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Locally equiconnected spaces and absolute
neighborhood retracts *

by
J. Dugundji (Los Angeles, Calif,)

1. Introduction. It is well known, and easy to prove, that if
a metric space is an ANR, then it ig locally equiconnected (cf. [10], [11]).
The purpose of this paper is to determine some conditions under which
the converse is true.

In the first part (§2) we derive some equivalent formulations of
local equiconnectedness; it is an €agy consequence of one of these that
the equiconnected spaces are precisely the contractible locally equi-
connected ones, a result that is apparently new.

In the second part (§3) we characterize the locally equiconnected
spaces that are ANRs; one application is given, which leads to a slight
extension of a result due to Milnor ([6], p. 279).

2. Equiconnected spaces. Unless otherwise explicitly stated, all
spaces will be metric (not necessarily separable), and I will denote the
unit interval. A metric space Y is locally equiconmected if there exists
a neighborhood U of the diagonal 4C ¥x ¥ and a continuous map
A: UxI—->Y such that A(a, b,0)=a, i(a,b,1)= b, and A(a,a,t)=a
for all (a,b) e U, teI; the map 4 is called an equiconnecting function.
The space Y is equiconneeted if A is defined on ¥YxY.

2.1. TEEOREM. Y is (locally) equiconnected if and only if the diagonal
4 ig a strong (neighborhood) deformation retract (1) in ¥ X Y.

Proof. Assume that ¥ is locally equiconnected, and let : UxI—¥
be an equiconnecting function. Define ¢t UXI+YXY by el(a, b),1t]
=[Xa,b, 1), b]; then o is easily verified to be a strong deformation
retraction of U into 4. For the converse, let ¢: U xI->YX Y be a strong
deformation retraction of UC ¥Yx ¥ into 4, where o(u,0) =« for all

* This research was partially supported by NSF grant G-24471.

(*) A closed 4 cX is a strong neighborhood deformation retract in X if there
exists an open U5 4 and a homotopy k: UxI-+X such that #(u, 0) = u, h(u,1) e 4
and h(a,t) = a for every u ¢ U, a ¢ A and ¢ ¢ I; % is called a strong deformation retraction
of U into 4.
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w e U. Letting p;: ¥ x ¥ —Y be the projection (@, b)—~a and p,: ¥ X ¥~y
the projection (a, b)—b, define A: UXI~Y by

pioel(a,b), 2], 0<t<
Ma, b, 1) =P 0

\p2oella,b),2—21],

It is evident that A is continuous, and an equiconnecting function. The

i i i alogous.
roof for equiconnectedness is entirely an - .
? Though it is equally simple to prove directly, we find from 2.1 that

2.2, CorOLLARY. Every ANR is locally equiconnected, and every AR
is equiconnected.

Proof. If ¥ is an AR (ANR), then 4, being homeomorphic to ¥,
is also an AR (ANR), and each AR (ANR) is a strogg (neighborhood)
deformation retract in any metric-space containing it as a closed set

9], p. 239, [4], p. 325). ‘
(= HI?)o get’a reiation between equiconnectedness and local egmconnected-
ness, and for future reference, we state explicitly the trivial

2.3. LEMMA. Let 12 U XI—Y be an equiconnecting function. Then for
each y, ¢ Y and neighborhood W of vy, there is a 'nez’ghborhooq V,yeVCW,
such that A(V,V,I)CW. In particular, each locally equiconnecied space
8 locally contractible, and each equiconnected space is both contractible
and locally comtractible.

Proof. Since 1 (W) is open in the open UXIC ¥ x Y xI, it is
open in ¥ x ¥ x I, and because y, X ¥, xI C A7 (W), it follows '([5],_11. 86)
that there is a neighborhood V XV D 4, X y, such that V xV xICAi (W).
In particular, defining ¢: VXI—=Y by o(y,?) = ALy, ¥, ] we obtzym
a contraction of V' over W to y,, keeping v, fixed throughout the entire
deformation. , .

2.4. TeroREM. The equiconmnected spaces are precisely the contractible
locally equiconnected ones.

Proof. In view of 2.3, we need prove only that a contractible locally
equiconnected space is equiconnected. It is known ([3], XV 8.2) t}'sat
if a closed set A in & metric space X is a strong neighborhood deformation
retract, and if X can be deformed (2) into 4 in such a way that the points
of 4 remain in 4 during the entire deformation, then A ig a strong de-
formation retract of X. Because of 2.1, we therefore need only construct
a deformation of ¥ X Y into A that keeps 4 in A and, if g2 ¥YxI->Y
is a contraction of ¥ to ¢, then the map §: ¥ X ¥ xI—>¥Yx ¥ given
by ol(a, b),t] = [ola,t), o(b, )] is such a deformation.

(*) X is deformable into 4 c X if there is an h: X xI X such that & (x,0) ==
and h(x, 1) €4 for all ¢ X.
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Because of 2.4, we can confine our attention to locally equiconnected
spaces. These are also characterized by a homotopy Property which we
need later. If ¥ is any space and W any open covering, then two maps
f,9: X—Y of a space X into ¥ are called W-close whenever f(z) and
g(z) belong to a common set W ¢ W for each z e X; f and ¢ are W-homo-
topic if there is a homotopy @: f~g sueh that D(2,I)Csome WeW
for each = ¢ X. A homotopy @: f~g is called stationary it @ (z, I) is con-
stant whenever f(z) = g(x).

2.5. THEOREM. Y s locally equiconnected if and only if for each open
covering W of Y there exisis a refinement 0 such that any two V-close
maps of any space X into ¥ are stationarily W - homotopic.

Proof. Assume that Y is locally equiconnected, and let 2 be an
equiconnecting function. Given W, select for each ¥ € ¥ a neighborhood
Vy such that A(Vy, Vy, I) C come W eW containing y (cf. 2.3) and let
V={VylyeY}. It f,g: =Y are U-close, then &(z, 1) = A[f(x), g(=), 1]
defines a stationary W-homotopy of f to g. Conversely, if the condition
is satisfied, choose W to consist of one set, ¥, and let U be a refinement
having the stated property. Define U = U XTV|V eV} C¥x Y; then
the maps f,¢9: U~Y given by (a, b)—~a,(a, b)—b respectively, are
U-close, and the stationary W-homotopy is an equiconnecting funection.

3. Relation to ANR. The following result is well known, at least
for separable metric spaces:

3.1. THEOREM. A finite-dimensional metric space (%) is locally equi-
connected if and only if it is am ANR.

Proof. Since a finite-dimensgional locally contractible metric space
is an ANR ([2], p. 244), the converse of 2.2 follows from 2.3.

In particular, the properties in 2.1 and 2.5 characterize the ANR
among the finite-dimensional metric spaces. To consider the general
case, we recall some terminology. Let ¥ be a space, W an open covering
of ¥, and P a polytope (4). A partial realization of P in W is a continuous
map f: @—Y, of some subpolytope @ C P that contains the zero-skeleton
P2 of P, such that f(Q ~ o) is contained in some W W for each closed
simplex ¢ of P. It is known ([2], p- 240) that a metric space ¥ is an
ANR if and only if for each open covering W of ¥ there is a refinement
VU such that any partial realization of any polytope P in U extends to
a full realization in W. The locally equiconnected spaces that are ANRs
are characterized by a weaker version of this partial realization property:

3.2. TumorEM. Let ¥ be locally equiconmected. Then ¥ is an ANR
if and only if for each open covering W of Y there exists a refinement VU

() We use the covering definition of dimension.

() All polytopes are taken to be rectilinear, and with the CW-topology ([8], p. 223);
they are not required to be finite dimensional, nor locally finite.
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such that every partial realization f: PO->Y in QY of the zero-skeleton, of
any polytope P, extends to o full realization of P in W.

Proof. In view of the preceding remarks, we need to prove only
that a Jocally equiconnected space having the stated Property is an ANR,
We will show that for each open covering W of Y there is g Polytope
P that W-dominates (°) ¥; this suffices ([2], p. 243, [4], p. 359) to establish
that ¥ is an ANR.

Given W, let J& be a refinement satisfying 2.5. Let Je* pe g star-
refinement (%) of J& and let $ be a refinement of Je* having the partial
realization property in the statement of the theorem relative to Jex,
Finally, let U be a neighborhood-finite star-refinement of §. Let P be
the nerve (") of U and let »: ¥—P he the canonical map of Y into the
nerve of U ([1], p. 355).

Let ¢*: P°+Y be the map sending each vertex v to a point of the
corresponding set V. This is a partial realization of P in §: for, if (v,, ..., vy,)

s . » !
Is any simplex of P, then N\ V; %@, consequently Lnth Csome §eS.
0 0

By the hypothesis, ¢° therefore extends to a full realization ¢: P—Y
in Jes

We now show that for each y « Y, gox(y) and y belong to a common
H eX. Let y belong to V,, -+; Vn and only these sets; then #(y) belongs
to the closed simplex (v,, ..., v,) and therefore gox(y) lies in some H%

s . "
containing Lojg('v;). On the other hand, y « Liiji Csome HY, consequently
1]

Hj ~ B} +#0 50 that y and g x|y) lie in a single H €. Because of 2.5,
we conc}ude that ¥ is W-dominated by P, and the proof is complete,

It is easy to see that a finite-dimensional locally equiconnected
Space always has the partial realization property of 3.2 (which yields
avpother proof of 3.1); it is not known whether this is also true for infinite-
dimensional locally equiconnected Spaces.

®) Ff W is an open covering of ¥, a space P W-dominates ¥ whenever there
are continuous maps x: ¥ —+P

nd g: P—+¥ i - bopi
entity s 9: P—I wuch that gox is W-homotopic to the
0} é refinement J€* of % is called a star-refinement of 3¢ it U (H*| H* ~ H¥ # @}
icf s:;l; fJf. f;)r each H¥ cJo*, A covering § of a space is called neighborhood-finite
iy c)Imm 0 ‘?he space has‘ a neighborhood meeting at most finitely many @ 8.
o r‘; ;);8.\) c(;;eg:;sg of a metric Space has an open neighborhood.-finite star-refinement
opa;:[ c.overi;lg- paper, a refinement of an open covering is understood to be an

7 3 .
) We realize the nerve of & covering U as a rectilinear polytope in a real vector

(
:fi:;etﬁamed by linearly independent vectors in fixed one-to-one correspondence
non-empty sete ¥V €Ay; the vertex of the nerve corresponding to V ¢4 is the

unit point on the ¢ i .
case Ilzatter. orresponding vector, and is denoted by the corresponding lower-
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As an application of 3.2, we derive a sufficient (but not necessary)
condition for a locally equiconnected space to be an ANR that is based
directly on the behaviour of some given equiconnecting function. Let
A: UXI—+Y be an equiconnecting function, and let WC ¥ be an open
set. For any 4 C W, define the sets A", n > 1, inductively (5) by A'
= M4, 4,I), A" = A(4, A", I). I all AXA™C U and all 4*C W, we
say that 4 is A-stable in W. If 4 is 2-stable in W, then it is clear that
ACA'CA*C..CW and, if A” =|JA", then A(4, A% I)= 4®. The
following proof follows the lines of olne due to Milnor ([6], p. 279).

8.3. Lemma. Let Y be locally equiconnected, and let A be a given equi-
conneoting function. Assume that an open covering W of Y has a refinement
U such that each V e U is A-stable in some W ¢W. Then every partial
realization g: P~ dn U of the zero-skeleton of any polytope P, exiends
to a full realization of P in W.

Proof. We define an extension of g over P by induction on the
skeletons of P. Well-order the vertices of P, and assume that g has been
extended to a continuous map ¢*: P"—=Y (P"™ denotes the =-skeleton
of P) in such a way that for each closed simplex 7 = (p,, ..., Dn) We
have ¢"(c") C N {V"|V'D Oy(pi)}. Let o7+ be any closed (n-1)-simplex,
with vertices p, < p; < o < Pn+1, and note that each zeon can be
written uniquely as # = (1—1)p,+ty \Ivhere Yeo={(Pyy ., Pns1) and t e I.
Now, if V' is any set containing nLj g(p:) (such sets exist because ¢ is

o

a partial realization in ) then by the inductive hypothesis we have
¢(c) CV" and therefore .

@) = A[g(po), g"(y), 1] (@ eont)

is well-defined, and gives an extengion of g» over ontly ginee gntl(ontl)
CV™, where V is any set containing {g(p,), .., ¢(pss1)}, We have
FHEhCnN {V”'“}V:)’Ug(pt)}. Extending over each "™ of P in this
manner, gives a con’oinu((;us gnti: Prl Y and completes the induction.
It is evident that the map G: P—Y obtained is a realization of P in W.

3.4. TeEOREM. Let ¥ be locally equicommected. If Y has an equi-
connecting function A with the property that for each y, e Y and neighbor-
hood W of v,, there is a neighborhood V'C W of v, that is A-stable in W,
then Y is an ANR.

Proof. It is clear that with the given hypothesis, every open cover-
ing W of ¥ has a refinement U satisfying 3.3, so an application of 3.2
completes the proof.

(*) An equiconnecting function need not satisty the condition 4(a, b, I) = A(b, a, I).
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Let ¥ be locally equiconnected, and let A2: UxI—Y be an equi-
connecting function. In his paper ([6], p. 279) Milnqr proved that if ¥
has an open covering W by Ai-convex sets (that is, WX W CU and
A(W, W, I) = W for each W ¢W), then ¥ belongs to the homﬁ)topy type
of an ANR:. We remark that, in view of 3.3, his method applies equally
well to show that if some open covering W of Y satisfying WxWC U
for each W eW hag a refinement U such that each V' is A-stable in
some W, then ¥ belongs to the homotopy type of an ANR.

4, Borsuk’s space. As indicated after the proof of 3.2, no example
of a locally equiconnected non-ANR is known. If such a space exists,
then it must be infinite-dimensional and, according to 2.3, also locally
contractible. In this section we will show that the evident candidate,
Borsuk’s [9] locally contractible non-ANR, is not locally equiconnected.

Regard the Hilbert cube H as the cartesian product [[ I; of a count-
1

able family of unit intervals (%), and for each k¥ =1,2,... let C; he

the k-cube

Cpy={oeH|1/(k+1) <[z}, <1/t and [#]; =0 for all ¢> k}.
Let By be the boundary (k—1)-sphere of Cy and let By = {x ¢ H [[@], = 0}.
Borsuk’s locally contractible non-ANR is the compact subspace B = Uo B;

C H. Recall that for each integer N > 0 there is a retraction gy: B—By
given by

(k+1) i @] <1/(k41),
[ewm(@] =1 [#h it 1k+1) <[], <1/k,
1k if 1k <[z},
& i 2<i<W,
Lon(®)]s ~{ 0 it is

4.1. THEOREM. B is not locally equiconnected.

Proof. We argue by contradiction. Assume that B were locally
equiconnected. By 2.5, there would exist an open covering U such that
any two U-close maps of B into itself are homotopic. Since B is com-
pact, we can assume U to be a finite covering, say VU = {V, ..., Vs} and
also that each V; is a set of the form B A Uiy «vy Uiinyy, where Uy
is a set open in the 4(q)-factor I.

(*) We denote the ith coordinate of « ¢ H by [«); and, for open sets Ug C Lo,
i=1,..,8 {Uay, ..., Uy> denotes the basic open set {x ¢ H| [wlo; € Uoy, @ = 1, ..., 8h
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Letting ¥ = max {i(¢)|1 < ¢ <m; 1 <i <s), the largest index for
which a coordinate is restricted, we would define a continnous map ¢
of B into itself by
[(D]i if

0 if

i<V,

ol = | oY

Due to the choice of N, it is clear that ¢ would be V- close to the identity
map of B, and so ¢ would be homotopic to the identity map of B. It now
follows that ont10(@|By4i): Byi1—>Byi: would be homotopic to the
identity map of the N-sphere By., on itself. This is the desired contra-
diction: for, py41 0 @(By+i) is clearly a proper subset of B, +1 and conse-
quently on+i1 o (¢|Byi1) is nullhomotopic.
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