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1
On a problem of Sierpinski
(Extract from a letter to W. Sierpifski)

by
P. BrpOs (Budapest)

Denote by u, the least integer so that every integer > u, is the sum
of exactly s integers >1 which are pairwise relatively prime. Sierpin-
ski ([3]) proved that u, = 6, ug = 17 and u; = 30 and he asks for a de-
termination or estimation of u,. Denote by fi(s) the smallest integer so
that every 1> fi(s) is the sum of s distinet primes; f,(s) is the smallest
integer so that every I > fiy(s) iy the sum of ¢ distinet primes or squares
of primes where a prime and its square are not both used and fi(s) is
the least integer so that every I > f3(s) is the sum of s distinet integers > 1
which are pairwise relatively prime. By definition f;(s) = u,. Clearly

fs(8) <fals) <fuls)-

Lebt p, = 2, p; = 3, ... be the sequence of consecutive primes. Pub

8 841
Ay = Sp, B =D
qe=1 =2

THEOREM. f,(s) < B(s)+0 where O is an absolute constant independent
of s.

First we prove two lemmas.

Lmvwa 1. Let ) be a sufficiently large absolute constant. Then
(1) Fu(8) < A(8)+aslogs.

We ghall firgt prove
(2) fu(s) < A(s)+aislogsloglogs
and then we will outline the proof of (1).

Denote by 7,(N) the number of representations of N a8 the sum of %
0dd primes. It easily follows from the well-known theorem of Hardy-Little-
wood-Vinogradoff ([2], p. 198), that

(3) r3() > e, N [(log N)*.
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The well-known theorem of Schnirelmann ([2], p.52) states

cgN 1 ¢V loglog IV
(4) (V) < ———p (1—|— ~—) <
T (logNY [W] v (log N

(The last inequality of (4) follows from the prime number theorem, or
from a more elementary result.) i

From (4) we obtain that the number of solutions of
(5) N = py+Di,+py, 4<s
is less than
(6) c,sNloglog N /(log N)*.

From (6) and (3) we obtain by a simple caleulation that if N >
> ¢slogsloglogs then

(7) N = PutPot Du, < <r<w

is solvable (since the number of solutions of N = 2p4q is clearly <
< ¢N[logN).
Congider now the integer

A(s)+1t, t> ¢ slogsloglogs.
Put
f = PsaFPort+ps+t i ¢ is even,
24P+ P+t if ¢ is odd.
By (7)

W=Dyt Pyt pw, s<u<v<w

i solvable. Thus f.t(s)-}—t is the sum of s distinet primes which proves (2).
_ Now we outline the proof of (1). It is easy to see that (1) will follow
if we can prove that for

(8) ¢ 8logs < NV < ¢;slogsloglogs
the number of solutions y(¥) of (B) satisties
(9) () < 6,8 |(log N )?.

But by the above mentioned theorem of Schnirelmann
8

(10) M < Sr@opy <Y % 1
() é‘r( pi)<(10gN)22 ] (14-}7.
=1 PI{N=w;)
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Now it can be proved that if N satisfies (8) then

() : (1 T i) < tgs.
i=1 PUN—D;) 4

We supress the proof of (11) since it is not quite short but nses fairly
standard arguments and it is of no great importance for us to have Lem-
ma 1 in the gharpest possible form. (9) follows immediately from (10)
and (11). Hence (1) is proved and the proof of Lemma 1 is complete.

The estimation given by Lemma 1 is best possible (apart from the
value of ¢), since considerations of parity shows that B(s)—2 can not
be the sum of digtinet primes and clearly :

B(s) > A(s)+c8logs

Perhaps fy(s) = B(s)+o(slogs) but this I have not been able to prove.
It is easy to see though that

(since p, > ¢;8l0gs).

timsup (i (s)—B(s)) = oo

and probably
3112 (fu(s)—B(s)) = oo.
LEMMA 2. Put a = pi— D, k= 2. Then there exists an absolute con-
stant A so that every even integer greater tham A ds the sum of distinet a;’s.
One can easily deduce Lemma 2 from a theorem of Cassels ([1]) (it
easily follows from the results on Vinogradoff ([4]) that if 0 < a <1 then

(12’ )a(modl) has at least one limit point different from 0, thus the theorem

of Cassels can be applied). An elementary and direct proof of Lemma 2
should be possible which would have the advantage of determining the
Dbest possible value of A. Such a proof would perhaps require a considerable
amount of numerical calculation and I have not carried it out.

Now we are ready to prove our Theorem. We shall in fact show that

for s > 84(cy)
(12) £2(8) < B(s)+A4.

Let now n > B(s)+A4. If n > A(s)+¢slogsloglogs then by Lem-
ma 1 » is the sum of s distinet primes (we only use (2)). Thus we can
assume

B(s)+A < n < A(s)+c slogsloglogs.
Agsume first n = B(s)+2t. Since 2t >4, by Lemma 2
28 = ag,+...+ O, Ty < vee < To,y
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but 2 < ¢,slogsloglogs clearly implies that for s > sy = s4(¢)), & <s
(since @, = p2—p, > ¢, slogsloglogs). Thus

841 r
B(s)+2t = D'pit D) oy,
i=2 =1

gives a representation of B(s)--2f as the sum of s distinet primes or squa-
res of primes where p and p? are not both used.

Assume next n = B(s)+4-2¢-++1. Then n = A(s)-4-24;, 24 < cslogsx
xloglogs. Thus the same proof again gives that » is the sum of s distinet
primes of squares of primes where p and p* are not both used. Thus (12)
and hence our Theorem is proved (the cases s < 8, can be ignored becauge
of Lemma 1).

Finally we remark that f;(s) > B(s)—2 since B(s)—2 can not he
the sum of s distinet infegers > 1 which are pairwise relatively prime.
To see this we only have to observe that by considerations of parity no
even number can occur in such a representation.
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Further developments in the comparative
prime-number theory V

(The use of “two-sided” theorems)
by
8. KNarowsKI (Poznan) and P. TurAN (Budapest)

1. This paper means in thig series a methodical digression; its aim
is at the same time modest and pretentious. It is modest since we are
going to prove a theorem which we proved in stronger form in a previous
paper (see Knapowski-Tur4n [1]). It is still pretentious for the following
reason. The second of us observed some years ago that several problems
in the analytical number-theory can be reduced to the following “two-
gided” theorem.

If m is a positive number, further

(1.1) 1=y > (o] = ... = |24l
and
2
(1.2) B‘l_i’niin]Z’b,-bo,
i=1

then there is an inleger » satisfying

(1.3) m<Lry <mtn
such that
n 7 B
n
(1.4) \me > (—ge(m—]—n)) 2n°

J=1

He had in mind further applications too, a typical one being the ex-
plicit numerical determination of an X such that for a suitable 2 < 2y < X
the difference m(z)—Liz would change sign at o =@, (Littlewood’s
problem). But he came soon to a conclusion that such an application can
be expected only after having instead of the “two-sided” theorem (1.1?-
-(1.4) a “one-sided” one, assuring the existence of integers #, and », in
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