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Linear-compact congruence topologies in *-lattices*
by
P. S. Rema (Madras)

1. Introduction. The notion of “linear-compactness” was first
introduced by Lefschetz in topological linear spaces. This concept has
been further extended to topological groups and modules by Leptin.
This paper gives a formulation for linear-compactness in a class of topo-
logical lattices the C-lattices. Here the gemeral properties of linear-
compact C*-lattices are analysed and it is shown that the study of any
Hausdortf linear-compact C*-lattice can, in some senge, be reduced to
the study of certain discrete linear-compact lattices. We then proceed
to establish that the centre of a discrete linear-compact C*-lattice is
finite which enables us to prove that the centre of a linear-compact
Hausdorff C*-lattice is eompact. Next we investigate the structure of
the compact complemented modular C*-lattices from which we deduce
that any linear-compact Hausdorff C-Boolean algebra is the direct
product of (two element) simple Boolean algebras. Hence the question
naturally arises as to whether every linear-compact C*-lattice admits
such a direct product decomposition into simple lattices. In this paper
we shall answer this question in the affirmative for a certain elass of
CO*-lattices viz., the generalized continuous geometries. We also define
the concept of a PC*-lattice and show that a Hausdorif PC*-generalized
continuous geometry is linear-compact if and only if its cenfre is com-
pact. The paper ends with a brief discussion on some unsolved problems
concerning the PC*-lattices.

2. Preliminaries and basic results. In our notations and ter-
minology in lattice theory and <opology we shall generally follow [2]
and [5], respectively.

It is seen that in a lattice L, given any set (' =[68;] (¢ e I) of con-
gruences directed below in the lattice of congruences, the subsets
Vi=[(e, y)[z0:1y] (¢ € I) define a uniformity V' on L. Further the lattice
sum and produet in L are uniformly continuous with respect to V.
A complete study of these uniformities, termed ‘‘congruence uniformites’

* Forms a part of the author's doctorate dissertation, University of Madras, 1963.
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(the induced topologies are called congruence topologies, and C is said
to be a base of nuclear congruences for (L, V)), has been made in [9].
By a C-lattice (L, T) we shall mean a lattice L together with a con-
gruence topology T

In [9] it has been shown that

(2.1) The direct product (with the product topology) of C-lattices is
a C-lattice.

(2.2) Any sublattice of o C-lattice is o C-lattice in its relative topology.

(2.3) If (L, T) is o C-lattice and 6 is a congruence on L which per-
mutes with every congruence in a base [0:] (i el) of nuclear congruences
of (L, T), then the quotient topology of L[0 is a congruence topology.

(2.4) If (L, T) is a C-lattice and 0 is a congruence on L as in (2.3)
then L[0 is Hausdorff in ils quotient topology if and only if each con-
gruence class 0(x), © e L, is closed in (L, T).

(2.5) Let (L,V) be a C-lattice with o Housdorff congruence uni-
formity V. Then (L, V) can be uniformly imbedded as a dense sublattice
of the projective limit of the quotient lattices L|6; (i € I) each with the discrete
topology, [0:] (ielI) being o base of nuclear congruences for (L, V).

A lattice L with 0 is said to be a *-lattice if every congruence § on L
ig of the form: zfy«»® vi=1y v for some tef(0). Any relatively
complemented lattice with zero is a *-lattice. In any *-lattice I, (1) any
two congruences permute and (2) there is a 1-1 correspondence between
congruences and congruence ideals (i.e. zero classes under congruences).
It L is a *lattice so is the quotient lattice L/A (= L/04) for any con-
gruence ideal A of L and consequently the homomorphic image of
a *-lattice is a *-lattice.

We shall call a *-lattice L with a congruence topology 7' as the
Cx-lattice (L, T). We have

(2.6) Let (L, T) be a C*-lattice. If A is any congruence ideal of L,
then )

(1) A is open in (L, T) if and only if some 6,0) C A (where 0; is
a congruence tn the nuclear base [0;] (i € I) of congruences for (L, T)).

(2) 4 is open = each residue class 0a(w) is open and closed (where
04 s the congruence determined by A).

(8) A4 (the closure of A) is a congruence ideal of L.

(4) A is closed = each 6.4(x) is closed.

(8) Balw) = 04().

If A iy a congruence ideal of a *-lattice for simplicity of notation
we shall sometimes denote the regidue class O4(x) by A(x:).

‘We shall now briefly recall a few results from [2] and [8] which
will be made use of in the sequel.

icm®
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(2.7) Let 0y, ..., 6n De permutable maximal congruences of a lattice L.
n
Then L] \ 04 is isomorphic to the direct product of L]8; (i =1, ..., 7).
i=1

A continuous complemented modular lattice is called a generalized
continuous geometry. If it is further irreducible then it is said to be a con-
tinuous geometry.

(2.8) Let Z be the centre of an upper continuous complemented mod-
ular lattice L. Then for any arbitrary element a of L, [¢ A ajz e Z] is the
centre of L(0, a) ([8], p. 89, Satz 1.4).

(2.9) Let L be a lattice with 0 and 1. Then L is irreducible if and
only if the cenire of L is the two-element Boolean algebra (0, 1).

(2.10) In a generalized continuous geometry irreductbility and sim-
plicity are equivalent. ([8], p. 124, Hilfssatz 3.2.)

(2.11) The intersection of all maximal neutral ideals of a generalized
continuous geomelry is zero. ([8], p. 124, Anmerkung 3.1.)

(2.12) Let L; (4 e I) be lattices with 0; and 1, respectively and let L
be their direct produci. Then the centre of L is the direct product of the
centres of the Ly (1 eI).

(2.13) If there exist central elements (z,) (a € I) in an upper conlinuous

lattice L so that \/ 2, =1 then L can be decomposed into the direct sum
ael

L= \/ L0, z,) (L(0, 2,) = the closed interval [0,2,]) ([8], p. 30, Satz 3.8).
ael

(2.14) Suppose that a continuous lattice L can be represented as the
divect sum L = \/ S,. Then L can be represented as the direct product
ael

]!78 ([8], p. 24, Satz 2.4 and Definition 2.3).

3. Linear compact C*-lattices.

DEFINITION. A congruenee § on a O-lattice (L, T) is said to be
C-closed if each congruence class 6(z), = e L, is closed in (L, T).

From (2.6) (4) it follows that in a C*-lattice the C-closedness of 6§
implies and is implied by the closedness of the corresponding con-
gruence ideal.

DEFINITION. A residue class corresponding to a C-closed congruence
of a O-lattice is called a linear-variety. A C-lattice (L, T) is said to be
linear-compact in case every collection of linear varieties of (L, T) with
the finite intersection property (i.e. any finite number of them has a non-
null intersection) has a non-null intersection.

It can be seen that in a C*-lattice (I, T) every closed residue class
is a linear variety.
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The following lemma will be used often in the sequel:

(3.1) Levma. Let L be o *-lattice and Ly be o homomorphic image
of L by the homomorphism f. Then

(1) If P is a congruence ideal of L then f(P) is a congruence ideal
of Ly.

2) 1(P@) = 1(P)(f ()

(8) If P* is a congruence ideal of Ly then FHP*) is a congruence ideal
of L, and

(4) FH{PHa") = (P*) (), where f(z) = a*.

The proof of the following proposition can easily be verified.

(8.2) PropositioN. Let (L, T) be a linear compact C*-laitice and let
f be a continuous homomorphism of (L, T) on another C*-lattice (Ly, T4).
Then (Ly, Ty) 48 linear-compact.

COROLIARY i. Let (L, T) be a linear-compact C*-laitice. Then for any
congruence ideal A of L the gquotient space LA is o linear-compact C*-
lattice

Proof. Since L, being a *-lattice, the congruences on L are per-
mutable, the quotient space L/4 is a C*-lattice (cf. 2.3). Since the nat-
ural homomorphism I -L/4 is a continuous mapping of (L, ) on the
quotient space L/4, it follows that L/A is linear-compact.

CoROLLARY ii. Let (L, T) be a linear-compact C*-lattice. If T is any
congruence topology on L coarser than T then (L, T,) 48 linear-compact.

(38.3) PropPoSITION. The direct product of linear-compact relatively
complemented O-lattices with zero 1is a linear-compact relative comple-
mented C-lattice with zero.

The direct product of relative complemented lattices with zero is
also a relative complemented lattice with zero and hence a *-lattice.
Further the product topology is a congruence topology (ef. (2.1)). Thus
the direct product is a C*-lattice. Using the properties of C*-lattices
the linear compactness can be established as in the theorem of Tichonow.

Using (3.3) we can construct examples of C*-lattices which are
neither discrete nor compact. For instance, let I he any infinite pro-
jective geometry. Then L is a *-lattice, and being simple, is a linear-
compact in the disecrete topology. Let N be any infinite cardinal and
let (P, T) be the direct product of N copies of I (with the produet topol-
ogy). L being complemented and modular P is also complemented and
modular. Therefore by (3.3), (P, T) is a linear-compact O*-lattice.
(P, T) is not discrete ag N is infinite and is not compact as I is not
finite. Thus (P, T') is a linear-compact C*-lattice which is neither com-
pact nor discrete.
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Now we shall prove

(3.4) PROPOSITION. Any linear-compact Hausdorff C-*lattice (L, T)
s (topologically) complete in ils congruence uniformity V.

Proof. Let P; (ieI) be congruence ideals of (L, T) corresponding
to a base of nuclear congruences [6;] (ieI) of (L, T). Then it suffices
to show that every Cauchy-I-net of (L,V) converges (where I is di-
rected as follows: % 3> j <> Vi CV; where V; = [(z, y)/z8iy]).

Let (zp) (p €I) be any Cauchy-I-net of (L, V). Then, given any
member V, (rel) in the base [V,] (reI) for V' there exists an index
roeI such that (2p, 7) e Vr for all p, g =1, ie.

(A) Lplrxg for all p,g>=v,.

In partieular xy, 0,2, for all ¢ > 7y, i.e. Pyay,) = Prag) for all ¢ = »,.
Thus given V, there exists r,¢I such that

(B) Prlwr) = Pr(zg) dor all g=r,.

Consider the system of residue classes [Py(wr,)] (7 € I) (7, chosen for
7 as in (B)). Now each P; is closed since it is the zero class corresponding
to a congruence in the base of nuclear congruences [6;] (¢ eI). Since
(L, T) is a C*-lattice, it follows that each Pr(x,) is a linear variety
of (L, T). Further, given Pn(ar) (i=1,2,..,n), Prlar) = Pr(z) for
all ¢ > #4,. This is true for each ¢ =1, ..., n. Since I is directed above
given ri, (¢ =1,2, ..., n), there exists an index p eI such that p > 7
(=1, ..., n). Hence Pr(ar,) = Pr(wp), (1 =1, ..., %)

Therefore

ZpePrfo, ) E=1,2,..,n), ie. ﬂl Prar,) =9 .

Hence the system [Py(wr,)] (reI) of linear varieties satisfies the

finite intersection property. Since (L, T) is linear-compaect, it follows

that [} Prlzr,) = D. Hence there exists an element x ¢Z such that
i€l

x € each Py(xy,), i.e.
(C) Py(x) = Prlwy,) for each rel.

We shall now show that 2 = lim ;.
pel

Now from (B) we infer P(xr,) = Piz;) for all ¢ > 7,. From (C),
Py(x) = Pr{tty,) = Pye(ag) for all g >=r,. Hence zb,a; for all ¢ =17, ie.
(@, %) € Vy for all ¢ > r,. Therefore lim o, = @. Thus every Cauchy-I-net

qel

in (L, V) converges and hence (L, V) is topologically complete.
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As a corollary to (3.4) we have

(3.5) PROPOSITION. Amny linear-compact sublattice L (with the relative
topology), which is also a *-lattice, of the Hausdorff C*-lattice (L, T') is
closed in (L, T).

Proof. Let 7, be the relative topology on L,. Then (L,, T,) is
a (*-lattice. Further the congruence uniformity ¥V, of 7; on L; is its
relative uniformity as a sublattice of (L, V) where V is the congruence
uniformity on L with respect to T. Since‘ (Ly, Ty) is linear-compact,
by (3.4) (L, V) is complete, and being a complete subspace of the
Hausdorff uniform space (L, V), it is closed in (L, T).

As a particular case of (3.5) we have the

COROLLARY. Any linear-compact congruence ideal of o relatively com-
plemented Hausdorff C*-lattice is closed.

‘We shall now prove the converse of (3.3) for relative complemented.
modular lattices with zero.

(3.6) ProrosrTioN. Let (L, T) be a relatively complemented modular
C*-lattice which is linear-compact and let A be any closed congruence ideal
of (L, T). Then A is linear-compact (in its relative topology).

Proof. Now 4 is a relatively complemented modular lattice with
zero. Hence its congruence ideals are precisely its neutral ideals. Let
[Ay:)] (¢ € I) be a system of linear varieties of A (corresponding to the
closed neutral ideals 4, of A4) satisfying the finite intersection property.
Since L is also relatively complemented modular and has & zero, the
congruence ideals are precisely its meutral ideals and hence A is a neutral
ideal of T. Since 4 is neutral in I and A4, is neutral in 4, it follows
that A; is a neutral ideal of L (cf. [3]). Again since 4; is closed in A and
A is closed in L, A;is closed in L. Further ¥ = oy(mod4,) in L = ¢ V a;
=@ V a; for some a; e 4:C A. Since 2;¢ 4, it follows that o, v a; ¢ A.
As y <@V ag, yed, le. yedia). Thus each Ayz) is also a residue
clags of L and, as 44 closed, is a linear variety of L. Since the system
[Aixs)] (¢ el) of linear varieties of I satisfies the finite intersection
property and (L, T) is linear-compact, it follows that ﬂIAi(wl) 55 0.

(13

Hence there exists some element z e.L, @ e[ As(a). Since each Afa) C A,
tel -

it follows that # ¢ A and therefore A i linear-compact.
Now we shall prove the following proposition.

(3.7) PROPOSITION. Any linear-compaci Hausdorff C*-luttice (L, 1) is
& projective limit of discrete linear-compact *-lattices.
Proof. Let V be the eongruence uniformity of (L, 7). Then (L, V)

is by (3.4) complete. Hence from (2.5) we can deduce that (L, V) is the
projective limit of the discrete quotient lattices L/6; (eI ) (where [0,]

icm®
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(¢ eI) is a base of nuclear congruences for (L, T)). Further each Lj6; is
by the corollary to (3.2) a linear-compact C*-lattice and hence the result.

Thus we see that the study of Hausdortf linear-compact (*-lattices
can be reduced, in some sense, to the study of discrete linear-compact
*-lattices. We shall now proceed to study the structure of discrete linear-
compact *-lattices and characterize them for certain complemented
modular lattices. We begin with

(3.8) LmMmMA. Let L be a *-lattice with 1 and B the centre of L. Then
the ideal I(A) of L gemerated by any ideal A of B in L is a congruence
ideal of L. If A is proper then so is I(A4). .

Proof. Let A be any ideal of B. Then I(4) = [J ¢ Ljb < some a ¢ 4].
‘We shall now show that I(4) is a congruence ideal of L. This is verified
if we show that for z,yeL, s vi=y vi for any tel(4) = for any
arbitrary element zeL there exists an element % eI(4) such that
@A)V =(yAe) V. Let s vi=y vi for some teI(4d) and let
#el. Bince tel(4), t<someaeACB. Hence 2 Va=yVa and as
@ is a central element we have (s A2) Va=(z Va)A(2Va)=(yVa)A
A(gVa)=(y A=z Va Since aeI(A), this proves that I(4) is a con-
gruence ideal of L.

If A is a proper ideal of B, then I(A) £ 0 as 4 = 0. Now I[(4) # L
for if it were equal to L then 1eI(4). Hence 1 < some aec 4, ie. 1 =a
for some a ¢ A4, i.e. A = B—a contradiction and this proves the result.

Now we are in a position to prove

(3.9) THE FUNDAMENTAL LEMMA. Let L be a *-lattice (with 1) which
is linear-compact in the discrete topology. Then L has finite centre.

Proof. Suppose that the centre B of L is infinite and L is linear
compact in the discrete topology. Let S be the set of all (proper) max-
imal ideals of the centre B. For any A e 8, let I(4) be the ideal gen-
erated by A in L. Then from (3.8) it follows that I(4) is a congruence
ideal of L. Let 04 be the congruence corresponding to I(4) in L.

Since B is an infinite Boolean algebra, B contains a maximal non-
principal ideal M (cf. [1]). Consider the set C of residue classes of I
which consists of I(M) (i.e. 0u(0)) and 64,(1)’s, where A; runs through
all the elements of § not equal to M. Since I has the diserete topology,
any residue class of I is a linear variety. The set ¢ can easily be
verified to satisfy the finite intersection property. Since I is linear-
compact, it follows that there exists an element # eI such that

@e () 04(1) ~ 0x(0). Hence there exists an element z el such
M#Ai(eS)

that zeI(M) and = ¢ any I(4:) (as I(4s) # L by (3.8), i.e. & lies in
precisely one I(4), A eS8, viz. I(M). We shall now show that this leads
to a contradiction.
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Since % eI(M), there exists an element mge M ( Q B) such that
2 < mg. Since @ is not in any I(4) and each I(4,) iy an ideal, it follows
that m, is not in any I(As), As 7 M. Hence

(1) meel(M), and myganyI(ds), AiFM, dieS.

Since M is a non principal ideal of B, given this m, ¢ M there exists
an element m, e M (C B) such that m, < m;. Since my, m; € B and my < my,
there exists & maximal ideal P of B (therefore P e §) containing m, and
not containing m,. Consider I(P). Since m, e P C I(P), it follows by (1)
that I(P)=I(M). Hence m; ¢ M C I(M) = I(P). Therefore m, < some
p e P. Since m, ¢ B, this implies m, ¢ P contrary to the choice of m,.
This contradiction arose from that assumption that B is infinite. There-
fore B is finite and hence the result.

As an immediate consequence of (3.9) we have

COROLLARY. If a Boolean algebra B is linear-compact in the discrete
topology then it is finite.

(8.10) ProPosiTION. Let (L, T) be a Hausdorff linear-compact C*-lattice
with 1. Then the centre of (L, T) is compact.

Proof. By (3.7), L is the projective limit of L, (a ¢ A) where the
L.s are discrete linear compact *-lattices. Now by (3.9), the centre B,
of I, is finite. It is easy to see that the centre B of L is the projective
limit of B,, a € A. As the projective limit of finite discrete spaces is com-
pact, the result follows.

. CoroLLARY. Let (B, T) be a Boolean algebra with the Hausdorff con-
gruence topology T. Then (B, T) is linear-compact if and only if it s
compact.

The proof of the following lemma can easily be verified.

(3.11) Lemma. Let (Ly, Th), (Lsy T,) be C*-lattices and let f be a homo-
morphism of Ly on L, which is continuous at the zero of L. Then f is uni-
formly continuous with respect to the congruence uniformities of (L, Ty)'
and (Ly, Ty).

As an immediate consequence of this we have the

CoroLLARY. Let (L, Ty) and (L,, T,) be C*-lattices and let 1 be a homo-
morphism of Ly on L,. Then f is a continuous mapping of (Ly, Ty) on
(Ly, T5) 4f and only if it s continuous at the zero of IL,.

Now we shall prove

(3.12) PrOPOSITION. The compact Hausdorff complemented modular
O*-laitices are precisely the direct products of finite complemented modular

lattices (each with the discrete topology), the decomposition being both alge-
braic amd topological.
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Proof. Any direct product of finite complemented modular lattices
is easily seen to be a compact Hausdorff complemented modular lattice.
To prove the converse let [0;] (i ¢ I) be a base of nuclear congruences
of (L, T} and let 6:(0) = N; for each i e I. Then the quotient space L/N;
is discrete and is also compact being a continuous image of L. Hence
it is finite. Also each L/N; being a homomorphic image of the comple-
mented modular lattice L is complemented modular. Thus each L/N; = I;
is a finite (and hence continuous) complemented modular lattice. There-
fore it follows that the intersection ,Q— MY of all the maximal con-

€L

gruence ideals of L; (which are precisely its maximal neutral ideals)
is the zero of L; (cf. (2.11)). Let f; be the natural homomorphism L —=L;.
Since there exists a 1-1 correspondence between the congruence ideals
of Ly and the congruence ideals of L containing ¥;, My, = f7*(AI%) is
a proper maximal congruence ideal of L and kleIfk = Ny;. Hence

(I () My ="YNe=0 as (L, T) is Hausdorff.
.k iel

Further since L; is discrete and f; is continuous, it follows that

Ay, = f7 (M%) is open in (L, T) for every i, k. Hence we have proved

the existence of maximal congruence ideals in L which are open in (L, T)

and also established that the intersection of all the open maximal con-

gruence ideals of L iz zero (since the intersection of a subcollection of
them is zero by (I)).

Let [M;] (j eJ) be the set of all open maximal congruence ideals

of (L, T'). Then as (} M; = 0 it follows that L is isomorphic to a sub-
je€

lattice of the direct product P of the lattices L/M; (j ¢J), the isomor-
phism being defined by the correspondence f: z—[(x);] (jeJ) (where
(x); is the congruence class containing # with respect to the congruence
determined by Mj). Since M; is an open congruence ideal of L, it is also
closed. Hence each quotient space L/M; = I; is discrete. Let T, be the
topology of f(L) as a subspace of P.

Since L i3 a *-lattice (being complemented modular), by the cor-
ollary to (3.11), in order to verify the continuity of f it suffices to ve-
1ify its continuity at the zero of L.

Now any fundamental neighbourhood of zero of (f(L), T,) is of the
form ¥ ~f(L) where V = _HJV,-(O,), Vi(05) = Ly for (j #4i) (i =1, ..., m)

JE

and Vj(04) = 05, (i =1, ..., n). Given V (L), let I = (| My, (where
=1

M, is the congruence ideal corresponding to Lj = L/Mj). M is open
in (L, T') being the intersection of a finite number of open sets. Further
if m e M, then f(m) = [(m);] (§ eJ). Sf;&ef\m eM, me My (i=1,..,nm).

Fundamenta Mathematicae, T. LVIL 2
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Hence (m);, = 0y (i =1, ..., ). Therefore f(m)e 7 ~ f(L) and hence f is
continuous.

Now we shall show that F(L) is dense in P. Let p = (p4), (tel),eP
Then any neighbourhood of p in P is of the form U(p) =[] Uj(p,)

jed
where Ujpy) =Ls (j i) (6=1, ., n) and Uy(ps) = ps (1 =1,...,n),
Now since My (i =1,...,n) are maxmml congruence ideals of L and

the congruences on L are permutable, it follows that I}/U1 M;, is iso-
morphic to the direct produet [1 LjM;, (cf. (2.7)), the isomorphism being
=1

given by the mapping, ¢: M(a) (@)1 - (a),) (where M = ﬂ M;, and

=1

M{a) is the residue class containing a with respeet to the congruence
defined by M). Hence given (py, .., s, there exists an element QeL/M
such that @ = M(q) (g « L) and ¢(M(g)) = ( s woer (@12) = (Dszs 005 Pi)-
Hence (q); = ps (6 =1, ..., n), and hence f(g) ¢ U(p) n HI), ie. U(p) n
A (L)~ ©. This is true for each fundamenta}ieighbourhood U(p) of p.
Therefore p ¢7(L), i.e. PCF(L). Hence P = f(I) and, therefore, f(L) is
denge in P.

Sinee (L, T) is compact and f is continuous, it follows that (1), Tl)
is eompaet and is, therefore, closed in P as P is Hausdorff. Thus f(L)
= f(I) = P. Now (L, T) is compact and f is a (1-1) continuous mapping
of (L, T) on the Hausdorff space P. Therefore f is a homeomorphism
and this proves the result.

COROLLARY i. A complemented modular lattice L which admits a com-
pact Hausdorff congruence topology T is a generalized continuous geometry.

Proof. Since (I, T) is the direct product of the finite complemented
lattices L; (j eJ) and since each L; being finite is continuous, it follows
that I being the direct product of the L;'s is continuous. Therefore L is
a generalized continuous geometry.

CoroLLARY ii. The compact Hausdorff O-Boolean algebras are pre-
cisely those of the form BY, where B, is a two-element Boolean algebra and
N is a cardinal.

Proof. By (3.12), B is the direct product of B/M;, j ¢J. Since each
M; is a maximal ideal of B, each B/M; is a two-element Boolean alge-
bra and hence the result.

CoroLLARY iii. The centre of a linear compact C*-lattice with 1 is of
the form By where B, is a two-element Boolean algebra.

This is an immediate consequence of (3.10) and corollary ii (3.12).

Now we shall proceed to study the notion of linear-compactness
in complemented C*-lattices. We begin with

Linear-compact congruence topologies 19

(3.13) Lmmva, If (L, T) is a Hausdorff C*-lattice with 1 and z s
an element of the centre B of L then the principal ideal (2), generated by =
in L is closed in (L, T).

Proof. Let (2); be the closure of (2), in (L, T). If # € (2);, then for
any ideal A; corresponding to a congruence in the base of nuclear con-
gruences of (L, T)), there exists a;e A; such that x<C2 Vv a;. Therefore
A2 <a;Az. Hence o A2 e4;. This implies that z A 2« ﬂIA,;.

i€

As (L, T) is Hausdorff we have that 2 A2’ =0. But z =2z A (z V 2')
=(@A2)V(TAZ)=21Azie o<z Hence ¢ (2);. Thus (2); is closed.
Now we shall prove
(3.14) ProposirioN. Let (L, T) be a Hausdorff linear-compact com-
plemented C*-lattice. Then (L, T) is equivalent to the direct product I1L.,

where Ls are Hausdorff linear-compact irreducible C-lattices, the decom-
position being both algebraic and topological.

Proof. From corollary iii to (3.12) it follows that the centre B of L
is of the form BY (both algebraically and topologically). Let (2.) be the
set of all atoms of B and let L, be Lf(z:)1, with the induced topology.
Then I, is 2 Hausdorff (see (3.13)) linear-compact complemented C*-lat-
tice with two-element cenfre (and hence irreducible) and the canonical
map f.: L->L, is continuous and open. Hence the map f: L—>n L, de- .

fined by f(z) = {f.()} is also continuous. It is easy to see that fL) is
dense in [] I,. Therefore from (3.2), (3.3) and (3.5) we have f(I) = [] L,

(algebraically). We shall now show that for any ideal A; which is the
zero class of a congruence in the base of nuclear congruences of (L, T),

f(4s) is open in []L,. Since 4;~ B is open in B and B = BY, we notice

that A4; contains an element of the form zj; A ... A 24, WHETe Zu1, ..oy Zan
is a finite set of atoms of B. Now since f(4;) is an idealin H L,, we have

F{Aq) = fu(4s)

an open map) for i =1, ..., n, we get that f(4:) is open. Hence f is
an open and continuous map of L onto []L,. It remains to show that
7 is 1-1. '

Since L is a *-lattice, it suffices to show that 77'(0) = 0. Suppose
that f(x) = 0. Then # < 2, for any atom z, of B. Therefore o < (2a) A ... A
A (%) for any finite sequence zu, ..., 2m of atoms of B. If 4 is an open
ideal in (L, T) then 4 ~ B is open in B and hence it contains an ele-
ment of the form (24) A ... A (2), Where Zu, ..., 2, are as above. Thus
x e A for any open ideal 4, and as the space is Hausdorff this implies
that z =0 and hence the result.

X fan{Ag) X H L. Since f.;(4:) is open in Ly (a8 fu i8

9%
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DeFINITION. A C*lattice (L, T) is said to be a PC*-lattice (or a C*-
lattice with a principal congruence fopology) if it has a base of nuclear
congruences whose congruence ideals are principal ideals.

Then we have:

(3.15) ProposITION. A Hausdorff Winear-compact complemented C*-lat-
tice (L, T) is equivalent to || L., where Lo are discrete irreducible linear-

compact complemented C*-lattices, if and only if (L, T) is a PC*-lattice.

Proof. The “only if’’ part is obvious. The “if” part follows from
(3.14) and the fact that each L, being an irreducible PC*-lattice, its
only principal congruence ideals are (0) and L.

4. Linear-compact C*-generalized continuous geometries.
In this section we shall study the notion of linear-compactness in
the particular case of a generalized continuous geometry. We begin
with the following

(4.1) LEMMA. Let L be a generalized continuous geometry and let (p);
be a principal congruence ideal of L. Then Lj(p), = Ly is a generalized
continuous geometry.

Proof. Since L is complemented modular L,, being a homomor-
phic image of L, is also complemented modular.

Now we shall prove that Lp is & complete lattice.

Let f be the natural homomorphism L—L,, and X; (i€ I) be ele-
ments of L,. Then ag f is onto for each ¢, there exists x; ¢ L such that
flas) = X;. Consider \/ a; (this exists as L is a complete lattice). Since

i€l

f preserves -order, f(\I/a:g)>f(m¢) for each 4. Let Y eL, such that
1€

Y > each X; = f(xs) (¢eI). Now Y =f(y) for some y ¢eL and f(y vV 1)

= f(y) v f(z:) = f(y) for each 4. Hence y v 2 vV p =19y v p for each i e I.
Hence y v (_\/Im) Vp=yVp and therefore
1€

fy) v f(i\c/lxi) VD) =F) v ip), e fy) VAV @) =Fy)

tel

(as f(p) = 0r,). Therefore ¥ = j(y) 27‘({ Im;). Hence

(1) ‘\/IXT, exists in Lp and is equal to F(\/ ).

Sinece L contains a zero element, it follows that it is a complete
lattice. We shall now show that i/\I Xi=f(A\ ). Clearly f(A i) < f(a)
€ iel re]

for each ie I. Let ¥ e L, be such that ¥ < f(a;) for each 4 el, Y = f(y)
for some yeL. Since f(y A i) = f(y) A flzs), ¥ =f(y); hence y A @
=y (mod(p)), ie. (¥ A @) V p=y Vv p for each 4. Since (p); is a prin-
cipal congruence ideal of I and L is complemented modular, it follows

icm®

Linear-compact congruence topologies 21

that p is a central element of L. Hence (y Vp) A (2 Vp) =y Axs) V p
=y v p for each i ¢ I. Therefore _/\I(wi V p)>=y V p. Since p is a central

element and L is a generalized continuous geometry, it follows that
/\I(m,; vV p)= (/\Imi) v p (cf. [8]). Hence we have f[( [}Imi) v pl= fly Vo),
1€ i€ i

ie. f(_/\I 1) > f(y) = Y. Therefore

(1) A Xi= f(/e\f") .

el

Now we shall proceed to establish the continuity of the lattice Ly.
Let X;4 X, X; (iel), X eLp and let G be any arbitrary element of Lp.
Let 2; (i eI), ¢ e L be such that f(x:) = Xi, f(¢) = C. Consider the seb
[#: v p] (¢ € I). Let 7 <j. Then since X;*t X, we have X, < X; for 1 < j
(i.e. [X;] is monotonic increasing). Hence X; v X; = X;, ie. f(w: V o))
= f(x;). Hence oy v ayvp=a;vp for ¢<j, le. mvp<a vy for
+<j (and f(ws v p) = Xi). Thus (@: v p) (¢ elI) is monotonic increas-
ing. Let f(#) =X = i\e/IXi (zeL). Then f(xz)= i\E/IX,: = i\e/.rf(m vV p) =
LY (@ v p)] (from. (T)). Hence o v p =LY (o v ) VPl =V (@ V p),
ie. 2 v pta Vv p. Since L is continuous, it follows that (z; v p) A ¢t
(z v p) A ¢. Hence VI[(xi v p) A cel=(zVp)Ac Since p is a central

element of L, [M(mf ACYV(pAC]= M[(a:z AC)V (P Ac)]= VI[(in P)A €]

=@vplAce=(zAc)V(pAc) Adding p on both sides we have

(VI(m¢ Ao} Vp=(zAc vp Hence f[VI(wi Ae)]=f(xz A c¢). Now

VI(Xi A Q)= _\/17‘(961 Ag) = f({\/l(fvz A ©)) (from (I)) = f(z A ¢) = f(2) A f(c)
i€ 1€ €
=X A C. Hence X; A O+ X A C. Thus L, is upper continuous.
Suppose that X;| X and O = f(¢c) eLp. As before we can show
that (z V p) (¢ « I) is monotonic decreasing. Since A X;= X, A f(z¢ Vv p)
i€l 1€l

= f(z v p). Hence from (II) f(/\I(Tz' v p)) =fla Vv p)ie (A l@mvo)vp

i€ iel
=z Vv p. Now /\I(xs vV p) = p. Hence ./\I(mi Vvp)=azVyp Thuso; Vol
2z vV p. The continuity of L implies that #; vp vela v p v ¢. Hence
Almivpve) =(zVpV o). Sinee p is central, we have (A (@ Vv e)) v p
i€l 1€l
=A@Vvevp) =(zVve) vy Hence f(/\l(m Vo) =fzve). Now

i€l iel

i/\I(.X{ v 0)= _/\If(.m Ve = f(/\I(wi v ¢)) (from (IL)) = f(x Vv ¢) = f(®) v
€ 1€ 1€
vfle)=X v C. Hence X;v (0} X v C. Thus L, is also lower con-
tinnous and this proves the lemma.
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Now we shall prove

(4.2) PrOPOSITION. The Hausdorff linear-compact C*-generalized con-
tinuous geomeiries are precisely the direct products of discrete continuous
geometries both algebraically and topologically.

Proof. Tt is easy to see that a direct product of discrete continuous
geometries is a Hausdorff linear-compact C*-generalized continuous geom-
etry. To prove the converse, it follows from (3.14) that (L, T) is equiv-
alent to the direct product [1 I, where each L, = L/(2); is irreducible.
I, is by (4.1) a generalized continuous geometry and is therefore simple
(¢f. (2.10)). Thus each L, is a continuous geometry and consequently
is also discrete and this proves the result.

COROLLARY. Every Hausdorff linear-compact CO*-generalized continuous
geometry is a PC*-lattice. : .

Now we shall give another characterization of the Hausdorif linear-
compact PC*-generalized continuous geometries in terms of their centres.
We have

(4.3) ProrostTioN. A Hausdorff PC*-generalized continuous geomeiry
is linear-compact if and only if its cenire is compact.

Proof. The “only if”’ part follows from (3.10). To prove the con-
verse let (L, T) be a Hausdorff PC*-generalized continuous geometry
with compact centre B. Then B, being a compact Hausdorff C*-Boolean
algebra is of the form Blo\7 , where B, is a two-element Boolean algebra
and & is an cardinal, and the topology of B is the Cartesian product
topology of BY (cf. Corollary iii (3.12)). Hence it follows that a base
of neighbourhoods of zero of B can be taken as the principal ideals (a)z
of B (generated by a) where ¢ = the complement of some finite sum
of atoms of B.

We shall now show that the principal congruence ideals (a), gen-
erated by these elements a in L can be taken as the neighbourhoods
of zero of L. Let a be one such element. Then given (a)p there exists
some (principal) congruence ideal (b); (the zero class of some congruence
in the base of nuclear congruences for (L, T)) such that (a) 2 (b), ~ B.
Since (b); is a principal congruence ideal of L, b is a central element

of L. Hence be B. Since beB, beBn (b);,C (a)s. Hence b <a and '

therefore (b); C {(a);. Conversely given (b)s, (b)s~ B D some (a)z. Hence
aeB, ag(b), ie (a) D (b):. Therefore we can take the congruence
ideals (a); (¢ running through the complements of finite sums of atoms
of B) as the neighbourhoods of zero of L. Thus we have proved that (1)
the centre B of L is of the form By for some cardinal N and (2) the
neighbourhoods of zero of (L, T) are the congruence ideals generated
by the complements of finite sums of atoms of B. Therefore it follows
from (2.13) and (2.14) that L is the direct product L, =T1(0, 2,) (ael)

e ©
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algebraically. From (2) it follows that T is equivalent to the Cartesian
product topology of the discrete lattices L,. As before, each L, can
easily be seen to be a continuous geometry. Therefore (L, T) is the
direct product of discrete continuous geometries, the decomposition
being both algebraic and topological and is therefore by (4.2) linear-
compact. This completes the proof.

In the case of compact spaces it is well known that a 1-1 continuous
map of a compact space into a Hausdorff space is a homeomorphism.
Now with the help of (4.1) we shall obtain a similar property in the case
of the linear-compact Hausdorff PC*-generalized continuous geometries.

We have

(4.4) ProposirioN. Let (L, T) be a linear-compact Hausdorff PC*-gen-
eralized continuous geometry and let f be a continuous algebraic isomor-
phism of (L, T) on another Haousdorff C*-lattice (Ly, T,). Then f is a unt-
morphism of (L, V) on (I, Vy) where V, Ty are the congruence uniformities
of (L, T) and (L, T,), respectively.

Proof. Since (L,T) is a PC*lattice, it has a base of nuclear con-
gruences [0;] (i € I) such that 64(0) are principal ideals (pe); of L. It suf-
ficies to show that each f((pg);) is open. Consider (p:),. Since (L, T) is
linear-compact, (ps); is closed in (L, T') (being the zero class of a nuclear
congruence) and L is complemented modular, it follows from (3.6) that
(ps); is linear-compact. Hence f((jh);), being a continuous homomorphic
image of the O*-lattice (p¢) is & linear-compact C*-lattice. Since (L, T4)
is Hausdorff, it follows that f((pi)z), being a congruence ideal of I, is
closed in (L, T4) (cf. corollary to (3.5)).

Next, as (L, T) is linear-compact the quotient space L/(pi); is linear-
compact and is also discrete., Further by (4.1) Lj(p:), is a generalized
continuous geometry. Hence it follows from (4.2) that L/(p:); is the di-
rect product of a finite number of continuous geometries. Therefore
the lattice of congruences of Lj(pi); is a finite Boolean algebra (ef. [3]).
Since f is an isomorphism of L on Iy, it follows that L/(p:), and Lyff((pe)a)
are also isomorphie. Hence Lff((p:)s) also has only a finite number of
congruences. Now as L,/f((ps)) is a Hausdorff O*-lattice (as F(pe)y) is
closed), this implies that L,/f((ps)s) is discrete. Hence f((p);) is open
in (I,, T,) and hence the result.

(4.2) shows that any linear-compact Hausdorff C*-generalized con-
tinuous geometry is the direct product of simple lattices and is hence
a PC*lattice. Further we have also shown (cf. (3.1)) that any Hausdorff
compact complemented modular C*-lattice is also a PO*-lattice. There-
fore the question naturally arises as to whether every Hausdorff linear-
compact C*-lattice is a PC*-lattice. This problem remains open and an
answer to the following questions will also aid wus.in its solution.
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QUESTION i. Does a Hausdorff linear-compact relatively complemented
lattice with zero have a unit 12

QUESTION ii. Is the lattice of congruences of a discréte linear-compact
C*-lattice finite?

In this connection I wish to express my gratitude to Doctor V. §.
Krishnan and Doctor V. K. Balachandran for their valuable guidance
in the preparation of this paper. My thanks are also due to the referee
for suggesting various improvements (particularly (3.14)).
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On a singular plane continuum *
by
R. Duda (Wroctaw)

§1. Introduction. Using slightly extended Bernstein’s argument
on the decomposition of a plane into two disjoint and totally imperfect (1)
subsets (cf. [3], p. 422), it is easy to decompose each complete separable
space Y having the property:
(1) if a set ACY separates Y, then A contains a perfect subset,

into a countable sequence of disjoint, connected, ponctiform (2) and dense
subsets. Such are, for instance, all manifolds (in particular, euclidean spaces)
of dimension n > 2, the universal curve of Sierpifiski (‘‘a carpet’; see [4],
p.202) and many others. The points of these spaces are of continuumrange.

On the other hand, however, such a decomposition is impossible
for a regular curve (*). Moreover, a regular curve even does not contain
a countable sequence of disjoint and connected sets {Sg}z-1s,. of diameter
6(8k) > e >0 (%. Thus a natural question arises whether decomposition:

=]
(2) X = U 8k, where S are mutually digjoint, connected, ponctiform
k=1
and dense subsets of X

(hence of diameter &6(8i) = 6(X)), is possible for a continuum X not
possessing property (1)? Is it possible for a rational eurve (5), which,

* This research was partially supported by the D.S.I.R.

(1) A subset .4 of a space I is maid to be fowally imperfect provided that it does
not contain any perfect subset of ¥ (ef. [3], p. 421).

(*) A set 4 is said to be ponctiform provided fnat each of its subcontinua con-
sists of one point only (ef. [4], p. 130).

() A continuum Y is said to be regular curve provided that each its point is of
{inite or w range or, in ovher words, that each its point has arbitrarily small neigh-
bourhoods, the boundaries of which are finite ([4], p. 201). In particular, dim ¥ < 1.

(%) For suppose that a regular curve ¥ does. As a compact, it containg then
a point p ¢ ¥ such that each neighbourhood G of p meets infinively many Si. Taking
G of diameter 6(G) < &, we have, by our assumption and connectedness of Sk,
Fr(@) N Sk 5 0 for infinitely many Sz, and therefore Fr(Sr) must be infinite (sets
Sk are disjoint). A contradiction.

(®) A continuum ¥ is said to be a rational curve provided that each its point is
of at most countable range or, in other words, that each point has arbitrarily small
neighbourhoods, the boundaries of which are finite or countable ([4], p. 201).
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