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On an irreducible absolute retract
by
R. Molski (Warszawa)

In 1950 K. Borsuk constructed [1] in the 3-dimengional Euclidean
space B3 a 2-dimensional absolute retract such that every 2-dimensional
closed set of it has an infinite 1-dimensional Betti number. The purpose
of this paper is to show that Borsuk’s construetion can be built in an
(n-+1)-dimensional space, and with a slight modification also in a Hilbert
space, so that in the first case we obtain an n-dimensional absolute
retract such that every n-dimensional closed proper subset of it has an
infinite (n—1)-dimensional Betti number; in the second case we obtain
an infinite-dimensional absolute retract such that the %-dimensional
Betti number of every closed proper subset of it containing an inner
point of it, converges to an infinity with k.

The constructions and the proofs are suitably adapted constructions
and proofs of [1].

The auther would like to express his gratitude to Professor K. Borsuk
and Docent A. Lelek for their valuable remarks and advices.

1. Irreducible cuttings. A subcompactum ¢ of the (n-1)-
dimensional space E™** is said to be an irreducible cutting of E™* pro-
vided that E"**— ¢ is not connected but for every closed proper subset
A of O the set B"*’—4 is connected. Any irreducible cutting of, B™'*
is an #-dimensional Cantor-manifold.

If the irreducible cutting C of ™' is a polytope, then E"'—(
contains exactly two regions for which C is a common boundary. One
of these regions has a finite diameter; it will be called the inferior region
and denoted by I'. The other region, with an infinite diameter, will be
called the exterior region and denoted by 4.

Let a < E*™. Let us put the gpace F™* isometrically in the space
E"t, and let L be the line in E™* orthogonal to F™'' and passing
through a. Let b+ and b~ be two different points in L at a distance 1
from a. Let F be an arbitrary subset of E™™. The subset of E"™* con-
sisting of all segments zb+ and all segments zb~ where © < F i3 called
the suspension of F and denoted by S(F). If O is a polyhedral irreducible
cutting of B"' and ael', then the suspension §(C) is a polyhedral
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122 R. Molski

irreducible cutting of E"*® which disconnects E""* into exactly two
regions, S(I') and B**—8(I'v 0).

Let 7(() be a triangulation of a polyhedral irreducible cutting ¢
of B™™. For every simplex T e7(C), let us denote its barycentre by by
and let |T| denote the space of T. For every line L in E™ such that
L ~ Ur = br for each neighbourhood Ur of by in O, there exist on I
two points, b’ and "', different from br and such that the interior of
the simplex |Tb'| lies in the interior region I' and the interior of the
simplex |7%"| Les in the exterior region /4. We shall say that every
point belonging to the interior of |T%’| lies on the interior side of the
gimplex. 7. By an inner ray of T we understand any ray starting from by
and containining.at least one point b’ lying on the interior side of 7.

Two- n-dimensional simplexes 7’ and.T". of ¢(C) are said to be ad-
joined in the dimension % if they have a common k-dimensional face J
but they do not have any common face of dimension >k, and for every
two points b’ and b such that b’ lies on the interior side of T' and 5"
on the interior side of I'/, there exists in every neighbourhood of the
barycentre of J a point b such that the polygonal line bb'+-bb" lies in
the interior region I'. It can easily be seen that to every (n—1)-dimen-
sional face J of every n-dimensional simplex 7" ¢ z(C) there exists exactly
one simplex T er(C) such that |T'| ~|T"'| = |J|, and the simplexes
T’ and 7" adjoin in the dimension n—1.

Let T’ and 7" be two. n-dimensional simplexes of the triangulation
7(0) adjoining in the dimension %, and let J denote their common k- di-
mensional face. Let n' and ='’ denote two m-dimensional half-hyper-
planes containing respectively |7'| and |7"| and such that |J|Cz' Az
There exists exactly one n-dimensional hyperplane = passing by |J| and
such that =’ and =’ lie symmetrically to ». This hyperplane = will be
called the hyperplane separating the simplexes T' and T''.

2. Zones. Let E"*" be the hyperplane of E"*™, where m is a finite
number or infinity. Let E*m—! denote the orthogonal complementary
space to B in ™™ and let 1, ..., Ln denote the orthogonal basis of
E#*n-1, Let 7(C) be a triangulation of a polyhedral irreducible cutting ¢
of B"** and T a simplex of 7(C). Giving a sequence of non-negative
numbers {&, &, ..., &n} let us denote by an m-dimensional %-zone
Z%(T, {&}) of T the set defined in the following manner:

If dim T < k then ZZ(T, {&}) = |T|; if dim T = k then by Z{(T, {e:})
we shall understand the minimal convex subset of "™ containing the
simplex |T'| and the segments L, L,, ..., L, where I, is an inner ray
with length &, and L; (i = 2, ..., m) are the segments with length 2,
centre by and direction of the vector I;. We see at once that for an
arbitrary choice of inner rays and for e sufficiently small the common
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part of the m-dimensional k-zones of different %-dimensional simplexes
of 7 coincide with the common part of the boundaries of those simplexes.
The sequence {e;} satisfying this condition is said to be suitable for the
triangulation .

If dim' T > %, then by Z¥(T, {s}) we shall understand the minimal
convex subset of B**™ containing the simplex | 7| and the sets ZE(T", {s:})
of all k-dimensional faces 7" of 7. Clearly, if the sequence {e;} is suitable
for all k-dimensional simplexes of 7z, then it is also suitable for all sim-
plexes of 7. If K is a subcomplex of triangulation 7(C), then by the
m-dimensional k-zone of K we mean the polytope Z%(XK, {s}) which is
the sum of m-dimensional %-zones of all simplexes constituting the com-
plex K and satisfying the folowing conditions: (i) ZZ(T", {es}) ~ Z%(T, {&:})
=2 T AT, {e}) for T, T ¢ K, (ii) the sequence {e;} is suitable.

In this paper we use the following cases of zones:

1. 1-dimensional (n—1)-zone Z, (K, ¢);

9. infinite dimensional k-zone Z% (X, {&}).

In case 2. we assume that the sequence {&;} converges to 0.

3. 2-dimensional k-zone Zi(K, {0, £});

4. 1-dimensional 2-zone Zy(K, {s}).

LemMMA 1. If C 48 a polyhedral irreducible cutting of a hyperspace
B in BM™ and K is a subcomplex of a triangulation 7(C) of C, then
for every sequence {e¢} (i = 1,2, ..., m) suitable for ¥ there exists a mapping
r(m,t) retracting by deformation the m-dimensional k-zome Zx(K,{ed})
to |K| in such o manner that r(z,1) = « for every me|K| and 0 <1 <1,
and 7(w, 1) € ZH(T, {e:}) for every simplez T et(C), every e Zy(T,{es})
and every 0 <t <1.

Proof. If ze 72K, {e}), s <k, where K denotes the s-dimen-
sional skeleton of K, then ZMEY, {&:}) = |K*| and we put r(z,) ==
for every z e ZHEK®, {s1}), 0 <t <1.

If dim T = &, then each point e Z%(T, {&}) is an element of the
set |T|xI™ that is @ = (a, &, %3, ..., Tm), Where a ¢ |T| and z; are real
numbers and z = (@, 0,0, ..., 0) for @ |T|.

We put 7(@,1) = (@, (1—1)@y, ..., (1—1)am) for every @ e Z%(T, {a:}),
TeE™ 0<t<1.

Suppose that we have defined the mapping # (2, 1) for z € ZH(E®, {a:}),
s>k and let dim T — s+1. Consider the set A =Ix|Tjv(UJIx

7

X Z3(Ty, {&:})) where the summing is over all s-dimensional face T
of T. Let us define the mapping ra(z,?) on A by
© for wze|T], 0 <t <1,

ral@, 1) =1 iz, 1) for (@, 1) € U (IXZE(Ty {e))) -
7
9#
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Using the homotopy extension theorem. for polytopes we can extend

this mapping to the mapping rr(2, ?) defined on I X Zi(T, {e}) so that
ro(@, 0) = @ and rz(z, 1) € |T|. Putting (@, t) = ro{z, 1) for z ZUT, {e5}),
0 <t<1 for TeE®™Y, we obtain the retraction by deformation r(z, )
defined on ZI(E®™, {z}) so that the conditions of the lemma are
satisfied. We infer that we can define the mapping r(z,?) retracting
ZWE, {e1}) to |E| satisfying the conditions of the lemma.

It follows that |K| is an absolute retract if and only if ZH(E, {&)
is an absolute retract.

3. Subpolytopes smoothly connected in dimension %. Let
P be a homogenously #-dimensional subpolytope of a polyhedral irre-
ducible cutting ¢ of the space E*™'. Let v(C) be a triangulation of ¢
such that P is representable as a subcomplex K of 7(0). The polytope
P is said to be smoothly connected in the dimension k¥ on C if for every
two n-dimensional simplexes T and T" of it K there exists in K a finite
sequence of 7-dimensional simplexes T' = Ty, T, ..., T1, Ti4a = T" such
that T; and Ty, adjoin in the dimension >k for every ¢=0,1,..,1
Obviously this property is independent of the choice of the triangulation
7(0); it depends only upon the polytopes P and O.

If O is a polyhedral irreducible cutting of E"*, let us denote by
§(0) a set homeomorphic to the suspension 8(C) defined in the following
manner. Consider the set W(C) of pairs (¢, ?) e B where ce ( and
te[—1,1]. Let a be a point of an interior region I' of E"'— (. Denote
by 4*+(C) the cone in B"** with the base consisting of points of the form
(¢,1) and with the vertex at the point (a, 2), and by 4 (C) the cone
in E™** with the base consisting of points of the form (¢, —1) and with
the vertex at the point (a, —2). We put §(0) = W(0) v 4+(0) v 47(0).
I_t is easy to see that if ¢ < 1, then Z3z(0), {0, &}) is a subpolytope of
8(0) and that if the subpolytope |K| is smoothly connected in the di-
mension ! in C, then the polytope ZYK, {0, £}) is also smoothly connected
in the dimension ¢ in S(C).

4, Base of a rosary. Let C be a polyhedral irreducible cutting
of the space ™" (n.>>3) and let P be a subpolytope of ¢ smoothly
connected in the dimension >2 in (. Consider the triangulation ¢(0)
such that P constitutes a subcomplex K of 7z(0). Let R denote the
sum of all simplexes of (C) not belonging to K, R = C—P. From the
smooth connectivity in the dimension >2 of P we infer that there exists
for every n-dimensional simplex T ¢ K a polygonal simple arc Ly C P—R
such that:

EL Ly has as its starting point a7 an interior point of the simplex T
and its end-point a7 lies in the interior of an »-dimensional simplex of K.
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o If T and T' ave two different simplexes of K, then Ly ~ Ly =@
and Lr ~ |T7] # @.

3. If a is a point of Ly lying on the %-dimensional simplex J, k< #,
then there exists a neighbourhood U of a such that U Lr consists of
two segments lying in the interiors of two n-simplexes adjoining in the
dimension k. It follows that the arc Lr does not pass through 1-dimen-
sional simplexes or through the vertices of K.

We can assume that all ares Ly, for each T, consist of (s 2) segments,
Lp = Lpg v Ly w . v Ly gy, having disjoint interiors and such that
the interior of every segment Lz; lies in the interior of one of the n-di-
mensional simplexes of K. Denote the end-points of Lr; by arg and
aric1, Oro = 0T, OTs+2 = a%, and the centre of Lz; by brs. Denote
by Qr; the n-dimensional cube lying in P with centre in br; one of its
faces parallel to Lr;, and « as the length of its edges. Obviously, if the
number a is sufficiently small, then the cubes Qr; are disjoint, lie in
the interiors of nm-simplexes of K, and the common part of @r; with
the polygonal line Lr is a subsegment of Ly, having br; as its centre
and a as its length. Let us denote the end-points of this segment (ordered
as they appear on the oriented segment Lg; from ar; t0 @rgei) by
ar; and a7;.

Let us put:

Mpi = Qri© 01,:07,:41 % Ories arg v Qrin
(where Q7. denotes the boundary of the cube Qriv1),

My =) Mg, M:EFJMT.

We shall say that M is a base of a rosary for the polytope P. The poly-
topes My will be called components of M, and the polytopes Mg; links
of M. The segments of the form ari107i will be called the entrance
segments and the segments of the form bridr.+ the exit segments of
the base M of the rosary.

5, Rosary. Let ¢ be a positive number suitable to the triangu-
lation (). Consider the 1-dimensional 2-zone Zy(XK, ¢) of the complex K
and choose a positive number § so small that, if B is an arbitrary cube
or segment of the base M of the rosary contained in the simplex |T]
and # is a point lying on the interior side of T, at a distance <28 from B,
then « e Z5(K, &). In particular, (i) if B lies in the interior of |T,| then
x e Z3(K, &), (i) if z, y are two points belonging to two disjoint segments
of the base of the rosary, then g(z,y) > 2f; (iii) the length of the edges
of the cubes of M is >48.
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Let |7, be the n-simplex containing the cube @r; and |Tj| the
n-simplex containing the entrance segment J’ = ariiiari: (|75 may
be equal to |Ty|). The exit segment J = briar;i1 les in |Ty|. Let us
denote by 4(Qr;) the pyramid with base Qr; lying on the interior side
of T, and of height 8. Denote its vertex by bz;. Consider the n-dimen-
sional hyperplane = in E"™" parallel to |T,|, lying on the interior side
of T, at a distance p from |T,| and the n-dimensional hyperplane »’
parallel to |Tg|, lying on the interior side of " at a distance § from |Tj|.
Denote by Q7:, Ju', J~ the cube, the (n—1) faces of this cube and the
line lying on =, which are the results of a parallel translation of, respect-
ively, the cube Qr,, its (n—1) faces J, and the line containing the seg-
ment J, in the direction of the vector bp;br;, and by J™ the line lying
on n' which is the result of a parallel translation of the line containing
the segment J” in the direction of the vector br,iibriy1. Clearly, the
edges of Q7; are of length «. Consider the cube @7 lying in = with the
same centre as Qr; with the edges parallel to the edges of @7, but of
length /2. The set Qr;— @r; is the sum of 2n sets Jy, J, ..., Jen, Where
Jy=JpxI,, p=1,2,..,2n, and I, denotes a segment of length af4
lying in @7, orthogonal to J; with one end-point in J,". Let us denote
by V(J,) the minimal convex set containing J, and J, u- V(J,) is a poly-
tope homeomorphic to I"™ xI* lying in the zone Z(T,, £) which forms
a neighbourhood of it in ¢ w I', and its common part with |K| is equal

2n
to J,. The set V(Qr:) = |J (J,) is homeomorphic to the set 8" xI®

=1
("' denotes the (n—1)-dimensional sphere).

The common part of the hyperplanes = and =’ is a (n—1) - dimen-
sional hyperplane parallel to the common face of the simplexes T, and 7Y.
Let ¢ denote the common point of two lines J and J’ and let D denote
a regular (n—1)-dimensional simplex lying in = ~ ' with centre at d
and with edges of length ¢/8. For each point b of the ray diy; denote
by D, the result of a parallel translation of the simplex D in the direction
of the vector db and let J be the closed part of A bounded by the hyper-
plane m ~ =’ and by the n-hyperplane passing through bz, orthogonal
to the exit segment J and to |T,|. For each point b’ of the 18y b4
denote by Dj the resulls_of parallel translation of the simplex D in the
direction of the vector db’. Denote by A’ the union of the .D{’s for each
b edbrsy, and let J' be the closed part of A’ bounded by the hyperplane
x ~ 2’ and by the n-hyperplane passing through ai,.; and orthogonal
to |T¢| and to the entrance segment J'.

Denote by V(J) and V(J) the minimal convex sets containing,
respectively, V' (J) the sets J and J, V(J’) the sets J' and J'. V(J) and
V(J') are the polytopes contained: the first in the zone Z3( T, ), the
second in the zone Z%(Té, s) (these zones are their neighbourhoods in
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C v '), and their common parts with |T,| respective with |T4l are J
and J'.

Now let D" denote a regular (n—1)-simplex in = ~ =’ with centre
at d, with edges parallel to the edges of D but of length g/f. Denote by
J” the set built by means of the set D™ in the same manner as the set J
was built by means of D, and let A(J”) be the minimal econvex set con-
taining J and J".

Let us put

V(Qrs) =V (@ra)—V({JI7),
Nri=A(Qry) v V() v V() v PHQie)
-NTZUNT,M N:LTJNT

T

The polytope N will be called the rosary for the polytope P. The
polytopes Nr will be called the components, and the polytopes Np; the
links of this rosary. The common part of the rosary N and the polytope
C is the base M of the rosary. The rosary N lies in the zone Z3(K, ¢)
which constitutes a neighbourhood of N in the set ¢ w I

In the same manner as in [1] we can prove the following

LeMMA 2. There exists a mapping r(x,t) retracting by deformation
the polytope P v N to the polytope P in such a manner that

oln(m,t), @) <& for every xe P UN and 0 <t <1.

It follows that P is an absolute retract if and only if P N is an
absolute retract and hence the set (Pu N)~ Zy(T, ¢), where T ¢ K, is
an absolute retract.

Lemya 3. The link Np; is homeomorphic to the (n-+1)-dimensional
ball in which an (n— 2)-dimensional sphere belonging to the surface of this
ball is reduced to a point.

Proof. Denote by J, the (n—1)-dimensional face of @z, containing
the point a% ;1. It is easy to see that the set V(Qr41) ~ V(J7) is & con
having as its base the convex set J, ~J~ and as its vertex the point
@' ;+1. Consider the set Qz;+; homeomorphic to the (n—1)-dimensional
sphere and an (n—1)-dimensional ball Q"™ constituting a neighbourhood
of point ay;41 in Qrsyq. Let us denote by ¥V the minimal convex set
containing Q"™ and the set J, ~ J~. Obviously, the set """ = V(Qri+1)—V
is homeomorphic to an (n-+1)-dimensional ball. The boundary @™~ of
Q"*, which is an (n—2)-dimensional sphere, lies on the boundary @™
of Q"' By identifying @™ " with a point we obtain from the set
V(Q7.:41)—V = @™ a new set homeomorphic to the set

V(@rit1)— [V (Qrira) A V(I = V(Qris)—V(I) = V*(Qrsn) -
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But the set V*(Qr+1) is obviously homeomorphic to the link N,
and thus the proof is finished.

From lemma 3 we infer the following

COROLLARY. The set Nip;— (Qri—Qr.:), where Nip; denotes the boundary
of Nz, is a deformation retract of Nyp;.

6. Subordinate polytope and subordinate zone. Let N' de-
note the boundary of the rosary V. The polytope

PP=PUuN— LIJ :L:J:(Qm,i—— Qry)

is said to be a subordinate polytope to P corresponding to the triangulation
and to the zone Zé(r, g). We see at once that the polytope

¢'=P uR
is an irreducible cutting of the space E"™' with the interior region I"
—1
=TI'—X and the exterior region A’ = Au (N—N")u J SU (@ri— Q).
T i=0

The polytope P’ is smoothly connected in a dimension >2 on ¢
and the (n—1)-dimensional skeleton of P corresponding to the triangu-
lation v is a subpolytope of P’.

Using the same reasoning as in [1] we can prove the following

Levma 4. There ewists a retraction by deformation ryx,t) of the poly-
tope P v N to the subordinate polytope P’ such that for x e P u N

9(72('”; 1), m) < 2(e+7),

where the diameters of the simplexes of the triangulation © are all <.

It follows that P’ is an absolute retract if and only if Pu ¥ is an
absolute retract and consequently if and only if P is an absolute retract.

Consider the triangulation v’ of the polytope ¢’ such that the sets
Py PP, P—P~P and P'~ ZYT,¢) for each T er are representable
in the form of subcomplexes of v and let K’ be the subcomplex corres-
pondig to P'. We can assume that the diameters of all simplexes of
the triangulation =’ are <#, and that for the (n—1)-skeleton of K the
triangulation 7’ is a subdivision of the triangulation 7.

Lexma 5. For every sufficiently small number & > 0 there ewisis a re-
traction 1, of the zone Zy(K, &) to the zone ZYK', &') satisfying the condition

olrd@), o) < 4e+2n  jor every we ZNK, &) .

.Proof. Let 1" be a simplex of the triangulation 7’. There exists
a simplex T’ K such that | 7’| C Z3(T, €) but |7"] is not included in the
2-zone of any proper face of T. For simplexes 7" of dimension <2 we
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have ZNT', &) = |T'|C Zi(T,¢); it dimT’ = 2 then there exists a po-
sitive number ¢ and an inner ray L of T" sueh that Zy(1", &) C Zx(T, e).
From the definition of the 1-dimensional 2-zone we infer that ZyT, &)
C ZY(T, ) for all simplexes 7" of K'.

Tet us define a retraction r, of Zi(K,e) to the set Zi(K’,s') v N.
Since Zy(E™, &) = IK(I)I then the retraction is defined for the 2-zone
ZYEY, £) of the 1-skeleton K™ of K. Suppose that we have defined
the mapping 73 for Zé(K(’"’, g) and let T be an (m+1)-dimensional sim-
plex of K. The set

P AZYUT, 6) ON ~Z3(Ty6) =P ON ~ ZyT, &)
is an absolute retract. Consequently the set
W(T) = Z3[v' (P’ ~ Z3(T, &), &) © N ~ Zx(T, &)

is an absolute retract. The mapping 7; is defined on the zone ZYT, &)
and retracts this zone to the set

Zifr' (P ~ 22T, ), E) N A ZyT, &) CW(T).

Hence putting r5(x) = « for every z ¢ W(T) we obtain a mapping r; which
can be extended over the set Zy(T, &) in such a manner that its values
lie in W(T). If we extend 7, in this manner over all zones Z3(T, ) of
(m-+1)-simplexes T ¢ K, then we o})ta-in a retraction of the zone
ZYE™, ) to the seb

W(E™) = Zifz' (P ~ ZHE™, 8)), &) v N A ZHE™, 5) .
Thus we can define the retraction 7, over Zy( K, ) to the set W(K)
= Zy(K’, ') v N. . . . ‘
Now consider the retraction by deformation r, defined in 6. Putting
gl@) =z for wmeZ(K',s),
g(m) =1y, 1) for eN,
r@) = gry(w) for weZyK,s),
we obtain a retraction 7, of ZyK, &) to Zy(K', ') such t}la.t for every
point 2 e Z3(T, &) the point r,(z) belongs to Zy(T, &) or to Zs(Ty s £), where
T, is an n-simplex adjoining in & dimension >2 to the m-simplex T.
Sinece the diameters of Zy(T,e) and of Zy( T, &) are <2g-+7, then
ofr@), o) <4s+2n for every x eZyK,e) .

The set ZyK’, ') will be called the l-dimensionall 2-zone of the
polytope P’ subordinate to the 1-dimensional 2-zone Zs(K, &).
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7. Construction of the set P, in the finite-dimensional
case. Let H be an (n+1)-dimensional simplex in the space E"™ with
the edges of length 1. Let ¢ denote the boundary of H, P one of its »
faces and R the sum of all the other n faces.

We shall define two sequences of polytopes, {Pi} and {D}, satis-
fying the following conditions:

(1) Ok =Pr v R is a polyhedral irreducible cutting of E™. The
interior region of the set E""*— Oy will be denoted by I, and the exterior
region by Ag.

(%) PrAR=FR.

(3x) The polytope Py is smoothly connected in the dimension (n—1)
in Cg.

(4%) D is the (n—1)-zome Z}L_l(rk(Pk),a(k)) of the polytope Py cor-
responding to the ng-triangulation vy of Cy, where mx < 1/2°* ™ and &M 45
suitable for the triangulation v and & < 1/2°%,

(5%) Dg+1C Dy and there exisis a retraction vy of the set Dy to the set
Dy+1 such that o(r(w), m) <1/2%7® for @ ¢ Dy.

The sequences {Py} and {Dy} will be defined by induction. We put
P, = P and denote by D; the (n—1)-zone Z,.(vy(Py), }) corresponding
to the arbitrary triangulation 7, of .

Assume that the polytopes P; and D and the triangulation
satisfying conditions (1x), ..., (5x) are already defined. We shall define
the polytopes Pi+1 and Dy, in the following manner:

Let Piy1 denote a subordinate polytope to P corresponding to the
triangulation 7 and to the zone Z;_l(rk(Pk), s(k)), Let 741 be a triangu-
lation of Py such that the polytopes Py~ Pry1, Pryi—Pr ~ Py and
Pris n~ Zyea( T, 67 for each T ey are representable by the subcomplexes
of the triangulation 7z.;.

By the same reasoning as in 6. there exists a positive number
s(““i suitable for fhe triangulation w1 and such that the set Dy
= Zn-1(te( Pr+1), e**7) corresponding to the triangulation Ty41(Prea) sat-
isties the conditions (41) and (5g). '

Now consider the sequence of mappings {fx} defined on the
tope D, by the formula

poly-

fl®) = rerpa .. mery(@)  for o eD,.

By (bz) the mapping f¢ is a retraction of D, to
and o(fe(®), fass(®)) < 1/2°* for v e D,.

It .follows t‘hat the sequence {fi} uniformly converges in D, to
a mapping f which retracts the set D, to the set Py = f(D,) C Dy for
every k=1, 2, ..., and hence P, is an absolute retract.

the polytope Dis1
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In exactly the same manner as in [1] we can prove that
1. P is the limit of the sequence of absolute refracts {Pi}.
9. Proi—Pr~ Py C Py for every k=1,2, ...
3. The n-dimensional Betti-number p*(Pew R) =1,
4. P R cuts E™ into exactly two regions [ and e where
Jloo:LEJAk and T :QI']C

5. P s am n-dimensional Cantor manifold.

8. Construction of the set P, in the infinite-dimensional
case. We shall define the sequences of polytopes {P%}, {D%} and {Ri}
satisfying the following conditions:

(1%) Or = PLu Ry is a (k-+1)-dimensional polyhedral irreducible
cutting of E*2. The interior region of the set E™T O will be denoted by
T, and the exterior regiom by Aj.

(2%) Pin RL =Ry

(3%) The polytope P is smoothly connected in the dimension 2 in C.

(4%) Dy = Z3 (el Ph), {68)) where w is a mi-triangulation of the poly-
tope O, m < 1/2‘”"17 and {sﬁk)} is a sequence of mumbers suitable for the
triangulation x(Ch), & < 1fi, Fc12® i=1,2,..

(8%) Diry C Dy and there exists a retraction i of Dy 10 Diyy
olre(z), @) < 1/2%7* for z < Df.

The sequences {P%}, {Di} and {Rj} will be defined by induction.
Let H be a regular 4-dimensional simplex lying in the space B* with
sides of length 1. We put (i = H'; let P] denote one of its 3-dimensional
faces and R/ the sum of all the other faces. Let Di = Zz'(vy(P1), {a?)})
where 7, is a }-triangulation of C; and {£P} is a sequence of numbers
satistying (4%). :

Assume that the polytopes Pj, D and R} and the triangulation =z
satisfying the conditions (1%), ..., (5%) are already defined. We shall define
the polytopes Pii1, Diy: and Riyy in the following manner:

Let Py denote the subordinate polytope to P} corresponding to
the triangulation 7; and to the zone Dj and let wx be a triangulation
of the polytope Py such that the polytope Py ~ Py, Px—P% ~ Pi and
Py~ Z2(T, (&) for every T emy(Ph) are representable by the sub-
complexes of 7%. Let Ciy. denote the suspension S(P% v Ri). We put

Pipr = Za[eil(PR), {0, &}) C S(Pi v Ri) = Cisa,

such that

&< Mk
Let 71 be an mg4: - triangulation of the polytope Prar (e < 1/22k+1)
such that for the simplexes of P¥, w41 is a subdivision of 7. We put

Riss = Cppr—Phr1, Dis = Z2 (tera(Phaa), {55+
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where the sequence {*"} satisfies conditions (4+1) and (Biya). Just
as in the finite dimensional case using the remark at end of 3. and gen-
eralizing Lemma 5 we can prove that the sequences {P}, {Dj} and {&j}
defined as above satisfy conditions (1%), .., (5%), and that the sequence
{fx} of the retractions fx = 771 ... 71 of D; to Dj uniformly converges
to a mapping f. The mapping f retracts Di to the set f(Di) denoted
by PlL. It is an absolute retract of infinite dimension because it con-
taing a k- dimensional skeleton of the complex 7x(P}) for every k=1, 2, ...

9. Main theorem.

LEMMA 6. If A is an n-dimensional closed proper subsel of Pu, then
there exists a matural number k, such that for every k> k, there emists in
the iriangulation w(Px) an n-dimensional simplex T such that |T| ~ P C A.
If A is an open non-void subset of P, then there ewists a natural number
such that for every k> k, there exists in the triangulation w(P%) a (k+1)-
dimensional simplex T such that |T| ~ PoCA.

The proof of this lemma in the finite-dimensional case is a repe-
tition of the proof of an analogous lemma for dimension 2 in [1]. In the
infinite-dimensional case the lemma follows at once from the fact that
the diameters of simplexes of the triangulation w(P;) tends to 0.

TEEOREM. If A is an n-dimensional proper closed subset of P, then
the (n—1) - dimensional Betti-number p»~Y(A) = oco. If A is a closed proper
subset of P& containing an inner point of P, then the k- dimensional Betti-
number pX(A) converges to an infinity with k.

‘We shall prove this theorem only in the infinite-dimensional case.
The proof in the finite-dimensional case is the same as in [1].

Let m be an arbitrary natural number. Since 4 is a subset of Pa,
containing an inner point of P, there exist m disjointed closed subsets
Ay, Agy ey Ap of A and a closed subset 4, of P& contained in Pe—A.
Bach of the sets A; (i =0,1,..,m) contains an inner point of Pg.
By the preceding lemma there exists a natural number %, such that for
k> k, there exist in the triangulation 7x(P%) such (k-+1)-dimensional
simplexes To, Ty, ..., Tm, that |T,] A P&LCA,, v=0,1,..,m.

Consider the component Mz, of the base of the rosary of the poly-
tope Pj. The boundary @7, of the first cube of the component My, lie
in the simplex |T,| and in P;, and hence in A. Among the cubes Qr,;,
i=0,1,..,s+1, of My, there exists one lying on |T,|C Pi—A4. We
infer that there exists an index ¢, such that Q4 lies on A and Q.Tv,iv-}-l
does not lie on A. Hence the point az,;+1 € @rs+1—A4. Let us denote
this point by a,. By the construction of the rosary of the polytope P%
there exists point a) e A such that

(i) if I’ denotes the segment a,a, then I, ~ 4 =@,
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(ii) there exists a simple are L, joining the points g, and «; and
lying in the set Aj arbitrarily near the link Nz,

(iii) the ares I, and I, have disjoint interiors.

Consider the set F' = Zs (tx(P%), &) —{ai’, a¥', ..., ai}. The set F
contains 4 and there exists a retraction r of F' to the set Pi— {a7, a%, ..., G}
There exists a subdivision 7% of the triangulation 7 and a subpolytope
P’ of the triangulation 7} such that r(4) C P'C Pi— {ai, ..., an}. The
simple closed curve , =TI, Ly CE***—A has the absolute linking
number with the %-dimensional topological sphere @ ; equal to 1 and
with each sphere Qr,.,., » ', equal to 0. Thus we obtain in 4 a sys-
tem of m k-dimensional cyecles linearly independent in r(A) and there-
fore those cycles are independent also in A. Hence p¥(4) = m, and since
m is an arbitrary number, the proof is finished.

The set Poo is an irreducible n-dimensional absolute retract and also
an irreduncible #-dimensional locally contractible compactum, because
every locally contractible closed subset of P& has a dimension <.

The set Pl can be called an infinite-dimensional irreducible absolute
retract, and also—an infinile-dimensional drreducible locally coniractible
compactum in the sense that no locally contractible closed subset of P
containg an inner point of it.
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