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Since 0 < s <7, from (5.8) k=1 and k =1 only if ¢ 2> 2; in thiy
cage however r =8 and then (5.9) is not satisfied. HMence & = 2 and so
from (5.9) 2r* < 2(r-+1), ie. » <1. Thus r =1 and s = 0. From (5.8)
k>3 and from (5.9) k<4 so k =23. Now when r=1, s =0, 1 =3

[
we have (r+1){s+1t)-+s+1 >2(3'J"t)"1‘2_m 80 the only case for

whlch — i a better bound in the range m-+2 < n < 2m I8 ¥ == 1, § = 0,

m

t=23, 0=~6,1le n=29 m=~6
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Further developments in the comparative
prime-number theory IV

(Accumulation theorems for residue-classes representing
quadratic non-residues modk)

by

S. EnarowskI (Poznan) and P. TURAN (Budapest)

1. In the second and third papers of this series we introduced a new
approach instead of that of Chebyshev, in order to find a sense in which
there are more primes = [;mod % than =1I,mod % if and only if I, is & quad-
ratic non-residue, I, quadratic residue modk. We succeeded in obtain-
ing results in this direction when the Haselgrove-condition is satisfied for

k,i.e. when there is an E = E(k) > 0 such that no IL(s,y) belonging
to the modulus % vanishes for() ‘

(1.1) oz, [H<Bk) (s=o+i).

For the sake of brevity we shall call such k-values “good” k-values. We
made a comparison in the second paper for the residue-classes

=1modk and ==Imodk

(1 quadfatic non-residue mod#x) ‘in the third one for the residue-classes
=1modk and =Ilmodk

(! quadratic residue mod¥k).

In this paper we shall pass to the more general case, when we compare
the residue-classes

(1.2) =l modk and =1, modk

(4, I, both quadratic non-residues).

(1) Though no k-value is known for which this would be falge, it is desu&ble
to prove its truth at least for an infinity of k-values.
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This time we succeeded only for %’s satisfying a condition more
stringent than (1.1). We shall suppose not only (1.1) but also with an 1,
satistying with a suitably small ¢, (%) the condition

_ B)\?
0<"]<ml11(017( 6 ))

(1.3)

the nonvanishing of all L(s, y)-functions belonging to: modk for

(1.4) o>3, I <2pn.

On E(k) we may suppose without loss of generality that
(1.5) B(k) <

Then we shall prove the
TueoreM L. If for & > ¢, with sufficiently large ¢, the condition (1.1),

(1.3), (1.4) and (1.B) is satisfied, then for
2 g9
(1.6) T > max(o, ¢ )
and for quadiatic non-residue 1, and 1, there are &; and v; (§ =1, 2) with
L7 TV L oy, wy < Teos'!'T
and
(1.8) onlogT < vy, vy < 2logT+ViegT
so that
Iogpc_%k’sz{l-— lo,g:pem”ll1 NN T2 W"A
p=1ymod k p=lymodk

2. In the first paper of this new series we proved the first “accumula-
tion”-theorem. This states in ity simplest form that for a sutficiently large
¢, for T > ¢, there are U,, U,, Uy, U, with

Te o™ < 7, < U, < T,
- 11/12
T8 < g < U, KT
so that
Jrng 1/12m
A(n)y— Z A(n) > VT los™r
n=l (4) =3 (4
Uyn<gUy Uyn<Uy

(*) ¢ and later cg, cs,... denote always positive nunde_rical constants,

iom®
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and
ol 112
Am)— An) < —VTeg s,
ne=1(4) n=3(4)
Ug<n<Uy Ussng U,

The corresponding problems for primes instead of prime-powers
are generally more difficult. In this direction we shall prove the following

TeeoREM II. Under the conditions of Theorem I there are py, pa, psy Hs
with

_TI—‘“/ﬂ < < A < T1+4l/"l
T1~4ﬁ <y < g < T!+4]/q
so that
1 1> 17 5vV7
=l (k) p=ls(k) /
RSSP<HY HISDP<H
and
—5¥7
- Qi< ~T2 .
=y (K) =l (k)
ﬂ3<p<ll4 B3P 1y

Since this can be derived from Theorem I following the pattern of
our paper [2] of this series, we shall omit the details.

3. We shall need a number of lemmas.
Leyva 1. If no L(s, g)-funcitons modk vanish for
o>3%, il <log’p(k),

then for all (1, k) = 1 there exists a prime P = Py with P =1(k) for which(3),

with suitable c; and ¢4,
esp (k) < P < oop (k).

Let with a fixed I, with (z k) =1,

(3.1) o) =~ Zx 2
and

52 -

(3.2) v =|75logr(®)|,

(3.3) 4 = 10/loge (k).

(®) A weaker lemma is deduced in our paper [1] from the exact prime-number
formula (p. 50). We prefer now to give an independent proof. The conditions could
have been much weakened.
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With these we consider the integral
T As__ e

‘ 1 ‘ . 23 8 ¢ “]4‘1 s)ds
(3.4) = f (c L pisyds.

: 24s
(lngrﬁ(h‘)
Replacing F(s) by its Dirichlet-series and integrating term by term, we
get ‘ :

" 1 . pel8 el v s
A [ Y

n 2mi n®

Since the integral is

1 [ [sint\’  25v—logn
(3.5) — j (,_) oos 2208y S g (),
An P b1
which is positive for e® 4" < n < ¢®4” and 0 otherwise, further from
(3.2), (3.3)
6(254-11]-' < 0(]7(76)5/27 ) 0(25~A)v > 0—2600(7‘;)5/2’
we have
C An
(3.6) J = ! An) (%)
ne=l(k) ”

e~ p(y R el 2
Next we replace the line
o o = 1/logp (k)
by the broken line (a < logg(k) to be determined)

K;: o =1floge(k), < —alogp(k),
K,: —9/20 < o < 1flogp(k), = —aloge(k),
K,: o = —9/20, . —aloge(k) <t < aloge(k),
K,: —9/20 < o < 1flogp(k), = alogp(k),
K;: o =1loge(k), 1t = aloge(k).

Denoting the respective integrals by Iy, I,, ..., I;, we have by stan-
dard estimations concerning L-functions for |I,| and |I;| the upper bound

(25+4)r

oo
: T log e (X ,
_ e W B (JiIJ(1Q di < eya® lOgip k) ,
: alog (k) ( t) - (loa)ﬁlﬂgfp(k)

h.n@'
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for |I,| and |I,|

(@5+-A)r
0106 VBP0

aloge(k)

1 )
Tolog olk)

aloge (k)

(a0 )Tlalog,;(k)
a

(10a)
and finally for |I]

5
By

9 1 9
— o2 51085
% G) < apk)y’ * "loge(k).

cplogy(k)e
Now we choose a so large that

— L.
o = 7563

Slog(10a) = 1,1,

this can be done if alogp(k) <log’e(k), ie. & > ¢,. Since
1 1
wlogs <1

and the residuum at s =0 is 1/p(k), we get from (3.6)

y” ’ A(n)“ ( )>_L_ [
v T o) T (e

>1.1
2 k)

(3.7)

n=i(k)
e (k)5 2n<ep()’ 12

if k > ¢15. Since the contribution of the prime-powers P (8=
is owing to (3.5) at most
A 1
Z E)‘; <¢

p>e—Bg(k)5it

2) to (3.7)

log®¢ (k) 1
BUpRyE T e (k)

o7log’ (k)

25

if & > ¢,y. Hence for k > ¢y, the assertion is proved with ¢; = ¢77, ¢ = e.

From this Lemma I follows easily generally.
Further we need the

LemMA II If o, and B, are real, further

lal 2T (€9

Sfurther with @ y > 1
1

2 gap ST =

and 4 > 1/U, then each real interval of length A contains a & with the pro-
perty that for each v-index the inequality

1

1
{+pt > e
{a, 54+, > 24V 1+ o)

holds (*).
For the proof see our paper [2].

(4) {«} stands as wsual for the distance of » from the nearest integer.
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Also we need the
Luvma ITL. Let m be positive and z’s with
1= 2l =... 24l >... 2l
such that with a 0 < » < /2
% < lareyy| <w;  j=1,2,...,mn,
the index h we define by

(3.8) leal > il

MA4-N (84 /%)
where N is an upper bound for n. Then there are integers vy and v, with

m L vy, vy, < M+N(B+7/%)

so that
B N oN ]zhl )m-[-N(3+ﬂ[u)
Re ) di2ft > — =
,,;: 14 = SN(?Ae( +N(3—|—n/x))) ( 2
and
2N M- N(3-4-70[x)
ReZd 2 < ( al M) :
246(m+N (3+ n/x)) 2
here B stands for
(8.9) = mln] ReZd,’

vzh
For the proof see our paper [3].
We ghall use further the

Levwa IV. There exwists o broken line W in the vertical strip % <o -i—
consisting alternately of horizontal and vertical segments so that each horizon-
tal strip of width 1 contains at most one horizontal seqment and on W for all
L-functions mod% the inequality
LI
T —(s ,x)i < oy (k) log’h(2+ i)

holds.

A proof of this lemma follows mutatis mutandss that of the appendix
I.II of paper of the second of us [1]. We shall also need the following
simple consequence of a theorem of Siegel ([1]) which we state as

. Levua V. For a suitable ¢y all L-functions (for all % > 1) have a zero
in all parallelogramms (v real)

P<o<l, <t
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4. Finally we shall need the
LeymMA VI In the notation of Lemma X, with (1,k) = (L, k) =1,

1= I,mod%k and

1
(41) bo = 2Pilog Py 1= oy

we have for k > ¢,5 the inequality

‘P( Rez () %(l) Z er0(92+2b°e)l4>024P110g Py,

e(x)
where X' means that the summation is to be extended only fo the nontrivial
zeros o = g(x) of L(s, y) right to W.
For the proof we shall define

1 — — L
(4:2) f6) = WZ’ (10 =7 0) (5 2)

and we start with the integral

(4.3) Jy = f 04 () s
@
Since for positive A’s we have (see our paper [2])
To.9 1  foPo\2
(4.4) 1 i fera(s+bo)2[4—uds _ }_ r 7% o (A"T) ,
2me & Try

2t

ingerting the Dirichlet-series of f(s) we get, using the notation
1 i »n=UEk),
(4.5) gn,L,y=1—-1 i =n=L%),

0 otherwise,
the relation
robg 14

Var,

Hence J, is real. The contribution of » = P, to the sum is obviously
logP;. The contribution of the terms n << P; to the sum is

1 (1 "obn)z
70 ogn——5—

(4.6) Jy = Am)er(n, 1, L)e

n

< Z logne 'O{Og( H)_ﬁ}

n<Fy-1

—P}og?Plog?(1-1/P,
<PllogP,e 7 log“Prlog?(1-1/P))

< P;IogPle‘“’gzP 1< Cys-
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The contribution of the n’s with n > P; is

‘ ——1-10 2 .
< Zlog%-e P =

Z + Z < 2logh; f e %ng %dw-w:% << Gy

n>Py PngngPl n>PZ
and hence
Toba/
¢ .
(4.7) Jy > 7 Plog Pi(log Py— ¢a).
T

Shifting the line of integration to the line W we get

(4.8)
ReZ(x l)—

The last integral is, using Lemma IV, absolutely

Jy=ReJ, = >~‘ erolethoRls | Re = J.e”’(’""”'o’z"‘f(s)dg .

e(x) )

) 9 \ rob2is . rbl /4.
< yplogi ket < g Tog?Pre T Pl << gy o pYtogt P,

¢ 2 1
Collecting all these and dividing by e °b“/4, the lemma follows if & > ¢yy.

5. Now we can turn to the proof of Theorem I. First we apply Lem-
ma IT for
1.

& = el

1
= —1Im*
B, P mop
with
(8.1) y=u U=B®&)/>n,

one can evidently choose

A = 6n[H(k);

V = e5, klogk.

Owing to (1.3) we have

A< 1y
hence Lemma II gives the existence of a b; with
1 1 1
(5.2). ——— b
. : K 1/17 1
such that for all ¢'s
1 1 . ¢ 1
= b ImetIm (> =T
{271' 7 (2iIme+Im(e ))}> Tlogh 1+ [t ’
ie.
(5.3) Iamee("z" 2blg)/4[ - C32

(14 12,/ Klogh ~

hn..@
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Let: further be
(5.4)
and the integer r be restricted momentaneously only by

(5.5) < Mt egg /!

m = 2nlogT

10) m<
Then we start from the integral

wor 1

(5:6) i

f grole+barie+biig o) g

@

Tyy 8o from (4.1), f(s) being as in (4.2), with I =1, however.
f(s) can be written in the form

. Io
— Salp, by )~ i),
) 3 P
where — using the quadratic non-residuacity of I, and I, — fi(s)
for ¢ > 0,34 and here )
(5.8) fi(®)] < caa-
7) to H () is, owing to the integral-

Obviously

(5.7)

is regular

The contribution of the sum in (5.
formula quoted in (4.4)

(logp—(rebo+101)/2)°

SR L. 1)logme Totr
1/7':(9‘—!—7'0 ;b‘k(f}s 2y l1)10gD

As to the contribution of f;(s) to. H (v}, we can sh].‘ft the line of integra-
tion to o = 0,34; hence this is

1
o

e("obo+fb2)l4

(5.9)

f ero(s+bo)2l4v,—r(s+bl)zl4f
i (0,34

which in turn is owing to (5.8) absolutely

sl
@t < eyl

. 7,
2 Jpetos
< 035 f e

—oo

2. T 2_ . .
+3(01+0.39) £olbg0,30) Fakr(by + 0,802

(5.10)

6. Next we shift the line of integration in (5.6) to the line W in Lemma
IV. We get the residue-sum

1 Y —
- D (21— ()

and the integral

(6.1) 2 grole+bp Pt riebptya- o

e{x)right
from W

b areRbN s gy g

“27!’5(];17)


Pem


156 8. Knapoweki and P. Turén

The last one ig, using standard estimations, absolutely less than
(6.2) Csr 0ro(b0+1/4)zl4+r(b1+1/4)2/410g L.

Next we estimate the contribution of the ¢’s with

o o} > 4V
This is absolutely less than
o1
0389r0(b°+1)2,4+r(b1+1)2/4 Z 6— . nlOg kn -
n>— 1
va
\ ”o(”o* 1P ot o” 16
< eylog—e o,
7

Using (5.2), (4.1), fmther Lemma I, (1.3) and (1, 5) thig is for & > ¢,
and. suitably small ¢, in - (1.3)

2, 2
(roby+1y) 4 oy H1~16/1)14 yr(2by +1-15/n)js

(6.3) < culog— e
]
b2 6_
< oglog _1_‘ 6(r0 0+rbl)/4 10 (Cqahb— 15/m)/4 =15
n
1 (0 H -
< 04410g (ro-+n)lan

Now let g, = 0'0)+ it be one of the nontrivial zeros of the L({s, y)-
functions with y(%,) # y (%) for which

(6.4) 6@ P10 — maximal
among the ¢ = 0,4 if,-zeros with
(6.5) It <4/Vy.

Collecting (5.9), (5.10), (6.1), (6.2) and (6.3
and taking real parts, we get

s b 202
), dividing by P

o o+"”1)

(6.8) 1261@ (p, Zz’ ll)logpe 1-°+,- (1 ogp———)

2(k) gro(e®+2bge)/4

—— 2
SAICEDI A S T PG “
i @ (k)
qr!ghttromW

l<alV

(%+2b10] /4~ Re (2 +2bye0)/4
(e 0?19, )r\ < 045g°s17(’obo+”’1)+("o'i‘r)/“.

hn..@
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7. We denote the expression
Re 2 Z&%;C_(l}l Tole®+2bga)4 ( 6(02'*-2%2)/4—Re(e%«l-zbleo)lft)r
erightfrom W7
]te|<4/|/n
in (6.6) by Z(r) and shall determine r by using properly Lemma IIT.
The role of the dys will be played by the numbers
E (h)— E () er0(92+2boe)/4
o(k)

that of the #°s by the numbers

e(gz-(-zbla)/fi—Bﬂ(gg-t-zbleo)l‘i .
?

the condition max|eg;] = 1 is obviously fulfilled. From (5.3) and (6.5)
i :

we have
C32
|arez;| >
1T L @/ klogh
and owing to (1.5) and (1.3) a fortiori
11/20+1/30
(7.1) >e¢ s Lty

* log(1/n)
Further we have from (1.5) and (1.3)

1
(7.2) N < Cgg—= log < Cy—— log < ¥y,

1 1
Vo Vn

8. Now we shall use the fact that no IL(s,y)modk vanishes in the
domain (1.4) which implies on the one hand — using (1.3) and (1.5) —
the non-vanishing in

(8.1) ol <VE+1/n+ 8,
and, on the other hand, the non-vanishing in

6>1%, [H<F

o> 4

(8.9)

We choose as #z, the quantity
o — & (@)2-42b10(1))/4—Re (e +2b1a0)/4
=

where
9(1) —_ U(l)—l—itu)
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is a zero with the maximal imaginary part < k°. We have to verify (3.8)
for our choice of #,. First we assert that for all z’s belonging to o’s with

(8.3) [t,] = 1V
we have
(8.4) l25] < lenl -

In order to prove it, we remark first that owing to the form of 2
it suffices to show
[e(nz"'ablewl < Ie(e(1)2+gblg(1))/4|’

1.e. .
(8.5) oA — 2 2b,0, < o — 17 9p,0.

Owing to (8.2) and the definition of o™ we have certainly
(8.6) By

It

It <VE+1[n+%"
then (8.1) implies ) e
0, = %.

Hence (8.5) takes in this case the form
PB4 b < p—1
which is true according to (8.3). If B
It > VEF 1+ 4",
then we have owing to (5.2) and (8.6)
Oty 2b10, < 1—1242h, < 32— K+ b, < o™ — @ L 2p 6@

'agail'l. Thus (8.3) and (8.4) is proved. Since. || > |zal, (8.3) and (8.4)

implies ' :
1O < <#,

ie. from (8.2)

(8.7) o = 3.

Eor the applicability of Lemma III we have to verify (3.8). Since

(8.7) implies K
cne(p§4-zblgo)/4 < e;@-«-bl)

)
the definition of #; and (8.6) give at once

11 2 11
oy () LY NG LY Lo _La
el = 34(4 ‘1) 4(4 1)‘= P A 5 )

hn..@
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Since from (7.2), (7.1),

AN
"M NBtnfx) | 2qlogT+q P34y o)

(p.4) and (1.6)

—11y8 1
4 11720 9 f'gkm

< 71

2

< e
ogT
(8.8) is satisfied at our choices:

9. Further we assert that for all z’s belonging to o’s with

(9.1) ltg| <
the inequality
(9.2) 2] = |zl

holds. Namely, owing to the definition of z's and (8.6); the inequality
(9.2) is certainly true if

P )
which holds for o’s with (9.1) indeed. Hence the inequality
lzal > |2l
holds ewactly for zs belonging to ¢’s with
(9.3) It] > 1@,

This gives the possibility to find a positive lower bound for B in
(3.9). Namely, owing to the definitions of 2, and Lemma V, all dy’s with

|te| < ks_"cl’:z
ocour in B; applying Lemma VI we get

B > ¢y Pilog’ Pr— ¢y Z logkn 370(25'0'%1*'"2)14,

7l>k5‘622

i.e. for & > ¢, — using (4.1) and Lemma I —

B Ly J e logkada > 1.

1.5 "
55

(9.4)

Finally we have to verify (not to violate (5.5)) that
N(B+m/n) < osn "%
but this is true owing to (7.1) and (7.2). Hence choosing 7 as »;, resp. v,
of Lemma III we obtain

6/5

(9.5) M vy, Vo K M Ca3m
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and — using also (1.6) —

171]/20 ( 1
3 \24e(2nlogT+eyn™ "

Z () >

2n—11/20 |22 m-f-cgan— 0/
( 2 )

> (1
ViogT \logT

_ - - —6/5 - . ~6/5
> ¢ VIRT gy ka8 g g 610

)2,,—11[20 ( el )m+033,7—6/5
2

and analogous negative upper bound for Z(v,). Hence from (6.6) we get

(togp—(roby-+v101)/2)2 .
ot

9.6) 8% Ye(p, by, b)logpe
o

(e§+2b190)l4

—_ —6/5
>T*e L o 0831 / — 0y ATPyErby) g le

From the definition of z,, (9.5), (5.2) and (8.7), we get

Gt (T —"
¢ [+ e28

|
110 11
i (Z—t(l) +b1)(m+c33n' 515 pr (E‘i(o)z—f-bl)(vl—m—cﬂw— 6/5)

11

e%(—k10+ﬂ = )m_;(%+;')c33,,—6ls

and — using (1.3), (1.5), (5.4) and (1.6) —

1= 1, -
> TE—M =1 > TTW”

Further we get from (4.1), Lemma I, (9.5), (5.2), (1.8), (1.5) and (1.6)
for & > ¢

(9.7)

0,18(2fllogT+c337’—6/5)-:-’
e

(9.8) Mot Rl -

< 36+
and hence, if ¢; in (1.6) is sufficiently large, from (9.7) and (9.8)

1, -
)

(9.9) 8, > T*

and analogously

(log p—(rgbg-+r9hy) 2)3

- 1,
8, det Zek(p, Ty, ) logpe Totvy < it ‘/".

2
Further putting

(Tobo+9,51)/2 = loga,

iom®
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we have from (9.5) and (5.2)
b 1 1 —
logw, > 21 > plogT (v — —_w) = (1 —Vq)logT
2 7 Vy

and from (4.1) and (1.6)
1 1
loga;, < {2logP1+ ;;(27;10gT+c337;“"/5)}»5

< log T+ ¢5y (logh+775%) < log T+ log** T
and analogously for »,. Finally for » and v, (9.5) and (1.6) give
2nlogT < vy, vy < 2nlogT+ViogT
which completes the proof of Theorem I.
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