $(l_1, l_2 \text{ both quadratic non-residues}).$

⁽¹⁾ Though no k-value is known for which this would be false, it is desirable to prove its truth at least for an infinity of k-values.

This time we succeeded only for k's satisfying a condition more stringent than (1.1). We shall suppose not only (1.1) but also with an η , satisfying with a suitably small $c_1(^2)$ the condition

$$(1.3) 0 < \eta < \min\left(c_1, \left(\frac{E(k)}{6\pi}\right)^2\right)$$

the nonvanishing of all $L(s,\chi)$ -functions belonging to mod k for

$$(1.4) \sigma > \frac{1}{2}, |t| \leqslant 2/\sqrt{\eta}.$$

On E(k) we may suppose without loss of generality that

$$(1.5) E(k) \leqslant \frac{1}{k^{15}}.$$

Then we shall prove the

THEOREM I. If for $k > c_2$ with sufficiently large c_2 the condition (1.1), (1.3), (1.4) and (1.5) is satisfied, then for

(1.6)
$$T > \max(c_3, \frac{e^{\frac{1}{n^4}e^{\frac{1}{4}k^{10}}}}{2})$$

and for quadratic non-residue l_1 and l_2 there are x_j and v_j (j = 1, 2) with

$$(1.7) T^{1-\sqrt{\eta}} \leqslant x_1, x_2 \leqslant Te^{\log^{3/4}T}$$

and

$$(1.8) 2\eta \log T \leqslant \nu_1, \nu_2 \leqslant 2\eta \log T + \sqrt{\log T}$$

so that

$$\sum_{p=l_1 \bmod k} \log p \, e^{-\frac{1}{r_1} \log^2 \frac{p}{x_1}} - \sum_{p=l_2 \bmod k} \log p \, e^{-\frac{1}{r_1} \log^2 \frac{p}{x_1}} > T^{\frac{1}{2} - 4\sqrt{\eta}}.$$

2. In the first paper of this new series we proved the first "accumulation"-theorem. This states in its simplest form that for a sufficiently large c_4 for $T > c_4$ there are U_1 , U_2 , U_3 , U_4 with

$$Te^{-\log^{11/12}T} \leqslant U_1 < U_2 \leqslant T, \ Te^{-\log^{11/12}T} \leqslant U_3 < U_4 \leqslant T$$

so that

$$\sum_{\substack{n=1(4)\\U_1\leqslant n\leqslant U_2}} \varLambda(n) - \sum_{\substack{n=3(4)\\U_1\leqslant n\leqslant U_2}} \varLambda(n) > \sqrt[4]{T} \, e^{-\log^{11/12}T}$$

and

$$\sum_{\substack{n=1(4)\\U_3\leqslant n\leqslant U_4}} \varLambda(n) - \sum_{\substack{n=3(4)\\U_3\leqslant n\leqslant U_4}} \varLambda(n) < -\sqrt{T}e^{-\log^{11/12}T}.$$

The corresponding problems for primes instead of prime-powers are generally more difficult. In this direction we shall prove the following

Theorem II. Under the conditions of Theorem I there are $\mu_1,\,\mu_2,\,\mu_3,\,\mu_4$ with

$$T^{1-4\sqrt{\eta}} \leqslant \mu_1 < \mu_2 \leqslant T^{1+4\sqrt{\eta}},$$

 $T^{1-4\sqrt{\eta}} \leqslant \mu_2 < \mu_4 \leqslant T^{1+4\sqrt{\eta}},$

so that

$$\sum_{\substack{p = l_1(k) \\ \mu_1 \leqslant p \leqslant \mu_2}} 1 - \sum_{\substack{p = l_2(k) \\ \mu_1 \leqslant p \leqslant \mu_2}} 1 > T^{\frac{1}{2} - 5\sqrt{\eta}}$$

and

$$\sum_{\substack{p=l_1(k)\\ \mu_3\leqslant p\leqslant \mu_4}} 1 - \sum_{\substack{p=l_2(k)\\ \mu_3\leqslant p\leqslant \mu_4}} 1 < -T^{\frac{1}{2}-5\sqrt{\eta}}.$$

Since this can be derived from Theorem I following the pattern of our paper [2] of this series, we shall omit the details.

3. We shall need a number of lemmas.

LEMMA I. If no $L(s, \chi)$ -functions mod k vanish for

$$\sigma > \frac{1}{2}$$
, $|t| \leq \log^2 \varphi(k)$,

then for all (l, k) = 1 there exists a prime $P = P_l$ with $P \equiv l(k)$ for which (3), with suitable c_5 and c_6 ,

$$c_5 \varphi(k)^{5/2} \leqslant P \leqslant c_6 \varphi(k)^{5/2}$$
.

Let with a fixed l, with (l, k) = 1,

(3.1)
$$F(s) = -\frac{1}{\varphi(k)} \sum_{i} \overline{\chi}(l) \frac{L'}{L} (s+1, \chi)$$

and

(3.2)
$$v = \left[\frac{1}{10}\log\varphi(k)\right],$$

$$(3.3) A = 10/\log\varphi(k).$$

⁽²⁾ c_1 and later c_2 , c_3 ,... denote always positive numerical constants.

^(*) A weaker lemma is deduced in our paper [1] from the exact prime-number formula (p. 50). We prefer now to give an independent proof. The conditions could have been much weakened.

Developments in the comparative prime-number theory IV

151

With these we consider the integral

(3.4)
$$J = \frac{1}{2\pi i} \int_{\left(\frac{1}{\log \varphi(k)}\right)} \left(e^{25s} \frac{e^{As} - e^{-As}}{2As}\right)^{r} F(s) ds.$$

Replacing F(s) by its Dirichlet-series and integrating term by term, we get

$$J = \sum_{\substack{n = l(k) \\ e^{(25-A)^{\nu} \le n \le e^{(25+A)^{\nu}}}} \frac{A(n)}{n} \cdot \frac{1}{2\pi i} \int_{(0)} \left(e^{25s} \frac{e^{4s} - e^{-As}}{2As} \right)^{\nu} \frac{ds}{n^{s}}.$$

Since the integral is

$$(3.5) \qquad \frac{1}{A\pi} \int_{0}^{\infty} \left(\frac{\sin t}{t} \right)^{\nu} \cos \frac{25\nu - \log n}{A} t dt \stackrel{\text{def}}{=} a_{n}(\nu),$$

which is positive for $e^{(25-A)^{\nu}} < n < e^{(25+A)^{\nu}}$ and 0 otherwise, further from (3.2), (3.3)

$$e^{(25+A)^{p}} \leqslant eq(k)^{5/2}, \qquad e^{(25-A)^{p}} \geqslant e^{-26}q(k)^{5/2}$$

we have

(3.6)
$$J = \sum_{\substack{n = l(k) \\ c^{-26}\varphi(k)^{5/2} \leqslant n \leqslant e\varphi(k)^{5/2}}} \frac{\Lambda(n)}{n} a_n(v).$$

Next we replace the line

$$\sigma = 1/\log\varphi(k)$$

by the broken line $(a \leq \log \varphi(k))$ to be determined)

$$K_1$$
: $\sigma = 1/\log \varphi(k), \quad t \leqslant -a \log \varphi(k),$

$$\mathrm{K}_2 \colon \qquad \qquad -9/20 \leqslant \sigma \leqslant 1/\mathrm{log} \varphi(k), \quad t = -\alpha \mathrm{log} \varphi(k),$$

$$K_3$$
: $\sigma = -9/20, \quad -a\log\varphi(k) \leqslant t \leqslant a\log\varphi(k),$

$$K_4$$
: $-9/20 \leqslant \sigma \leqslant 1/\log \varphi(k)$, $t = a \log \varphi(k)$

$$K_5$$
: $\sigma = 1/\log \varphi(k), \quad t \geqslant a \log \varphi(k).$

Denoting the respective integrals by I_1, I_2, \ldots, I_5 , we have by standard estimations concerning *L*-functions for $|I_1|$ and $|I_5|$ the upper bound

$$c_8 e^{\frac{(25+A)^{\nu}}{\log \varphi(k)}} \int\limits_{a\log \varphi(k)}^{\infty} \frac{\log \varphi(k)}{(At)^{\nu}} \, dt < c_9 \, a^2 \, \frac{\log \varphi(k)}{(10a)^{10} \log \varphi(k)} \; ,$$

for $|I_2|$ and $|I_4|$

$$c_{10}e^{\frac{(25+A)^{\nu}}{\log \varphi(k)}} \frac{a\log \varphi(k)}{\frac{1}{(10a)^{\overline{10}}\log \varphi(k)}} < c_{11}\frac{a\log \varphi(k)}{\frac{1}{(10a)^{\overline{10}}\log \varphi(k)}},$$

and finally for $|I_3|$

$$c_{12}{\log}\varphi(k)e^{-\frac{9}{20}(25-A)^{p}}(\frac{5}{2})^{\nu}< c_{13}\,\varphi(k)^{\frac{1}{10}\log_{2}^{5}-\frac{9}{8}}{\log}\varphi(k).$$

Now we choose α so large that

$$\frac{1}{10}\log(10\alpha) = 1.1, \quad \alpha = \frac{1}{10}e^{11};$$

this can be done if $\alpha \log \varphi(k) \leq \log^2 \varphi(k)$, i.e. $k > c_{14}$. Since

$$\frac{1}{10}\log \frac{5}{2} < \frac{1}{10}$$

and the residuum at s=0 is $1/\varphi(k)$, we get from (3.6)

$$(3.7) \qquad \sum_{\substack{n=\overline{l}(k)\\ e^{-26}\varphi(k)^{5}]^{2} \leq n \leqslant e_{\theta}(k)^{5/2}}} \frac{A(n)}{n} \, a_{n}(r) > \frac{1}{\varphi(k)} - \frac{c_{15}}{\varphi(k)^{41/40}} > \frac{1}{2} \cdot \frac{1}{\varphi(k)}$$

if $k > c_{16}$. Since the contribution of the prime-powers p^{β} ($\beta \ge 2$) to (3.7) is owing to (3.5) at most

$$c_{17} {\log ^2}\varphi(k) \sum_{n > e^{-13} \mu(k)^{5/4}} \frac{1}{p^2} < c_{18} \frac{{\log ^2}\varphi(k)}{\varphi(k)^{5/4}} < \frac{1}{4\varphi(k)}$$

if $k > c_{19}$. Hence for $k > c_{20}$ the assertion is proved with $c_5 = e^{-25}$, $c_6 = e$. From this Lemma I follows easily generally.

Further we need the

LEMMA II. If α_r and β_r are real, further

$$|a_n| \geqslant U \quad (\leqslant \frac{1}{2})$$

further with a $\gamma > 1$

$$\sum \frac{1}{1+|a_r|^{\gamma}} \leqslant V \quad (<\infty)$$

and $\Delta > 1/U$, then each real interval of length Δ contains a ξ with the property that for each v-index the inequality

$$\{a_r \xi + \beta_r\} > \frac{1}{24 V} \cdot \frac{1}{1 + |a_r|^r}$$

holds (4).

For the proof see our paper [2].

^{(4) {}x} stands as usual for the distance of x from the nearest integer.

Also we need the

LEMMA III. Let m be positive and z_i 's with

$$1 = |z_1| \geqslant |z_2| \geqslant \ldots \geqslant |z_h| \geqslant \ldots \geqslant |z_n|$$

such that with a $0 < \kappa \le \pi/2$

$$\varkappa \leqslant |\operatorname{are} z_i| \leqslant \pi; \quad j = 1, 2, \dots, n,$$

the index h we define by

(3.8)
$$|z_h| > \frac{4N}{m + N(3 + \pi/\varkappa)}$$

where N is an upper bound for n. Then there are integers v_1 and v_2 with

$$m \leqslant \nu_1, \nu_2 \leqslant m + N(3 + \pi/\varkappa)$$

so that

$$\operatorname{Re} \sum_{j=1}^n d_j z_j^{\nu_1} \geqslant \frac{B}{3N} \left(\frac{N}{24e \left(m + N \left(3 + \pi/\varkappa \right) \right)} \right)^{2N} \left(\frac{|z_h|}{2} \right)^{m + N(3 + \pi/\varkappa)}$$

and

$$\operatorname{Re} \sum_{j=1}^n d_j z_j^{\nu_2} \leqslant -\frac{B}{3N} \left(\frac{N}{24 e \left(m + N \left(3 + \pi / \varkappa \right) \right)} \right)^{2N} \left(\frac{|z_h|}{2} \right)^{m + N \left(3 + \pi / \varkappa \right)};$$

here B stands for

(3.9)
$$B = \min_{v \geqslant h} \Big| \operatorname{Re} \sum_{j=1}^{v} d_j \Big|.$$

For the proof see our paper [3].

We shall use further the

LEMMA IV. There exists a broken line W in the vertical strip $\frac{1}{5} \leqslant \sigma \leqslant \frac{1}{4}$ consisting alternately of horizontal and vertical segments so that each horizontal strip of width 1 contains at most one horizontal segment and on W for all L-functions mod k the inequality

$$\left|\frac{L'}{L}(s,\chi)\right| \leqslant c_{21}\varphi(k)\log^2 k(2+|t|)$$

holds.

A proof of this lemma follows mutatis mutandis that of the appendix III of paper of the second of us [1]. We shall also need the following simple consequence of a theorem of Siegel ([1]) which we state as

LEMMA V. For a suitable c_{22} all L-functions (for all $k \ge 1$) have a zero in all parallelogramms (τ real)

$$rac{1}{2}\leqslant\sigma\leqslant 1\,, \qquad au\leqslant t\leqslant au+c_{22}\,.$$

4. Finally we shall need the

LEMMA VI. In the notation of Lemma I, with $(l,k)=(l_1,k)=1,$ $l \not\equiv l_1 \bmod k$ and

$$b_0 = 2P_l^2 \log^3 P_l, \quad r_0 = \frac{1}{P_l^2 \log^2 P_l},$$

we have for $k > c_{23}$ the inequality

$$\frac{1}{\varphi(k)}\operatorname{Re}\sum_{\mathbf{x}}\left(\overline{\chi}(l_{1})-\overline{\chi}(l)\right)\sum_{e(\mathbf{x})}^{l'}e^{r_{0}(e^{2}+2b_{0}e)/4}>c_{24}P_{1}\log^{2}P_{1},$$

where Σ' means that the summation is to be extended only to the nontrivial zeros $\varrho = \varrho(\chi)$ of $L(s, \chi)$ right to W.

For the proof we shall define

$$f(s) = \frac{1}{\varphi(k)} \sum_{x} (\overline{\chi}(l_1) - \overline{\chi}(l)) \frac{L'}{L}(s, \chi)$$

and we start with the integral

(4.3)
$$J_1 = \frac{1}{2\pi i} \int_{(2)} e^{r_0(s+b_0)^2/4} f(s) ds.$$

Since for positive λ 's we have (see our paper [2])

(4.4)
$$\frac{1}{2\pi i} \int_{(2)} e^{r_0(s+b_0)^2/4-\lambda s} ds = \frac{1}{\sqrt{\pi r_0}} e^{\frac{r_0}{4}b_0^2 - \frac{1}{r_0}\left(\lambda - \frac{r_0b_0}{2}\right)^2},$$

inserting the Dirichlet-series of f(s) we get, using the notation

$$\varepsilon_k(n,l,l_1) = \begin{cases} 1 & \text{if} \quad n \equiv l(k), \\ -1 & \text{if} \quad n \equiv l_1(k), \end{cases}$$

the relation

(4.6)
$$J_{1} = \frac{e^{r_{0}b_{0}^{2}/4}}{\sqrt{\pi r_{*}}} \sum \Lambda(n) \varepsilon_{k}(n, l, l_{1}) e^{-\frac{1}{r_{0}}\left(\log n - \frac{r_{0}b_{0}}{2}\right)^{2}}.$$

Hence J_1 is real. The contribution of $n = P_l$ to the sum is obviously $\log P_l$. The contribution of the terms $n < P_l$ to the sum is

155

154

The contribution of the n's with $n > P_l$ is

$$< \sum_{n>P_l} \log n \cdot e^{-\frac{1}{r_0} \log^2 \frac{n}{P_l}} = \sum_{P_l+1 \leqslant n \leqslant P_l^2} + \sum_{n>P_l^2} < 2 \log P_l \int\limits_{P_l}^{\infty} e^{-\frac{1}{r_0} \log^2 \frac{x}{P_l}} dx + c_{26} < c_{27}$$

and hence

$$(4.7) J_1 > \frac{e^{r_0 t_0^2 l^4}}{\sqrt{\pi}} P_l \log P_l (\log P_l - c_{28}).$$

Shifting the line of integration to the line W we get

(4.8)

$$J_1 = \text{Re}J_1 = \frac{1}{\varphi(k)} \text{Re} \sum_{\chi} (\overline{\chi}(l_1) - \overline{\chi}(l)) \sum_{\varrho(\chi)} e^{r_0(\varrho + l \cdot l_0)^2/4} + \text{Re} \frac{1}{2\pi i} \int_{(W)} e^{r_0(s + l \cdot l_0)^2/4} f(s) \, ds \, .$$

The last integral is, using Lemma IV, absolutely

$$< c_{28} \log^2 k e^{r_0(b_0+1/4)^2/4} < c_{29} \log^2 P_1 e^{r_0b_0^2/4} e^{r_0b_0/8} < c_{30} e^{r_0b_0^2/4} P_1^{3/4} \log^2 P_1.$$

Collecting all these and dividing by $e^{r_0b_0^2/4}$, the lemma follows if $k > c_{23}$.

5. Now we can turn to the proof of Theorem I. First we apply Lemma II for

$$a_{r}=rac{1}{4\pi}t_{\varrho}, \quad eta_{r}=rac{1}{8\pi}\operatorname{Im}arrho^{2}$$

with

(5.1)
$$\gamma = \frac{11}{10}, \quad U = E(k)/5\pi, \quad \Delta = 6\pi/E(k);$$

one can evidently choose

$$V = c_{31} k \log k$$
.

Owing to (1.3) we have

$$\Delta < 1/\sqrt{\eta}$$
;

hence Lemma II gives the existence of a b_1 with

$$\frac{1}{\eta} - \frac{1}{\sqrt{n}} \leqslant b_1 \leqslant \frac{1}{\eta}$$

such that for all ρ 's

$$\left.\left\{\frac{1}{2\pi}\cdot\frac{1}{4}\left(2b_1\mathrm{Im}\,\varrho+\mathrm{Im}\,(\varrho^2)\right)\right\}>\frac{c_{\mathfrak{I}\mathfrak{I}}}{k\log k}\cdot\frac{1}{1+\left|t_{\varrho}\right|^{11/10}}\,,$$

i.e.

(5.3)
$$|\operatorname{are} e^{(e^2+2b_1o)/4}| > \frac{c_{32}}{(1+|t_e|^{11/10}) k \log k}.$$

Let further be

$$(5.4) m = 2\eta \log T$$

and the integer r be restricted momentaneously only by

$$(5.5) (10 \leqslant) m \leqslant r \leqslant m + c_{33}/\eta^{6/5}.$$

Then we start from the integral

(5.6)
$$H(v) \stackrel{\text{def}}{=} \frac{1}{2\pi i} \int_{(2)} e^{r_0(s+\overline{v_0})^2/4 + r(s+b_1)^2/4} f(s) ds,$$

 r_0 , s_0 from (4.1), f(s) being as in (4.2), with $l=l_2$ however. Obviously f(s) can be written in the form

(5.7)
$$f(s) = \sum_{p} \varepsilon_{k}(p, l_{2}, l_{1}) \frac{\log p}{p^{s}} + f_{1}(s),$$

where — using the quadratic non-residuacity of l_1 and $l_2 - f_1(s)$ is regular for $\sigma \geqslant 0.34$ and here

$$|f_1(s)| \leqslant c_{34}.$$

The contribution of the sum in (5.7) to H(v) is, owing to the integralformula quoted in (4.4)

(5.9)
$$\frac{e^{(r_0b_0^2+rb_1^2)/4}}{\sqrt{\pi(r+r_0)}} \sum_{\mathbf{z}} \varepsilon_k(p, l_2, l_1) \log p e^{-\frac{(\log p - (r_0b_0+rb_1)/2)^2}{r_0+r}}$$

As to the contribution of $f_1(s)$ to $H(\nu)$, we can shift the line of integration to $\sigma = 0.34$; hence this is

$$\frac{1}{2\pi i} \int_{(0,34)} e^{r_0(s+b_0)^2/4+r(s+b_1)^2/4} f_1(s) \, ds,$$

which in turn is owing to (5.8) absolutely

$$(5.10) \qquad \leqslant c_{35} \int\limits_{-\infty}^{\infty} e^{\frac{r_0}{4}(b_0 + 0.34)^2 + \frac{r}{4}(b_1 + 0.34)^2 - \frac{r_0 + r}{4}t^2} dt < c_{36} e^{r_0(b_0 + 0.34)^2/4 + r(b_1 + 0.34)^2/4}.$$

6. Next we shift the line of integration in (5.6) to the line W in Lemma IV. We get the residue-sum

(6.1)
$$\frac{1}{\varphi(k)} \sum_{\chi} \left(\overline{\chi}(l_1) - \overline{\chi}(\overline{l_2}) \right) \sum_{\substack{\varrho(\chi) \text{ right} \\ \text{end}}} e^{r_0(\varrho + b_0)^2/4 + r(\varrho + b_1)^2/4}$$

and the integral

$$rac{1}{2\pi i}\int\limits_{(\mathcal{W})}e^{r_0(s+b_0)^2/4+r(s+b_1)^2/4}f(s)ds.$$

The last one is, using standard estimations, absolutely less than

(6.2)
$$c_{37}e^{r_0(b_0+1/4)^2/4+r(b_1+1/4)^2/4}\log k.$$

Next we estimate the contribution of the ϱ 's with

$$|t_o| > 4/\sqrt{\eta}$$
.

This is absolutely less than

$$c_{33}e^{r_0(b_0+1)^2/4+r(b_1+1)^2/4}\sum_{n>\frac{4}{\sqrt{\gamma}}-1}e^{-\frac{r_0+r}{4}n^2}\log kn$$

$$< c_{39} \log rac{k}{\eta} e^{rac{r_0(b_0+1)^2}{4} + rac{r}{\delta}(b_1+1)^2 - rac{r_0+r}{4} \cdot rac{16}{\eta}}$$

Using (5.2), (4.1), further Lemma I, (1.3) and (1,5) this is for $k>c_{40}$ and suitably small c_1 in (1.3)

Now let $\varrho_0 = \sigma^{(0)} + i t^{(0)}$ be one of the nontrivial zeros of the $L(s,\chi)$ -functions with $\chi(l_1) \neq \chi(l_2)$ for which

(6.4)
$$|e^{(e^2 + 2b_1 e)/4}| = \text{maximal}$$

among the $\varrho = \sigma_{\varrho} + it_{\varrho}$ -zeros with

$$|t_{\varrho}| \leqslant 4/\sqrt{\eta} .$$

Collecting (5.9), (5.10), (6.1), (6.2) and (6.3), dividing by $e^{(r_0b_0^2+rb_1^2)/4}$ and taking real parts, we get

$$(6.6) \qquad \Big| \sum_{p} \varepsilon_{k}(p, l_{2}, l_{1}) \log p \, e^{-\frac{1}{r_{0} + r} \left(\log p - \frac{r_{0}b_{0} + rb_{1}}{2}\right)^{2}} - \frac{1}{r_{0} + r(r + r_{0})} \Big| e^{(c_{0}^{2} + 2b_{1}e_{0})/4} \Big|^{r} \operatorname{Re} \sum_{\substack{x \text{ oright from } \mathcal{V} \\ |l_{0}| \leqslant 4/\sqrt{\tau}}} \frac{\overline{\chi}(l_{1}) - \overline{\chi}(l_{2})}{\varphi(k)} \, e^{r_{0}(c^{2} + 2b_{0}e)/4} \times \\ \times \left(e^{(c^{2} + 2b_{1}e)/4 - \operatorname{Re}(c_{0}^{2} + 2b_{1}e_{0})/4}\right)^{r} \Big| \leqslant c_{45} \, e^{0.17(r_{0}b_{0} + rb_{1}) + (r_{0} + r)/4}.$$

7. We denote the expression

$$\operatorname{Re} \sum_{\substack{\chi \\ \text{erightron } W \\ |t_0| \leqslant 4/V\tilde{\eta}}} \frac{\overline{\chi}(l_1) - \overline{\chi}(l_2)}{\varphi(k)} e^{r_0(e^2 + 2b_0e)I^4} (e^{(e^2 + 2b_1e)/4 - \operatorname{Re}(e_0^2 + 2b_1e_0)/4})^r$$

in (6.6) by Z(r) and shall determine r by using properly Lemma III. The role of the d_i 's will be played by the numbers

$$\frac{\overline{\chi}(l_1) - \overline{\chi}(l_2)}{\varphi(k)} e^{r_0(\varrho^2 + 2b_0\varrho)/4}$$

that of the z_j 's by the numbers

$$e^{(\varrho^2+2b_1\varrho)/4-{\rm Re}(\varrho_0^2+2b_1\varrho_0)/4}$$

the condition $\max_{j} |z_{j}| = 1$ is obviously fulfilled. From (5.3) and (6.5) we have

$$|\operatorname{are} z_j| \geqslant \frac{c_{32}}{\{1 + (4/\sqrt{\eta})^{11/10}\} k \log k}$$

and owing to (1.5) and (1.3) a fortiori

(7.1)
$$> c_{45} \frac{\eta^{11/20+1/30}}{\log(1/\eta)} > \eta^{3/5} \stackrel{\text{def}}{=} \varkappa.$$

Further we have from (1.5) and (1.3)

$$(7.2) \hspace{1cm} n < c_{46} \frac{1}{\sqrt{\eta}} \log \frac{k}{\eta} < c_{47} \frac{1}{\sqrt{\eta}} \log \frac{1}{\eta} < \eta^{-11/20} \stackrel{\mathrm{def}}{=} N \,.$$

8. Now we shall use the fact that no $L(s,\chi) \mod k$ vanishes in the domain (1.4) which implies on the one hand — using (1.3) and (1.5) — the non-vanishing in

(8.1)
$$\sigma > \frac{1}{2}, \quad |t| \leq \sqrt{\frac{3}{4} + 1/\eta + k^{10}},$$

and, on the other hand, the non-vanishing in

$$(8.2) \sigma > \frac{1}{2}, |t| \leqslant k^5.$$

We choose as z_h the quantity

$$z_h = e^{(e^{(1)2} + 2b_1e^{(1)})/4 - \operatorname{Re}(e_0^2 + 2b_1e_0)/4}$$

where

$$\varrho^{(1)} = \sigma^{(1)} + it^{(1)}$$

159

is a zero with the maximal imaginary part $\leq k^5$. We have to verify (3.8) for our choice of z_h . First we assert that for all z_j 's belonging to ϱ 's with

$$|t_e| > t^{(1)}$$

we have

$$|z_j| < |z_h|.$$

In order to prove it, we remark first that owing to the form of z_j 's it suffices to show

$$|e^{(\varrho^2+2b_1\varrho)/4}| < |e^{(\varrho^{(1)^2}+2b_1\varrho^{(1)})/4}|,$$

i.e.

(8.5)
$$\sigma_{\varrho}^{2} - t_{\varrho}^{2} + 2b_{1}\sigma_{\varrho} < \sigma^{(1)^{2}} - t^{(1)^{2}} + 2b_{1}\sigma^{(1)}.$$

Owing to (8.2) and the definition of $\varrho^{(1)}$ we have certainly

$$\sigma^{(1)} = \frac{1}{2}.$$

Ιf

$$|t_{\rm o}| \leq \sqrt{\frac{3}{3} + 1/n + k^{10}}$$

then (8.1) implies

$$\sigma_{\varrho} = \frac{1}{2}$$

Hence (8.5) takes in this case the form

$$\frac{1}{4} - t_0^2 + b_1 < \frac{1}{4} - t^{(1)^2} + b_1$$

which is true according to (8.3). If

$$|t_{\rm o}| > \sqrt{\frac{3}{4} + 1/n + k^{10}}$$
.

then we have owing to (5.2) and (8.6)

$$\sigma_{\varrho}^2 - t_{\varrho}^2 + 2b_1\sigma_{\varrho} \leqslant 1 - t_{\varrho}^2 + 2b_1 < \frac{1}{4} - k^{10} + b_1 \leqslant \sigma^{(1)^2} - t^{(1)^2} + 2b_1\sigma^{(1)} + b_1 \leqslant t_{\varrho}^{(1)^2} + 2b_1\sigma^{(1)} + b_1 \leqslant t_{\varrho}^{(1)^2} +$$

again. Thus (8.3) and (8.4) is proved. Since $|z_1|\geqslant |z_h|,$ (8.3) and (8.4) implies

$$|t^{(0)}| \leqslant t^{(1)} \leqslant k^5$$

i.e. from (8.2)

$$\sigma^{(0)} = \frac{1}{2}.$$

For the applicability of Lemma III we have to verify (3.8). Since (8.7) implies

$$e^{\operatorname{Re}(\varrho_0^2 + 2b_1\varrho_0)/4} < e^{\frac{1}{4}(\frac{1}{4} + b_1)};$$

the definition of z_h and (8.6) give at once

$$|z_h|\geqslant e^{\frac{1}{4}\left(\frac{1}{4}-t^{(1)^2}+b_1\right)-\frac{1}{4}\left(\frac{1}{4}+b_1\right)}=e^{-\frac{1}{4}t^{(1)^2}}>e^{-\frac{1}{4}k^{10}}.$$

Since from (7.2), (7.1), (5.4) and (1.6)

$$\frac{4N}{m+N(3+\pi/\varkappa)} = \frac{4\eta^{-11/20}}{2\eta\log T + \eta^{-11/20}(3+\pi\eta^{-3/5})} < \frac{2}{\eta^2\log T} < e^{\frac{-1}{4}k^{10}},$$

(3.8) is satisfied at our choices.

9. Further we assert that for all z_i 's belonging to ϱ 's with

$$(9.1) |t_{\varrho}| \leqslant t^{(1)}$$

the inequality

$$(9.2) |z_j| \geqslant |z_h|$$

holds. Namely, owing to the definition of z_j 's and (8.6), the inequality (9.2) is certainly true if

$$\frac{1}{4} - t_{e_j}^2 + b_1 \geqslant \frac{1}{4} - t^{(1)^2} + b_1$$

which holds for ϱ 's with (9.1) indeed. Hence the inequality

$$|z_h|>|z_j|$$

holds exactly for z_i 's belonging to ϱ 's with

$$(9.3) |t_{\varrho}| > t^{(1)}.$$

This gives the possibility to find a positive lower bound for B in (3.9). Namely, owing to the definitions of z_h and Lemma V, all d_j 's with

$$|t_o| \leqslant k^5 - c_{22}$$

occur in B; applying Lemma VI we get

$$B>c_{24}P_l{\log ^2}P_l-c_{48}\sum_{n\geqslant k^5-c_{22}}\log kn\,e^{r_0(2b_0+1-n^2)/4},$$

i.e. for $k>c_{49}$ — using (4.1) and Lemma I —

$$(9.4) > k^{5/2} - c_{50} k^3 \int_{\frac{1}{2}k^5}^{\infty} e^{-x^2/k^6} \log kx \, dx > 1.$$

Finally we have to verify (not to violate (5.5)) that

$$N(3+\pi/\varkappa) < c_{33}\eta^{-6/5};$$

but this is true owing to (7.1) and (7.2). Hence choosing r as ν_1 , resp. ν_2 of Lemma III we obtain

$$(9.5) m \leqslant \nu_1, \nu_2 \leqslant m + c_{33} \eta^{-6/5}$$

Developments in the comparative prime-number theory IV

161

and - using also (1.6) -

$$\begin{split} Z(\nu_1) &> \frac{\eta^{11/20}}{3} \left(\frac{1}{24e(2\eta \log T + c_{33}\eta^{-6/5})}\right)^{2\eta - 11/20} \left(\frac{|z_h|}{2}\right)^{m + c_{33}\eta^{-6/5}} \\ &> \frac{1}{\sqrt{\log T}} \left(\frac{1}{\log T}\right)^{2\eta - 11/20} \left(\frac{|z_h|}{2}\right)^{m + c_{33}\eta^{-6/5}} \\ &> e^{-\sqrt{\log T}} 2^{-2m} |z_h|^{m + c_{33}\eta^{-6/5}} > T^{-4\eta} |z_h|^{m + c_{33}\eta^{-6/5}} \end{split}$$

and analogous negative upper bound for $Z(\nu_2)$. Hence from (6.6) we get

$$(9.6) S_1 \stackrel{\text{def}}{=} \sum_{p} \varepsilon_k(p, l_2, l_1) \log p e^{-\frac{(\log p - (r_0 b_0 + r_1 b_1)/2)^2}{r_0 + r_1}} \cdot$$

$$> T^{-4\eta} |e^{(e_0^2 + 2b_1 e_0)/4}|^{r_1} |z_h|^{m + c_{33}\eta - 6/5} - c_{45} e^{0.17(r_0 b_0 + r_1 b_1) + (r_0 + r_1)/4}$$

From the definition of z_h , (9.5), (5.2) and (8.7), we get

$$\begin{split} |e^{(e_0^2+2b_1\varrho_0)/4}|^{\nu_1}|z_h|^{m+c_{33}\eta^{-6/5}} \\ &= e^{\frac{1}{4}\left(\frac{1}{4}-t(1)^2+b_1\right)(m+c_{33}\eta^{-6/5})}e^{\frac{1}{4}\left(\frac{1}{4}-t(0)^2+b_1\right)(\nu_1-m-c_{33}\eta^{-6/5})} \\ &> e^{\frac{1}{4}\left(-k^{10}+\frac{1}{\eta}-\frac{1}{\sqrt{\eta}}\right)m-\frac{1}{4}\left(\frac{1}{4}+\frac{1}{\eta}\right)c_{33}\eta^{-6/5}} \end{split}$$

and — using (1.3), (1.5), (5.4) and (1.6) —

$$> T^{\frac{1}{2} - \sqrt{\eta}} e^{-1/\eta^3} > T^{\frac{1}{2} - 2\sqrt{\eta}}$$

Further we get from (4.1), Lemma I, (9.5), (5.2), (1.3), (1.5) and (1.6) for $k > c_{51}$

$$(9.8) e^{0.17(r_0b_0+r_1b_1)+(r_0+r_1)/4} < e^{0.16(2\eta \log T + c_{33}\eta - 6/5)\frac{1}{\eta}} < T^{0.36+\eta}$$

and hence, if c_3 in (1.6) is sufficiently large, from (9.7) and (9.8)

$$(9.9) S_1 > T^{\frac{1}{2} - 4\sqrt{\eta}}$$

and analogously

$$S_2 \stackrel{\mathrm{def}}{=} \sum_{p} \varepsilon_k(p, l_2, l_1) \log p \, e^{-\frac{(\log p - (r_0 b_0 + r_2 b_1)/2)^2}{r_0 + r_2}} < -\mathcal{I}^{\frac{1}{2} - 4\sqrt{\eta}}.$$

Further putting

$$(r_0b_0 + v_1b_1)/2 = \log x_1$$

we have from (9.5) and (5.2)

$$\log x_1 > \frac{\nu_1 b_1}{2} > \eta \log T \left(\frac{1}{\eta} - \frac{1}{\sqrt{\eta}} \right) = (1 - \sqrt{\eta}) \log T$$

and from (4.1) and (1.6)

$$\log x_1 < \left\{ 2\log P_1 + \frac{1}{\eta} \left(2\eta \log T + c_{33} \eta^{-6/5} \right) \right\} \frac{1}{2}$$

$$< \log T + c_{59} (\log k + \eta^{-5/2}) < \log T + \log^{3/4} T$$

and analogously for x_2 . Finally for v_1 and v_2 (9.5) and (1.6) give

$$2\eta \log T \leqslant \nu_1, \, \nu_2 \leqslant 2\eta \log T + \sqrt{\log T}$$

which completes the proof of Theorem I.

References

S. Knapowski and P. Turán

- [1] Comparative prime-number theory V, Acta Math. Acad. Sci. Hung. 14 (1963),
- [2] Further developments in the comparative prime-number theory II, Acta Arith. 10 (1964), pp. 293 - 313.
- [3] Comparative prime-number theory III, Acta Math. Acad. Sci. Hung. 13 (1962), pp. 343 - 364.

C. L. Siegel

[1] On the zeros of Dirichlet L-functions, Ann. of Math. 46 (1945), pp. 409 - 422.

P. Turán

[1] Eine neue Methode in der Analysis und deren Anwendungen, Akad. Kiadó, Budapest, 1953. A completely rewritten English edition in the Interscience Tracts Series is under preparation.

Recu par la Rédaction le 20. 7. 1964