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Connectivity functions and retracts
by

S. K. Hildebrand and D. E. Sanderson (Ames, Iowa)

1. Introduction. In studying the fixed point property and other
aspects of topological spaces and mappings it has often been found useful
to consider a category of functions more extensive than the class of
continuous functions (see, for example, [2]-[8], especially [7]). In view
of this, it seems desirable to unify some of the known results and attempt
to elarify the nature of and relationships between such functions in order
to obtain further useful results. This paper represents such an attempt
with regard to connected and connectivity functions in particular.

1.1. DEFINITION. The graph function f,: §->8XT of a function
f: 8T is defined by f,(s) = (s, f(s)) for se 8.

Since a function with values in a product space is continuous iff its
composition with each projection mapping is continuous, one easily
obtains the following well-known result:

1.2. LeMMA. f 48 continuous iff f, is continuous (and both are. equiva-
lent to f, being a homeomorphism,).

It is also well known that if a function is continuous, the image
of each connected set is connected but that the converse is false even
for real-valued functions of a real variable (e.g. every derivative function
hag the “Darboux Property” or ‘‘Intermediate Value Property”, hence
preserves connected sets, but of course need not be continuous). This
observation yields one category of functions referred to in the opening
paragraph, and from it a rather natural modification of the statement
of 1.2 yields yet another.

1.3. DEFINITION. A function f: 8T i a connected function iff 7(0)
is connected for each connected subset O of §. Also, f is a connectivity
function iff f, is a connected function. Furthermore, in analogy to the -C"
clasgification of functions (C° being the continuous functions) we let 0~
denote the class of connectivity functions and ¢~ the class of connected
functions.

The eclass a function belongs to depends, of course, on the topology
of its domain and of its range and these will be specified unless it is ‘clear
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from the context or is immaterial, as in 2.1 below which is true for any
(fixed) domain and range space.

2. Characterizations and comparisons. From 1.2 it is clear
that contiruity implies connectivity but the converse is easily disproved,
e.g. set

F@)=0 and F(w):sin%

for = 0. Given f: §—T, if = denotes the projection mapping of §x 1T
onto T, then f = mf, so that f e 0~ implies f ¢ 0~° since the composition
of connected functions is clearly connected. On the other hand, one can
readily obtain a funetion of [0, 1] onto itself which takes on every value
in every interval yet has no fixed point (see [5]). Such a function is in (o
but not in 0~ since it preserves all connected sets but its graph function
" preserves no non-trivial connected sets. The next theorem merely summa-
rizes the foregoing observations.

2.1. TEHEOREM. "D 0D (° and each inclusion is proper.

In contrast to the example preceding 2.1, Kuratowski and Sier-
piniski [4] have shown that a real-valued function of a real variable
of Baire class one is a connected function iff it is a conmectivity
function.

Note. If ¢ and v are collections of sets and f is a function, f*(r) will
denote the collection of sets of the form f~*(V) where V et, and oxz
the collection of sets of the form U XV where U eo and V.ev. Also, if ¢
is a subbasis for a topology on a set §, the resulting space will be denoted
by (8, ¢) or simply by 8 if no confusion is likely. If P is a topological
property, “4 is ¢-P” will mean the object A has property P in the
space (8, ). Thus U is ¢-open iff U is the union of sets which are inter-
sections cf finite subeollections of o.

2.2. DEFINITION. The connectivity structure of (8, o), denoted by C (o),
is the class of all o-connected .subsets of S.

The next theorem gives a strong motivation for the name given to
the functions of class O~ and relates this class more closely to the class C".
It implies that conmectivity functions are those whose inverses preserve,
in a certain sense, the connectivity structure of their domain and that
one can alter the topology of the domain without affecting its connectivity
structure so as to make a connectivity function continuous. We first
prove a lemma for functions in general.

2.3. LEMMA. Given any function f: (S, 0)—~(T,7), if o' = o u [ (z)
and K = A « B is a o'-separation of a set K C 8, then f,(K) = f(A) v /,(B)
i a (oX1)-separation. That is, K ¢ O(a') implies f,(K)¢ C(oX 7).
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Proof. f K = A U Bisag'- Separation, there are o-open sets ¥, ¥,
and t-open sets Wa, W, for ae 4, f ¢ B such that v
ACT = Ut (W) AV, BCU = Upen (W) A 7))
where K ~ U~ U’ =@ . Thus the (¢X7)-open sets
Usea VaX W, and Usez Vpx Ws

contain f,(4) and f,(B), respectively, and separate f,(K). This proves
the lemma.

2.4. TEBOREM. 4 function f: (8, o) (T, 1) is a connectivity function
iff C(o) = O(o") where o' = o u f(z).

Proof. Suppose CO(o) = ((¢’). Then K ¢ (C(s) implies K e C0(d")
and since f: (8, ¢')—>(T, 7) is continunous,

fHE) € C(o"xv) C O(ox1)
and fe 07", Conversely, suppose fe¢ ¢, Since ¢’ yields a finer topology
than does o, it suffices to show C(¢')D CU(c). Thus suppose K ¢ C(a').
By 2.3,1,(K) ¢ C{0 X 7) 80 f e O implies K ¢ U(c) and the proof is complete.

The following corollaries are easy consequences.

2.5. COROLLARY. Let 4: (8, 6)>(8,¢") be the identity and o' D o.
Then ie C% ieC™ and C (¢) = C(o’) are three equivalent statements.

Note. Actually one can replace ¢’ Do by the requirement that o
generates a finer topology, i.e. that each U e be ¢’-open.

2.6. COROLLARY. f: (8, 0)>(T,) is a connectivity function iff
i (8, 0)>(8, ¢') is a connected function where o' = o (). That is,
feCtiff e 0 ’

Although the classes C™ for m % —1. are closed under composition
(i.e., the composition of connected functions is connected, of contimuous
funetions is continuous, ete.), the same is not true for n = —1. Examples
are easily constructed (see [7]) of connectivity functions f and ¢ for which
gi ¢ 07" even if f e C°. However, if ge C°, then gf ¢ 0" and in fact the
next theorem shows this to be characteristic.

2.7. THEOREM. Given f: (R, ¢)~8 and g: 8—~(T, v), gf i¢ a connec-
tivity function iff f: (R, ¢)->(8, g"‘(r)) 18 @ connectivity fumction. Thus
9f € 07" iff S has a topology for which fe 0 und g e C°.

Proof. By 2.4, gf: (R, ¢)>(T,7) is a connectivity function iff
Cle) = 0(¢') where ¢’ = o v (9f)"(v) and f: (R, ¢)-(8, g7 '(z)) is a con-
nfeetivity function iff C(g) = C(g”) where ¢ = ¢ v /7 (¢7'(x)), but clearly
9 — gll'

2.8. CororLaRY. If f: (R, 0)>(8, 0) 48 a connectivity function and g:
(8, 0) (T, o) is continuous, then gf: (R, o) —(Ty7) is a connectivity function.

Proof. Since g7'(v) generates a topology for § coarser than does o,
the corollary follows immediately from 2.7.
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A clags of functions weaker than ¢~ but not comparable to 0% can
be defined in a fashion analogous to the definition of 0™ and enjoys
similar properties. It can be used to obtain alternate proofs of some of
the above results for connectivity functions but will not be used here
50 we will only give the definition and cite some results. Only one of
the proofs will be given since they are all simple or similar to previous ones.

2.9. DEFINITION. f: 8T is a quasi-connectivity function iff f, pre-
serves components, that is, iff f,(C) is a component of f,(8) whenever ¢
is a component of §. Let K (¢) denote the class of all o-components of S.

2.10. THEOREM. A connectivity function is a quasi-connectivity function.

2.11. TEROREM. A function f: (8, o)~ (T, v) 98 a quasi-connectivity
Junction iff K (o) = K(0') where o' = o U f (7).

' 2.12. THROREM. Qiven f: (B, ¢) =8 and ¢g: 8§ —(T,7), gf is a quasi-
conmectivity funetion iff f: (R, 0)->(8,97(x)) is a quasi-connectivity
function. .

Proof of 2.11. If K (o) =K (¢') and 4 ¢ E(0c), then by 1.2, since
f1 (8,6) (T, ) is continuous, f(4) is a (¢'X7)-component of 7,(S)
and is then (oX7)-connected becanse o Co’. Then since A € K(o), it
follows that f,(4)is in fact a (o X 7)-component of f,(8). Conversely if
A e K(o) implies f(4) is a (ox7)-component of f,(8), then to show
K (o) = K(¢') it suffices to show K (o) C C(c¢’). But by 2.3, if 4 ¢ C(d'),
then f,{4)¢ C(ax7), whence f,(A) certainly is not a (¢X 7)-component
of 7,(8) and A ¢ K(o). This completes the proof.

2.13. Remark. One significant difference between connectivity and
quasi-connectivity functions is the easily verified fact that any restriction
of the former is again a connectivity function but a restriction of a quasi-
connectivity function may not be quasi-connectivity (although it will
be in linearly ordered:spaces since the two classes coincide on such spaces).

3. Conneetivity retraction. John Stallings has shown in [7]
that connectivity functions can be very useful in proving fixed point
theorems for continuous functions. It is the purpose of this section to
make a study of the retraction of spaces by connectivity functions both
for its intrinsic interest and in the hope of providing the means for dis-
covering additional spaces having the fixed point property, particularly
among non-separating plane continua. The hope for this ig provided by
results- of this paper and of Stalling’s which imply that any connectivity
retract of an n-cell has the fixed point property.

Tiocally connected non-separating plane continua are known to have
the fixed point property and it hag long been known [1] that a (continuous)
retract of a loeally connected space is locally connected. This might dash
some of the hopes expressed above except that the latter is not true for
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connectivity retracts (Example 3.15). After preliminary -definitions,
results paralleling the standard ones for retracts will be given. .

3.1. DEFINITION. A connectivity function 7 of a space S onto 4 C 8
which is the identity on A (i.e., f(») == for z ¢ A) is a connectivity retract
function. (CRF) and is said to retract, or be a retraction of, S onto 4.
A is a connectivity retract (CR) of § iff such a ORF exists.

The following theorem and corollary are direct consequences of 2.7
and the above definition:

3.2. TemorEM. If 8D ADB and f: S—4, g: A B extend the
identity on A and B respectively, then gf: 8 +B is a CRF iff there is a topol-
ogy for A with respect to which f is a conmectivity function and g is continuous.

3.3. COROLLARY. 4 (continuous) retract of a connectivity retract is
a connectivity rectract.

A commonly used fact of (continuous) retracts is that a retract of
a Hausdorff space is closed. That this is false for connectivity retracts
of metric spaces even is easily shown. For example, it is clear from 1.1
or 2.4 that any function defined on a space (such as the subspace R of

.rationals in B') whose connected subsets are degenerate is a connectivity

function. Thus any subset of R is a connectivity retract of R whether
closed or not. This can be generalized as follows:

3.4. THEOREM. If A is a non-null subset of § containing at most one
point of any component of 8 not contained in A, then A is o connectivity
retract of S.

Proof. If p € 4, the function f which is the identity on 4 and maps
each component of S onto its intersection with 4 (or onto p if the in-
tersection is null) is either constant or the identity on each connected
subset of &, hence the restriction thereto has a connected graph ‘and,
by Definition 1.1, 7 is a connectivity function, therefore a ORF.

On the other hand, the following shows conmectivity retracts of
Hausdorff spaces are closed if they are conmnected:

3.5. THEOREM. A connectivity retract of o Hausdorff space has closed
COMPONEns.

Proof. Let f be a ORF of a Hausdorff space S onto 4. If C is a com-

- ponent of 4, it is of course closed in 4 so suppose p e S—A. Then p

and f(p) are distinet points and so have digjoint neighborhoods U and V.
UXV containg ( 1 1(p)) = f,(p) but no point of the form (g, g), hence
no point of f,(0). It follows that 7,(C v {p}) is disconnected and (since
fe0™) that ¢ v {p} is disconnected. Thus 2 i3 not a limit point of O
and O is closed in 8.

3.6. COROLLARY. A connectivity retract of a Hausdorff space is closed
if it is connected or if ts components form a discrete collection (or if the
space itself has either of these properties).
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Proof. Since a collection of disjoint sets is discrete iff a limit poing
of its union is a limit point of exactly one of its members, 3.6 follows
directly from 3.5 with the aid of the following observation:

3.7. Remark. If f is a ORF of § onto 4 and 8’ is a union of com-
ponents of S, the fact that fis a connected function implies f|8” is a CRF
of & onto 8’ ~ A provided each component of 8" meets A (moreover,
the components of 4 are precisely the intersections of 4 with such com-
ponents of §). Conversely, if /' is a CRF of 8 onto 4', f' extends to a CRF
of § onto A’ by simply mapping -8’ onto any given point of A’ (cf.
proof of 3.4). )

An appropriate combination of the statements in 3.7 yields a result
with no apparent counterpart for continuous retracts:

.3.8. THEOREM. If A is a connectivity retract of 8, so is any union of
components of A.

3.9. COROLLARY. If A is a connectivity retract of o Hausdorff space 8
and O is a closed subset of A, then A—C is a connectivity retract of 8.iff ¢
is a union of components of A. )

Proof. The “if”’ part follows from 3.8. If 4—C( is a OR of § and K
is a component of 4, then K is closed by 3.5. Thus K ~ € and (in view
of 3.7) E—C are both closed, hence one is empty and C is a union of com-
ponents of A.

3.10. COROLLARY. If A is a conmectivity retract of a Hausdorff space 8,
then A— {p} i8 & connectivity retract of § iff p is a limit point of no com-
ponent of A. . ‘

Proof. If p ¢ 4, this is a trivial consequence of 3.5, 30 assume p ¢ 4.
Since {p} is closed, it is a component of A iff it is a limit point of no com-
ponent of A, so 3.10 follows from 3.9.

Extending a common practice, if every continuous (respectively,
connectivity) function of 8 into itself maps a point onto itself, we say
that § has the fixed point property (commectivity fixed point property)
and abbreviate it fpp (cfpp). I § has the cfpp it has the fpp, of course,
but example 3.14 below shows the converse is false and also that, unlike
retracts, a connectivity retract of a space with the fpp need not have
the fpp. Some partial results along this line. can be obtained, however.

3.11. LEMMA. A s a connectivity retract of S iff every continuous
function f: A>T (T an arbitrary space) extends to a connectivity function
F: §>T.

Proof. Using 2.8, the proof is exactly analogous to the corresponding
result for continuous retracts. If we set 7' = 4 and observe that no point

- of §-A is fixed under F, we immediately arrive at the next result.

3.12. TueorEM. If 8 has the connectivity jized point property and A

8 a connectivity reiract of S, then A has the fized point property.
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The next theorem is a slight generalization of an observation in [7]
attributed to Borsuk.

3.13. THEOREM. Suppose that S has the fized point property. Ij 8 is
a (finite) polyhedron or has an order topology, then every connectivity retract
of S has the fized point property.

Proof. The polyhedral case follows directly from.3.12 in view of
Theorem 7 of [7] which implies that such a polyhedron has the cfpp.
If 8 .as an order topology and the fpp, then it satisfies the Dedekind
Cut Property. Thus by 3.6 (and 2.1) every proper CR of § is a closed
segment (initial, terminal or intermediate) of § and hence is clearly also
a retract of § and has the fpp.

In our abstract, 603-110 of the American Mathematical Society
Notices (p. 464 of vol. 10 (1964)), 3.13 was erroneously stated without

restriction on the space, but the following example shows the necessity
for limitation. ‘

3.14. ExamrLE. In the zy-plane let §' consist of the four sides and
horizontal diagonal of the square with vertices (0, +4), (14, 0). Let §
be the subspace of the plane obtained from 8 by replacing the portion
of 8" between (0,0) and (1,0) by the corresponding portion of the graph
of y =sinz/z and the portion of §’ for which |y]> 3 by the points (0, =+3)
together with the set of points for which

ly—sinmfo]| =3, O0<|zj<l.

The arc-component, L, of § containing the origin, 6, is a topological
triod minus two of its endpoints. Another are-component of § is the subset,
E; of those points of § for which # > 0. R is topologically a triod minus
all its endpoints. Let f: §— 8 be a continuous function. If §(6) is either of
the points (0, 43) then f(L) =f(6) and this point maps into itself. If T
denotes either L or R and f(6) e T— {6}, then f(T) C T. Denote the triod

point of T' by p and (if p == f(p)) the branch of T containing f(p) by 4.

The set consisting of all points of 4 which f maps toward p (along A)
or into 7'—A4 and the set of points in 4 which f maps into 4 but away
from p are both open and, unless one of the points (0, +3) is a fixed
point, both are non-empty. 4, being connected, must then contain a fized
point of f. It follows that § has the fpp. Actually, the same type argument
shows that the plane continuum § also has the fpp. § can be retracted
onto §—D, where D is the “diagonal” of 8 (those points of § not in the
closure of the unbounded component of E*—S), by vertical projection
of D onto either the upper or lower half of §—D. This function is clearly
continuous except at the origin and using 2.4 ome can eagily see that it
i8 4 connectivity function. §—D is symmetric about the origin so does
not have the fpp. Thus a CR of a space with fpp need not have fpp (even
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for plane continua since the same is true of 8). As a consequence of 3. 12,
we note that § (and S) is an exa,mple of a speuce with the fpp but no(-,
having the cfpp.

QUESTIONS. A number of thoughts are suggested by the preceeding
results: (1) If § is locally connected and has the fpp, does every CR of §
have the fpp? (2) Does every CR of a space with the cfpp have the cfpp?
(3) Is every OR of a disk locally connected? (4) Is every non-separat-
ing plane continuum a CR of a disk? .

- An affirmative answer to (4) would, as a result of 3.13, settle the
long-standing question as to whether such continua have the fpp (this
is pointed out in [7] in slightly different form). Even if the answer is
negative, it would be interesting to know what continua are connectivity
retracts of a disk, particularly if (3) has a negative answer (since the fpp
is known to hold for locally connected non-separating plane continua).
The next example suggests that the answer to (3) may indeed be negative.

3.15. ExamprLE. Let K be the closure of the graph of

y =sinz/r, O0<w<l,

and 8 the union of K and all line segments

y=m2", 0<w<l/n

(h=1,2,.. and"m an integer with |m|<2"). The locally connected
continuum & can be retracted onto the non-locally connected continuum K
by projecting each point (#,y)eS (x> 0) vertically onto - (w, sinzfz).
Using 2.4 it is not difficult to show this to be a CRF. Thus, unlike re-
traction, connectivity retraction does not preserve local connectedness,
even for plane continua.

3.16. TEEOREM. Bvery comnectivity retract of am n-cell in E" (n
is a non-separating subcontinuum of E".

Proof. Let f be a ORF of an n-cell DC E" onto K. By 3.6, K is
a continuum so it suffices to prove K is nonseparating. If K separates B"
there is an essential mapping ¢ of K onto the unit sphere, § C E". Then
by 2.8, gf is a connectivity function of D onto S and by Corollary 1 of [7],
gf is almost continuous (i.e., every mneighborhood of its graph contains
the graph of a continuous function of D into 8). Let U be the neighborhood
of the graph of gf which is the union of (D— K)X 8 and the set of all
points (p, ¢) where p ¢ K and the distance from g to gf(p) = g(p) is less
than 2 (the diameter of §). Then U contains the graph of a mapping h
of D into 8. But then if p ¢ K, g(p) and h(p) are not antipodal points
of § so kK iz homotopic to g. This implies that h|K, and hence also &,

is essential. No mapping of an n-cell is essential, so this contradiction
completes the proof. i

>2)
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The proof of 3.16 raises another question: (5) Is every conneetivity
function of a non-separating subcontinnum of B into an (n—1)-sphere
almost continuous? If so, then the above proof modifies to prove 3.16
with the n-cell replaced by an arbitrary non-separating continuum. Of
particular interest is the case n = 2.

Added in proof. In a paper soon to appear in this journal, J. L. Cornette
obtains an affirmative answer to question (3) and negative answers to (4) and (5)
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