188

L. J. Mordell

- [4] L. J. Mordell, The series $\sum a_n/(1-xe^{2n\pi ia})$, J. London Math. Soc. 38 (1963), pp. 111 116.
- [5] Wolfgang Schwarz, Irrationale Potenzreihen, Arch. Math. 13 (1962), pp. 220 240.
 - [6] L. J. Mordell, Irrational power series III, Proc. Amer. Math. Soc.

UNIVERSITY OF ARIZONA, TUCSON, ARIZONA ST. JOHN'S COLLEGE, CAMBRIDGE, ENGLAND

Reçu par la Rédaction le 23. 9. 1964

ACTA ARITHMETICA XI (1965)

On a problem of Sierpiński

(Extract from a letter to W. Sierpiński)

bу

P. Erdös (Budapest)

Denote by μ_s the least integer so that every integer $> u_s$ is the sum of exactly s integers > 1 which are pairwise relatively prime. Sierpiński ([3]) proved that $u_2 = 6$, $u_3 = 17$ and $u_4 = 30$ and he asks for a determination or estimation of u_s . Denote by $f_1(s)$ the smallest integer so that every $l > f_1(s)$ is the sum of s distinct primes; $f_2(s)$ is the smallest integer so that every $l > f_2(s)$ is the sum of s distinct primes or squares of primes where a prime and its square are not both used and $f_3(s)$ is the least integer so that every $l > f_3(s)$ is the sum of s distinct integers > 1 which are pairwise relatively prime. By definition $f_3(s) = u_s$. Clearly

$$f_3(s) \leqslant f_2(s) \leqslant f_1(s).$$

Let $p_1 = 2, p_2 = 3, ...$ be the sequence of consecutive primes. Put

$$A(s) = \sum_{i=1}^{s} p_i, \quad B(s) = \sum_{i=2}^{s+1} p_i.$$

THEOREM. $f_2(s) < B(s) + C$ where C is an absolute constant independent of s.

First we prove two lemmas.

LEMMA 1. Let C₁ be a sufficiently large absolute constant. Then

$$(1) f_1(s) < A(s) + c_1 s \log s.$$

We shall first prove

$$(2) f_1(s) < A(s) + c_1 s \log s \log \log s$$

and then we will outline the proof of (1).

Denote by $r_k(N)$ the number of representations of N as the sum of k odd primes. It easily follows from the well-known theorem of Hardy-Little-wood-Vinogradoff ([2], p. 198), that

(3)
$$r_3(N) > c_2 N^2 / (\log N)^3$$
.

The well-known theorem of Schnirelmann ([2], p. 52) states

$$(4) r_2(N) < \frac{c_3N}{(\log N)^2} \prod_{p \mid N} \left(1 + \frac{1}{p}\right) < \frac{c_4N \log \log N}{(\log N)^2} \ .$$

(The last inequality of (4) follows from the prime number theorem, or from a more elementary result.)

From (4) we obtain that the number of solutions of

$$(5) N = p_{i_1} + p_{i_2} + p_{i_3}, \quad i_1 \leqslant s$$

is less than

(6)
$$c_4 s N \log \log N / (\log N)^2.$$

From (6) and (3) we obtain by a simple calculation that if $N>> o_1s\log s\log\log s$ then

$$N = p_u + p_v + p_w, \quad s < u < v < w$$

is solvable (since the number of solutions of N=2p+q is clearly $< cN/\log N$).

Consider now the integer

$$A(s)+t$$
, $t>c_1s\log s\log \log s$.

Put

$$t_1 = \begin{cases} p_{s-2} + p_{s-1} + p_s + t & \text{if} & t \text{ is even}, \\ 2 + p_{s-1} + p_s + t & \text{if} & t \text{ is odd}. \end{cases}$$

 $By_{-}(7)$

$$t_1 = p_u + p_v + p_w, \quad s < u < v < w$$

is solvable. Thus A(s)+t is the sum of s distinct primes which proves (2). Now we outline the proof of (1). It is easy to see that (1) will follow if we can prove that for

$$c_1 s \log s < N < c_1 s \log s \log \log s$$

the number of solutions $\psi(N)$ of (5) satisfies

$$(9) \psi(N) < c_4 s N/(\log N)^2.$$

But by the above mentioned theorem of Schnirelmann

$$(10) \qquad \psi(N) \leqslant \sum_{i=1}^{s} r_2(N - p_i) < \frac{c_3 N}{(\log N)^2} \sum_{i=1}^{s} \prod_{p \mid (N - p_i)} \left(1 + \frac{1}{p}\right).$$

Now it can be proved that if N satisfies (8) then

(11)
$$\sum_{i=1}^{s} \prod_{p \mid (N-p_i)} \left(1 + \frac{1}{p}\right) < c_5 s.$$

We supress the proof of (11) since it is not quite short but uses fairly standard arguments and it is of no great importance for us to have Lemma 1 in the sharpest possible form. (9) follows immediately from (10) and (11). Hence (1) is proved and the proof of Lemma 1 is complete.

The estimation given by Lemma 1 is best possible (apart from the value of e_1), since considerations of parity shows that B(s)-2 can not be the sum of distinct primes and clearly

$$B(s) > A(s) + c_6 s \log s$$
 (since $p_s > c_7 s \log s$).

Perhaps $f_1(s) = B(s) + o(s\log s)$ but this I have not been able to prove. It is easy to see though that

$$\limsup_{s=\infty} (f_1(s) - B(s)) = \infty$$

and probably

$$\lim_{s=\infty} (f_1(s) - B(s)) = \infty.$$

LEMMA 2. Put $a_k = p_k^2 - p_k$, $k \ge 2$. Then there exists an absolute constant A so that every even integer greater than A is the sum of distinct a_k 's.

One can easily deduce Lemma 2 from a theorem of Cassels ([1]) (it easily follows from the results on Vinogradoff ([4]) that if $0 < \alpha < 1$ then $\binom{p}{2}\alpha \pmod{1}$ has at least one limit point different from 0, thus the theorem of Cassels can be applied). An elementary and direct proof of Lemma 2 should be possible which would have the advantage of determining the best possible value of A. Such a proof would perhaps require a considerable amount of numerical calculation and I have not carried it out.

Now we are ready to prove our Theorem. We shall in fact show that for $s > s_0(c_1)$

$$(12) f_2(s) \leqslant B(s) + A.$$

Let now $n \ge B(s) + A$. If $n > A(s) + c_1 s \log s \log \log s$ then by Lemma 1 n is the sum of s distinct primes (we only use (2)). Thus we can assume

$$B(s) + A < n < A(s) + c_1 s \log s \log \log s$$
.

Assume first n = B(s) + 2t. Since 2t > A, by Lemma 2

$$2t = a_{k_1} + \ldots + a_{k_r}, \quad k_1 < \ldots < k_r,$$

but $2t < c_1 s \log s \log \log s$ clearly implies that for $s > s_0 = s_0(c_1)$, $k_r \le s$ (since $a_s = p_s^2 - p_s > c_1 s \log s \log \log s$). Thus

$$B(s) + 2t = \sum_{i=2}^{s+1} p_i + \sum_{i=1}^{r} a_{k_i}$$

gives a representation of B(s)+2t as the sum of s distinct primes or squares of primes where p and p^2 are not both used.

Assume next n = B(s) + 2t + 1. Then $n = A(s) + 2t_1$, $2t_1 < cs \log s \times \log \log s$. Thus the same proof again gives that n is the sum of s distinct primes of squares of primes where p and p^2 are not both used. Thus (12) and hence our Theorem is proved (the cases $s \le s_0$ can be ignored because of Lemma 1).

Finally we remark that $f_s(s) \ge B(s) - 2$ since B(s) - 2 can not be the sum of s distinct integers > 1 which are pairwise relatively prime. To see this we only have to observe that by considerations of parity no even number can occur in such a representation.

References

- [1] J. W. S. Cassels, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Szeged 21 (1960), pp. 111 124.
 - [2] K. Prachar, Primzahlverteilung, Springer 1957.
- [3] W. Sierpiński, Sur les suites d'entiers deux à deux premiers entere eux, Eenseignement Math. 10 (1964), pp. 229 235.
- [4] I. M. Vinogradoff, The method of trigonometrical sums in the theory of numbers, Interscience Publishers, Chapter XI.

Reçu par la Rédaction le 20. 10. 1964

ACTA ARÎTHMÊTÎCA XI (1965)

Further developments in the comparative prime-number theory V

(The use of "two-sided" theorems)

by

S. KNAPOWSKI (Poznań) and P. TURÁN (Budapest)

1. This paper means in this series a methodical digression; its aim is at the same time modest and pretentious. It is modest since we are going to prove a theorem which we proved in stronger form in a previous paper (see Knapowski-Turán [1]). It is still pretentious for the following reason. The second of us observed some years ago that several problems in the analytical number-theory can be reduced to the following "two-sided" theorem.

If m is a positive number, further

$$(1.1) 1 = |z_1| \geqslant |z_2| \geqslant \ldots \geqslant |z_n|$$

and

$$B \stackrel{\text{def}}{=} \min_{\lambda} \Big| \sum_{j=1}^{\lambda} b_j \Big| > 0,$$

then there is an integer v satisfying

$$(1.3) m \leqslant \nu \leqslant m+n$$

such that

$$\left|\sum_{j=1}^{n}b_{j}z_{j}^{r}\right|\geqslant\left(\frac{n}{8e(m+n)}\right)^{n}\frac{B}{2n}.$$

He had in mind further applications too, a typical one being the explicit numerical determination of an X such that for a suitable $2 \le x_0 \le X$ the difference $\pi(x)$ —Lix would change sign at $x=x_0$ (Littlewood's problem). But he came soon to a conclusion that such an application can be expected only after having instead of the "two-sided" theorem (1.1)-(1.4) a "one-sided" one, assuring the existence of integers ν_1 and ν_2 in