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Integral representation of vector measures and linear operations
by

N. DINCULEANT (Buecuresti)

1. Introduction. Let I be a locally compact space and » a positive
Radon measure on 7. Let F be a Banach space, (B(t))yr a family of
Banach spaces and & a fundamental family of continuous vector fields.

In [6]-[9] and [11]-[13] we have given integral representations
of the form

(1) S(@), > = [<T@(1), 2>dn(t)

for certain linear mappings f of Lebesgue spaces Z5(»), 1 <p < oo,
or of the space X ,(T) into F, and of the form

@) (fmam, 2y = [(Tn0)@),2>d (1)

for certain vector measures m absolutely continuous with respect to ».

The proof has used éssentia.lly the fact that the spaces E(f) and F
were of countable type and that # was the dual of a Banach space.

TUsing the existence of a lifting of #%(») [19], Alexandra and Ca&sius
Toneseu Tulcea [20] have succeeded in dropping the countability hypo-
theges in formula (1) in the case where F and F are locally convex and
E(t) = E for every telT.

In thiz paper we use also the lifting of %% (») to prove formula (2)
(theoréms 2 and 3), without any countability hypotheses in the case
where E(t) = B for every teT. Using (2) we then prove (1) and we give
supplementary information about Uy and U,,. For simplicity we consider
only the case of the Banach spaces ¥ and F.

The linear mappings f on Z%(») which can be represented by
formula (1) can also be represented in the form i

(3) @) = f:tdm,

where m is a suitable vector measure (Theorem 9).
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We mention that the dominated linear mappings f: #'z(T) - F
can be identified with the dominated linear mayppings f: #"(T) — & (B, 1
by the formula

(4) flpz) =f(p)e  for gex'(T) and seH,

and that by the same formula we can identify the linear mappings
f: &k (v) > F such that |||f||| < co with the linear mappings f': PP (v)
-~ % (B, F) such that |||f'||| < oo (Theorems 4 and 7).

If there exists a strong lifting of 2% (») [21], then. it ig possible to drop
the countability hypotheses also in the case of the spaces of vector fields.

With obvious modifications, the results of this paper (except for
those of §4) remain valid in the case where » is a ¢-finite measure on
& c-algebra of subsets of an abstract space 7.

2. The lifting. Let T' be a locally compact space, and 4 a positive
Radon measure on 7. If two scalar functions f and ¢ defined on T' are
equal locally u-almost everywhere, we shall write f = g. If A and B are
two subsets of 7, then 4 = B means that ¢4 = gp.

Consider the space #*(u). There exists then (see [197]) a mapping
e L¥(u) = Z%(u), called a Ufting of Z*(u), having the following
properties :

L o) =;

- [ =g implies o(f) = o(g);
o) =1

- f =0 implies o(f) > 0;

- olaf+Bg) = ao(f)+Bo(9);
e(f9) = e(fely).

A lifting ¢ of #™(u) can be extended uniquely to a mapping of
£6(p) into itself by putting o(f+1ig) = o(f)+40(g) for f, ge#r™(u) and
the extension has all the properties 1-6.

A lifting ¢ of #™(u) has also the following properties:

7. le(Nl = e(Ifl);

8. o(f) =f implies S [f(t)] = Neo ()-

U B W W

>

If o ig a lifting of #*(u), for every u-measurable set 4 < 7', g(p4)
is the characteristic function of a set denoted by ¢(4). Then

1. o(4) = 4;

2'. A = B implies e(4) = o(B);

3. o(B) =T and o(p) = ¢;

4. o(4 U B)=o(4) L o(B);

5. o(4 ~ B) = g(4) ~ o(B).

icm°
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In the rest of the paper we shall denote by # and ¥ two Banach
spaces and by Z a subspace of the dual F of . We shall suppose that Z
is norming, i.e.

Y = suph-Ky’z)i for every yeF.
2eZ 12‘]

(Here, |a] is the norm of an element a of one of the spaces E, F and Z).
In this case we can plunge F isometrically in Z'.

Let £*(B, F) be the space of the linear mappings of ¥ into F and
Z(B,F) the space of the continuous linear mappings of B into #. For
every Ue¥%*(E, F) we put

|U] = sup| Uz} < oo.
zel

For every function U: T -+ £+*(E,F), x: T — F and z<Z we shall
denote by (Ux,2)> the function ¢ — (U (f)x(f), 2>. In particular, if z<E
and zeZ the function t — (U(t)x, 2) will be denoted by (Uz, 2).

For two functions U, U': T — %*(E, F) we shall write U = U’ if
for each #¢E and z¢Z we have (Uxz,2) = (U'z,2) locally u-almost
everywhere.

A function U: T — #*(B,F) is said to be Z-weakly u-measurable
if for each xeF and z<Z the function (Uz, 2> is u-measurable. The func-
tion U is said to be simply u-measurable if the function ¢ U(f)z is
u-measurable for every wel.

Let us denote by %(u) the set of all locally countable families ¢~
= (K;);os of disjoint compact parts of T such that T_HKj is locally
u-negligible.

We remark that if o) = (K;)jqe€(u) and Ay = (K;)j e % (),
then A" = (K; ~ E;)upaxsc? (). Hence ¥(u) is directed by the rela-
tion A7 e o', which means that every set of £ is contained in some
set of A7,

Let o be a lifting of #™(u) and U: T — *(E, F). We shall write
o[U] = U if there exists a family o = (K;);s¢%(u) such that for every
jed, wel and zeZ we have ¢K7<Uac,z>e$°c?(p) and

Q(¢K7< U{L‘, ) = Wﬂ(Kj)<Uw7 z).

We remark that if #7 = (K;)i; & %, then we still have @g,(Uz, 2>
eZE (1) and

olpx; U, 2>) = guxy<{Ux, 2>

for every iel, z<F and zeZ.
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It follows that if Uy, U,: T — £*(E,F) are two funections such
that o[U,] = U, and ¢[U,] = U,, then we can find a common family
H = (Ep)yr <) With gx,(Usw, 2 <23 () and

0(@r; (Ui, 25) = @y Ui, 2>

for jeJ, wel, 2¢Z and ¢ =1, 2.
We shall write o(U) = U if for every z el and 2¢Z we have (Usx, 2>
£y (p) and
e(KUm, ) = (Ua, 2.

We immediately deduce the following properties:

1) o(U) = U implies o[U] = U (for every family # e%(u) in the
definition of o[U] = U).

2) If o[U] = U, then U is Z-weakly u-measurable.

3) If o(U) = U, then |U(t)] < N (U) for every teT.

4)If U=TU', o[U]= U and ¢[U'] = U’, then U(t) = U’(t) local-
ly w-almost everywhere.

6) It @[U]="U and U'(t) = U(t) locally u-almost everywhere,
then p[U'] = U".

6) If U=TU' o(U)=U and o(U') = U’, then U(t) = U'(t) for
every teT.

PropositioN 1. If U: T — Z*(H, F) 4s such that o[U)] = U, then
the function t — |U ()| is u-measurable.

For the proof, see [20], p. 782, remark 1.

ProrosiTIoN 2. If U, U': T — Z*(H, F) are two functions such that
U =T, o[U']=U' and if the function t - |U(t)| is u-measurable, then
1T ) < |U(8)] locally u-almost everywhere.

Let o = (K;);7¢%(u) be a family such that

P, <U'®, 2> eFG ()  and  olpg,(U'm, 25) = guucy <U'w, 2)
for jeJ, el and zeZ. We remark that (pp(Ki)](U’w, 2| = o(px, |[KU'n, 25))
and that o, |KU'z, 2| = ?x;|<Uz, 2)|; therefore
Py [T, 23] = o(ox,|<Uw, 25)) < |allel o, | U)).
It follows that Poiiey | U'] < 0l | U) == Pory | Ul; hence |U'(8)| < [U(t)|
locally p-almost everywhere on | Jgo(K;), and therefore on 7.
i
ProrosirioN 3. Let U: T — £*(H,Z') be Z-wealkly u-measurable.

a) If there ewists a famsly (K;);z % (p) such that for each jeJ and ve B
we have ??zplU(t)wl < oo, then we can find a function U': T - £*(B,Z')

7
such that U' = U and o[U'] = U".

e ©
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b) If for each xe¢E we have sz%plU(t)m[ < oo, then we can find a func-
tion U': T — &*(B,Z') such that U' = U and o(U') = U".

For the proof, see [20], proposition 1 and proposition 4.

PrOPOSITION 4. Let U: T — $*(B,Z') be Z-weakly u-measurable,
such that the function t — |U(1)| 4s u-measurable and fimite. Then there
exists a function U': T —%*(B,Z') such that U' =T, o[U]1=T"
and |U' (1) < |U(H)] for every teT.

If, in addition, |U|eL*(u), then the function U’ can be taken such that
o(U")y = U" and |U'(t)| < |U{)| locally u-almost everywhere.

In fact, since |U| is u-measurable, we can find a family (K;); % (x)
guch that the restriction of |U| to each K; is continuous, whence bounded.
We can then apply Proposition 3 to find a function U,: T — £*(E,Z’)
such that U, = U and o[U,] = U,. By proposition 2 we have |U,(%)]
< |U (1)} locally u-almost everywhere. Modifying U, on a locally u-negli-
gible set we can find a function U’ such that |U’(#)] < |U(¥)| for every
teT. Then we still have U' = U and o[U'] = U".

The case |U|e#®(p) is proved in the same way.

3. Vector measures. We shall denote by & the clan of the relatively
compact Borel subsets of T and by &5(%) the set of the functions of the
form Y'p. @ (finite sum) with 4;e% and z;eB. We shall consider regular
vector measures m: # — Z(E, F) with finite variation. For the defini-
tion of the integral [adm of the functions x: T — B, we refer the reader
to [13]. A positive regular measure x will be identified with the correspond-
ing Radon measure f — [fdu defined for the continuous f_l}_nctions fiT->R
with compact support. We shall write [*fdy instead of [*fdu and we shall
say “integrable function” instead of “essentially integrable function” [2].

The following theorem is essential for the proof of the other theorems
of this paper:

TaRoREM 1. Let m: & — L(E, F) be a measure with finite variation .
There exists then a function U,,: T — £ (B,Z’) having the following pro-
perties:

1) |U,.(t)] =1 locally u-almost everywhere.

2) U,, 18 Z-weakly u-measurable and we have

¢ Jadam,z) = [(Unt @), 2>dut)  for e Ly(p) and zeZ.
3) If o is a lifting of £ (u), we can choose U,, uniquely such that
Q(Um) = Um'

4) If there exists a family A <€ (p) such that for every K e and every
zeE the convex equilibrated cover of the set { z{ prdm; peS g (%4), kf lpldu < 1}
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is relatively compact in F for the topology o(F,Z), then we can choose
U, (t)eZ (B, F) locally u-almost everywhere.

4') If for every weXll the convex equilibrated cover of the set { [oxdm;
peZu(B), [lp|du < 1} is relatively compact in F for o(F, Z), then we can
choose U, (t)eZ (B, F) for every tel.

Proof. Let ¢ be a lifting of #*(u). For every z<H and geZ the set
function m,, defined on # by the equality
My, (4) = (m(A)z,2) for A,
iz a regular scalar measure and we have
| <[] 2l

There exists then a bounded u-measurable scalar function g, , defined
on T such that m,, = g,.4; modifying ¢,, on a locally u-negligible set,
we can take ¢,, such that

0(9z.s) = Gup-
From [my,| = |g,.|p < |2]|2|p, we deduce that
|922(t)] < |@|[2]  for every tel.

Since the mapping (#, 2) - my, of ExZ into the space of the secalar
measures iy bilinear and ¢(g,,) = g0, we deduce that the mapping
(wy2) = g5, of BXZ into the space of the hounded u-measurable scalar
functions is bilinear; therefore, for every teT, the mapping (z, 2) — gy4(?)
is a bilinear functional on ExZ.

For fixed te7 and s<H, the mapping ¢,(t): 2 - g,,(¢) is a continuous
linear functional on Z, whence g,(t)<Z’ and we have

192(0)] < |a].

For _ﬁxed teT, the mapping U,,(?): @ — g,(¢) of B into Z' is linear
and continuous, whence U,,(t)c#(H#,Z’') and we have

[Um ()] <1.
Then

U0y 2> = gos(t)  for tel, wel) and zeZ.
It follows first that :
m(d)z, 2> = f(Um(t)w,z>d,u(t) for  Ae#, well and zeZ,
and then that ‘
frdm, 2y = [<U D @(8), 2> du(t)

for me.E, #eZ and x step function of & (#); passing to the limit, the last
equality remains valid for every w e} (u)
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From the equalities (U,,%,2> = g,, and o(ga.) = g,. we deduce
that ¢(U,,) = U,,.

Let us now prove that |U,,(t)] =1 locally u-almost everywhere.
By proposition 1, the function t — |U,,(f)| is u-measurable; from the in-
equality |U,,(t)] <1 for every ¢{eI we deduce that the function |T,,!
is locally u-integrable. For every z<F, zeZ and A% we have

[<m (), 2] < [10][2]| U, (8] dpa(8);
A

therefore, putting dv(¢) = |U,,,(¢)|du(t), we have
m(4)] < ! U Ol8p(t) = »(4).
Since w is the least positive regular measure verifying the inequality
im(4)] < u(4) for every Ae#, we deduce that u <v; hence
|U,.(t)] =1 locally u-almost everywhere;
consequently

| U] =1 locally u-almost everywhere.

Suppose now that there exists a family o ¢% (u) verifying condition 4,
and let K e and x<E. Denote by A the closure in o(F, Z) of the convex
equilibrated cover of the set { z! grdm; peSL g (%), Kf lp|dp < 1}. The set 4

is compact in F for o(F, Z), whence A is compact in the algebraic dual
Z*, for the topology o(Z*, Z). There exists then a family ()i of elements
of Z such that
4 = N{y; 92", Ky, 2] <13
il

Then for every i¢l and every peg(#) with K[ lplde <1 we have

I(J prdm, 2> | <1;
b3

hence (
| [<Umt)m, >0 (D)dp | <1,
'K

and consequently
KU ()@, 2p] <1 p-almost everywhere on K

for each iel. We then deduce that for every zeI and every teo(X)
KOm(N)®, 20| <13

hence U,,(H)zed = F for every teJe(K).
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Part 4' is proved in the same manner. Thus, the theorem is comple-
tely proved.

Remark. The function U,, depends not only on F and F, but also
on the space Z. If we take Z = F’, then U, (1) = Z(H, ") for every
tel; if, in this case, Z, is an arbitrary norming subspace of 7' and if
U: T' - ¥%(E,Z,) is the corresponding function, then for every teT
and every x < H, the funetional U, (t)x ¢Z; is the restriction to Z, of the fune-
tional U, (f)z<F". In the sequel we shall denote U and U, by the same
letter.

CoROLLARY. If u is a scalar regular measure on T, then there exists
a locally p-integrable scalar fumction ¢ such that |p(t)] = 1 and o= plul.

The function 1jp is also locally u-integrable and we have |} = -1- I
¢

In fact,
: 1(\1)—(1)||~!
~ = —(pul) = |- y .
14 @ (qu’u A

If m and n are two vector measures with finite variations u and »,
we say that m is absolutely continuous with respect to n if # i3 absolutely
continuous with respect to ». ’

We now give a generalization of the theorem of Lebesgue-Nikodym.

THEOREM 2. Let v be a scalar regular Borel measure andm: & — & (2, F)
a measure wzt-h finite variation u and absolutely continuous with respect
to v. There exists then a function V,,: T — % (B yZ') having the following
properties:

1) The function V,, is locally v-integrable and we have

Jfaw = [ Vfapl  for  feor(u).

2) Voo is Z-weakly v-measurable and we have
[ xdm, 2> = [V 2(t), 25dv  for TeLh(m) and zef.

3) If o is a lifting of #™(v), we can choose V o unsquely locally »-almost
everywhere, such that o[V,,] = Vn- -

If, in addition, there emists a >0 such that u < alyl, then we can
choose V., uniquely such that (V) =7,

"

4) If there ewists a family A <% (w) (respectively A % (v)) such that
for every K et and every xeE the convew equilibrated cover of the set g pudm;
peLp(B) ’x‘rf lpldu <1 (respectively Kf lptdly| <L)} ds relatively compact in F

or the topol
fwerywhef: 09y o(F, Z), then we can choose V., (t) <% (I, F) locally »-almost
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4"y If for évery wel the convew equilibrated cover of the set {[pmdm;
pePu(B), [lpldu < 1 (respectively [|p|d|v| < 1)} is relatively compact in F
for the topology o(F, Z), then we can choose V,,(t)eZ (B, F) for every teT.

Proof. Since u is absolutely continuous with respect to », there exists
a locally »-integrable function g > 0 such that x = g|v|; hence

ffd,u = fgfd[w[ for every feZ'(u).

By the corollary of Theorem 1 there exists a locally »-integrable
1
gealar function ¢ such that |p(t)] =1, » =¢»| and |p}| = &v. The func-

1
tion g:l is then locally y-integrable and we have u = g;,u.
@
Let U,: T —>%(E,Z) be the function corresponding to m by
1
Theorem 1, and put V = U,,g- As |U,,(t)] = 1 locally u-almost every-
4

where, the function |U,,|—1 is locally p-negligible, whence the function
(|U,ul—1)g is locally v~negﬁ§ible; therefore |U,,(t)|g(t) = g(f) locally
v-almost everywhere. It follows that |V (2)] = g(t) locally »-almost every-
where, whence |V| is locally#r-integrable and

[fau = [\Vifap)  for fe(w).

Since U,, is Z-weakly ,uamea.sﬁrable, we deduce that for every ye<E a:nd
2¢Z the function ¢U,.¥,#) is u-measurable; it follows that the function

1
(U,.Y,2>g is v-measurable, whence the function (Vy,2) = <U,,¥; z)g&

is »-measurable, i. e. V is Z-weakly »-measurable.
For every xeZg(un) and z¢Z, the function (Vx,z2) is then y-meas-

urable and
[ 1<V, 2\ab] < el [* (V1I2labl = 2| [* l=ldn < oo

hence (Vx,z) is »-integrable and we have

(fa:dm,, 2> = f(Umw,z>d,u = f{Umg%w,zﬂv = f(Vm,z}dv.

By taking V,, = V, the first two parts are proved.

Now let o be a lifting of £™(»). There exists a funection V,:T —
L*(B,2") with o[Vl = Vins V=7V and ]Vm(t)l < |V ()] for every
teT. By Proposition 1, the function |V, is v-measurable and from
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[Vinl < |V| we deduce that |V,,| is locally v-integrable. From Vi 5= V we
deduce that
<fwdm,z> :f Vo, 2ddv  for  weZy(m) and zeZ.
For @ = g o with A% and z<¥ it follows that
Km(d)a, o) < [ |Vollolleldb]  for every szez.
A
Taking the supremum for zeZ with |2 <1 and zeF with o) <1

we obtain

m(A)| < [|V,ldly]  for every Ae.

4
It follows that |m| << |V,,||»| < V|| = 4y whence u=|V,|M|
therefore

Jfaw = [fIVldl]  for  fezr(u).

Suppose now that u < « [»|for some a>0. Then the function g belongs
to #*(v), whence |V|e.#™(»). From Proposition 4 we deduce that there
exists a function V,,: T — ¥*(H, Z') with (V) =V, Viyur= V and
V()] < |V (2)] locally »-almost everywhere.

We then prove that V,, has all the required properties ag in the cage
of o[V, 1=7V,,.

If condition 4 is fulfilled with respect to u, then we can choose U (1)
«Z (B, F) locally y-almost everywhere; therefore V,, (1) (E, ') locally
v-almost everywhere. If condition 4 is fulfilled with Tespect to v, then we
prove as in Theorem 1 that V,,(t)e% (B, F) locally »-almost everywhere.
Part 4’ is proved in the same way. Thus the theorem is completely proved.

Remark. The function V,, depends on B, F and Z.

The following theorem is, in a certain sense, converse to Theorem 2:

THEOREM 3. Let v be a scalar regular measure on # and let U: T —
L, F) be a Z-weakly v-measurable Junction such that the fumotion
1U]| 4s locally v-integrable. There exists then a regular measure m: % —
Z(H,Z") with finite variation H such that

(fadm, e = [<UWaw),z>d  for ety (|UIv)) and weZ,
and
[l < [1O@If@lapl  for  fer(uip).

If, in addition,

there ewists a lifting o of £%(v) such that o[U] = U,
then we have

Jfaw = [10wir@an  for  fezrq),
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The measure m has values in & (B, F) in each of the following cases:

a) U is simply v-measurable; in particular F is of countable type.

b) For every wekE there exists a family A ¢€(v) suc‘h that fm‘ every
K et the convex equilibrated cover of the set {U(t)x; te K} is relatively com-
pact in F for the topology o(F,Z). -

Proof. For every zell and 2ze¢Z the function (Uz, 2) is v-measurable
and [(Uz, 2)| < |U||z||2]. Since |U| is locally »-integrable, we deduce
that Uz, 2) is locally »-infegrable. Put

My (4) =f<Um,z>dv for de#,wel and zeZ.
a

For Ae# and xeE fixed, the mapping m,(4): z - m,(A) is a con-
tinuous linear functional on Z:

o (4)] < lallz] [ |T]dpl;
4

therefore m,(4)eZ’ and
iy (4) < lal [|Udpi.
4

For A <& fixed, the mapping m(4): & —m,(4) of B into Z' is linear
and continuous; therefore m(4)e% (B, Z’') and

m(4) < [101db} = [a(Ulw).
A A

The measure A = |U||y| is positive and regular and we have

m(d) <i(4) for A

We have also

(m(A)a, 2> = My, (A) = [ (Uw, 2>dv
A

for Ae#,xeF and zeZ.

Trom the lagt equality we easily dedu:ce that the mj,p};mgf Of:z. Z?E—;
£(B,2z') is additive. From the ‘i.nequahty im (A.)lhgﬁm(te)Wmawion :
we deduce that m is countably additive, regular and w1lt}. P X
and that u(4) < A(4) for Ae, i pu< A. Then £*(1) = u

[Iflap < [1Oflapt for  fe'(D).

We have also #5(4) € Zu(u). For every step function T=1 0.4,
with A;e# and ;B we have

Soam, ey = 3 am(dga, s = 3 [ TOw, 2 = [TO@@),2d
! ' + A .
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for every zeZ. Now let & <.Z5(1) and let (2,) be a sequence of step functiong
of the preceding form, converging to 2 2-almost everywhere and in the
topology of 5 (A).

The function |®,—a| converges to 0 locally almost everywhere with
respect to A = |U||y|; therefore the function |U||x,—a| converges to 0
locally almost everywhere with respect to |v|. From the inequality

KUy, 2> — (U, 25| < |U| |2} |20 —a|
we deduce that E&<U(t)wn(t), 2> = (U(t) (¢, 2)> locally v-almost every-
where for each zeZ. On the other hand, from the inequality
J KU @n—@n), | dly] < le] [ |tn—2|di

we deduct? that ((Uw,, 2>) is a Cauchy sequence in ZL(v). It follows that
the function (Ux,2) is s-integrable for each z¢Z and that

nlirﬂf(Uw,,,z)dv = [(U=z,25dn.

From the inequality x < 4 we deduce also that @ is u-integrable and
that (@.) converges to x in £L(u); therefore

lim | 2 ,dm = | xdm
and Mmf f
’lig (fw,,dm,z) = (f wdm,z} for zeZ.
For each step function a, we have
<fa:ndm,z> =f<U.1:,,,z>dw for zeZ.
Pagging to the limit we obtain
(jwdm,z) ——:f(Um,z)dw for zeZ.

Suppose now that ¢[U] = U for some liftin
- ; g o of £*(v). Let V,, be
the funetion corresponding to m by Theorem 2, such that LVl = '?fm_

Also let ¢ be a locally »-integrable scalar functio
n such th: =
and » = ¢|y|. Then e =1

4

m(A)e, 2) = [(T)o, 59M)dp] = [ Vm(t)e, 2>p(t)dl].
4

It follows that for every veF and z¢Z we have

<U(t)w7 2Dp(l) = <Vm(t)w’ 2>p(t)

@ ©
lm Integral representation of wvector measures 193

locally »-almost everywhere, whence
Uz, 2> = {V,,(t)z,2> locally v-almost everywhere,
ie. U=7V,,. Then U(t) = V,,(t) locally »-almost everywhere; therefore

[t = [1Valfabl = [1U1fap]  for fezr(uw).

Suppose now that U is simply »-measurable. Then, for every 4 «Z
and ze<H, the function g4« is y-integrable and we have

m(d)z,z) = f(U(t)w,z)dv = (f Ut)wdy, 2>
A A
for every z<Z, whence
m(d)e = [Ut)adveF,
A
and consequently m(4)eZ(E, F).
Suppose finally that U verifies the condition b. Let zeH and let
A % (v) such that for every Kex the closed (in o(#,Z)) convex equilib-
rated covers A(XK) of the set {U(t)x: teK} is compact for the topology .
o(F, Z).
For every KeX the set A (K) is closed in Z* for the topology o(Z*, Z).
There exists then a family (2;);s of elements of Z such that

A(K) = Q{y;yez*, I<y, 2> <1}
Then
KOz, 2> <1 for iel and teK,
whence '
[<m(K)z, 2| < [ KU@®), 2| dlp| < Iv|(K),
K

and consequently
m(K)ze[v|(K)A(K) < F.

It follows then that m(Ad)z<F for every Ae# and every weE, whence
m(4)eZ (B, F) for every Ae#. The theorem is completely proved.
Remarks. (i) The measure m depends on the space Z. If Z, and Z,
are two niorming subspaces of P such that Z, c Z,andifm,: 4 - Z(H, Z3)
and m,: &~ ¥ (¥, Z,) are the corresponding measures, then for every
Aed# and every zeF, the functional m,(4)z eZ, i8 the restriction to Z,

of the functional m,(4)zeZ;.
(i) One can prove that we have

[fap = [1OIfdp| for fe&*(u)
in each of the following cages:

Studia Mathematica XXV
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1) B is of countable type and there exists a countable norming sef;
ScZ. :

2) E is of countable type and U is simply »-measurable.

3) U is »-measurable.

4. Linear operations on 2 5(T). Let  g(T) be the space of the con-
tinuous functions x: 7' — B with a compact carrier. For every set 4 < T
we denote by A '5(T', 4) the set of the functions x ¢t #(T) with the carrier
contained in 4.

We say that a linear mapping f: A u(l) > I is dominated if there
exists a positive Radon measure » such that

fl@)| < [le|dr  for every wedy(T).

It f is dominated, there exists a smallest positive Radon measure oy
dominating f [7].

THEOREM 4. There exists an isomorphism f < m between the set of
the dominated linear mappings f: o 2(T) =T and the set of the regqular
measures m: & — L (B, F) with finite variation Uy given by the equality

f@) = [xam, for wetz(T).

If f and m are in correspondence, then u; = p.

For the proof, see [8] and [13].

Remark. If f and m are in correspondence, we can extend f to
the space £h(u;) = Z5(m) by the equality

f®) = [®dm  for @eZy(m).

.THEOREM 5. There exists am isomorphism f > f' between the set of the
d-ommated Z’i?war mappings f: A g(T) > F and the set of the dominated
linear mappings f': x4 (T)—~ Z(B, F), given by the equality

flom) = f () for every @eX (T) and wel.
Moreover, we have By = pap.

The isomorphism f f' is realized by the aid of the igomorphisms
femand f* < m, with the set of the regular measures m: % — Z(H,
with finite variation :

f@ = [®dm  for we g (T),
I'o) = [pam  for  geo(r)
and g = p = yp. For peX (T) and zell we have pxe X 5(T) and

‘ f<pdm-m=f<pwdm;
therefore f'(p)w = f(om).
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Theorem 5 allows us to identity f and 7' and to write f instead
of f'. With this convention we have

flgz) = flp)x  for @eA (T) and zeE.

Using the isomorphism given in Theorem 4, we obtain from Theorems 1
and 3 the following two theorems proved in [7] (under some countability
conditions) and in [20] in a different way.

TEEOREM 6. Let f: A g(T) - F be a dominated linear mapping. There
exists then a function Us: T — F(E,Z') having the following properties:

1) [Uy(#)] = 1 locally u-almost everywhere.

2) Uy is Z-weakly usmeasurable and we have

@), = [<UWe@),e>du,  for @eLh(u) and z<Z.
3) If ¢ is a lifting of £ (us) we can take U; uniquely such that
Q(U’) = Uf.

4) If there exists a family A € (uy) such that for every KA and every
z el the convex equilibrated cover of the set {f(pw); pe ot (T, K), p (lg|) <1}
8 relatively compact in F for the topology o(F,Z), then we can choose
U;(0)eZ (B, F) locally us-almost everywhere.

4') If for every = e E the convex equilibrated cover of the set {f(px); p et (T),
(1)) < 1} ds relatively compact in F for the topology o(F, Z), then we can
choose U;(t)eZ (B, F) for every tel.

In fact, let m: # - ¥ (B, F) be the measure corresponding to f
by Theorem 5 and let U,, be the function corresponding to m by Theorem 1.
If we take U; = U,,, the theorem is proved.

Remark. The function U; depends on the space Z.

Here is the converse of the preceding theorem:

THEOREM 7. Let u be a scalar regular Borel measure and let U: T —
Z*(H,F) be a Z-weakly p-measurable function .such ﬂ-m,t 1T ()] = 1
locally u-almost everywhere. There exists then a dominated linear mapping
I A 'g(T) —Z' such that

Gy, 2> = f U@e@),2>du  for we'g(T) and zeZ

and ;< |ul.

If, in addition, there evists a lifting o of £ (u) such that o[U] = U,
then we have u; = |l .

The mapping f has values in F in each of the following cases:

a) U is simply u-measurable; in particular F is of countable type.
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b) For every wec there exists o family A «%(u) such that for every
K e A the convex equilibrated cover of the set {U (t)x;te K} is relativély com-
pact in F for the topology o(F, Z).

In fact, if m: # — £ (H, Z’) is the measure corresponding to 4 and
U by Theorem 3, then the mapping f: #'z(T)—F corresponding to m
by Theorem 5 hag all the required properties.

Remarks. (i) The mapping f depends on Z.

(i) We also have u; = |u| in each of the following cases:

1) E is of countable type and there exists a countable norming sub-
set S < Z.

2) E is of countable type and U is gimply u-measurable.

3) U is u-measurable.

5. Linear operations on .#%. Let v be a positive regular measure
on 7. Consider the space %% (») with 1 < p < co. For every linear map-
ping f: L5 (v) - F we put

AN = sup > If (paye)]

where the supremum is taken for all the step functions @ = pX 4,%; Such
that 4, are disjoint sets of &, ;¢ B and N,(x,») < 1. We have A < 1A
Soo. If p =1, orif F =0, then || = ||Ifl]l, [13].

THEOREM 8. There exisis an isomorphism f— f' between the set of the
linear mappings f: LH(») —F with |||f]]| < oo and the set of the linear
mappings f': L7 (v) > L (B, F) with |||f']|| < oo given by the equality

flom) = f(p)w  for @eFP(») and wek.

Moreover IIfIIl = [If"}1.

Let f: £5(») - F be a linear mapping with |[||f|]| < co. Let peLP(v).
For every weB we have pue.¥%(v). The mapping fe): - flg,) of B
into F' is linear and continuous:

F(@)al = Ifpa)] < IfINy(pm, v) < |o| |[f|Np(p,») < oo;
hence f'(p)eZ(E, F) and
IF (@) <Al (@, »).
The mapping f': ¢ — f'(¢) of £P(») into ZL(H,F) ig linear and
n

IF'l < Ifll- We also have |||f||| < |||fl]|. In fact, let p = 2, #4;% be a real
e 1

step function with A, digjoint sets of # and Ny(p,7) <1, and let & > 0,
For each ¢ there exists ;¢B with |@;| = 1 such that

I @)l < If (@) @il +e/n.

) ©
lm Integral representation of vector measures 197

Then

Np(Z‘PA{a'iwh") = Np(Z(PAiai) "') <1
and = =
n n n
2 wa)al—e < SIf Ga)awl = Yifosaz)) < A,
=] i=1 i=1
whence
NP < 1AL
The correspondence f — f' is, evidently, linear. It is also one-to-one.
In fact, if f' =0, then f(3p @) =0 for every step function D Pa;%i

with 4;¢% and x;¢E. Since the step functions are dense in L2 (), we
deduce that f = 0.

Now let f': #7(») — £ (E, F) be a linear mapping with |||f’|]| < oo.
We shall prove that there exists a linear mapping f: #%(») - F with
HIfHl < oo such that f(pz) = f'(p) for pesP(r) and z<P.

For every set function x = Z‘PAi“’i with A;e# and z;eE, put

fl®) = 2f’(¢4‘)mf'
The definition of f(2) does not depend on the particular form in which
% is written as a step function. If we take the sets 4, disjoint, we have
@) = | 3 wa)a| < 3 (0l
<PV Y oasl@lss) = PN, (@, 9).

It follows that f is continuous on the step functions for the semi-norm
N, whence f can be extended to a continuous linear mapping of £%(»)
into F, denoted also by f.

Let @ = 3 g, be a step function with A disjoint sets of #, ;e H
and Ny(x,») <1. Then |x| = 3 ¢4 lal; hence Np(je|,») <1 and

D feam)l = Y IF (pa)ad < DI (pag) llsl <IIIF1I;

therefore |||fl|| < |||f'|l| < oo. From the first part of the proof we de-
duce that [||f|]|| = ||If'[|| and thus the theorem is completely proved.

COROLLARY 1. There ewists an isomorphism [« f between the set of
the Uinear continuous mappings f: Fg(v) - F and the set of the linear con-
tinuous mappings f': L (v) > L (B, F) given by the equality

floz) = f'(p)e  for @ef(v) and v<B
and we have |fl] = f'll.
In fact, in this case we have ||[fj = |[|flI] and |If'}} = [|IFll|.
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COROLLARY 2. There ewists an isomorphism f— f' between the set
of the continuous linear functionals f: £5(v) — C and the set of the linear
mappings f': L (v)~ B = Z(B,0) with |||f']]| < oo, given by

flgz) =f"(p)a  for @eZ?() and weB,

and we have [|fll = [IIf']]].

In faet, in this case we have [f] = |||f]|l.

Remark. Theorem 8 gives rise to the identification of the corregpond-
ing mappings f and f'. We shall write f instead of /. Then we can write

flow) = flp)z  for @e#?(y) and ek

TerorEM 9. Let X be a Banach space. There emists an ésomorphism
J+ m between the set of the linear mappings f: £?(v) — X with HIAN < oo
and the set of the reqular measures m: B — X with finite variation u abso-
lutely continuous with respect to v such that

Jleldn < al¥y(p, »)

for some ¢ > 0 and every step function p = o4 ;0 with A;e%B. The corres-
pondence is given by the equality f(p) = m(4) for A .

If f and m are in correspondence, then we have u = gv with Ny(g,v)
= flll, 1/p+1/g =1, and for every pair of Banach spaces B and F such
that X = Z(B, F) we have £3(v) ¢ Lh(m) and

fl@) = [zdm  for weLB(y),
Jieldn <A, @, 9)  for @)

a) Let f: #"(v) - X be a linear mapping with NIfll} < oo. For evéry
set 4 <# we put

m(4) = f(pa).

The set funetion m: # — X iy additive, and we shall prove that it
ig with finite variation. Let 4 <% and let (4:) be a finite family of dis-
joint sets of # contained in 4. Then

2 m Al = 3 fa)l < WAV ( Yo, 9 < AN (pa, #) < oo
therefore m is with finite variation 4 and
#(4) < (AN oo, »).

From this inequality we deduce that 4 is regular, countably additive
and absolutely continuous with respect to »; therefore m also has these
properties.
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Now let ¢ = ®4;% be a step function with 4;¢# and prove that
d==1

f|(p]dy < AN (@, »). We can take the sets A; disjoint. Let ¢ > 0. For
each ¢ there exists a finite family (B;) of disjoint sets of # contained
in A4; such that

ulds) < Zlm(Bij)]+8/lai]12, it a0,
7

pd) < D im(By)l+efn, i o =0.
7

Then, for every ¢ we have

p(di)lai| < D) m(By)l o] + e/

7
therefore

2 wddlal < Dim(Byllai+e = 3 |f(pz,) el +e

< rlJfllle(Zi¢Bija¢, W) < [IIfIHNp(Zmi% W) +e;
t being arbitrary, we deduce that
[lolap = 3 u(4s) el < Al Np(e, 9).
From the definition of m we immediately deduce that
Joim = Ym(da = Y fe)ea =F( Y o) = o).

The correspondence f —m is evidently linear. It is also one-to-one,
because if m = 0, then f(p) =0 for every step function g%?(»), whence
f=0.

b) Conversely, let m: % — X be a measure with finite variation p
such that for some a« > 0 we have

[iplan < oy (@, )

for every step function ¢ = Ny 0 With 4;¢4%.

It follows that g is absolutely continuous with respect to »; conse-
quently there exists a locally »-integrable funetion g > 0 such that u = gv.
For every step function ¢ = } ¢4 0; with 4;¢# we have

[lplgdy = [lpldn < aly(@,»);

therefore N,(g,) < @ < oo, where 1/p+1/g =1.
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It follows that if pe #”(v), then ggeZ'(v); hence e #'(u), and
therefore #7(v) c £ (u) = £(m). We then put

f(g) = [pdm  for

The mapping f: £”(») - X is linear and we show that |{|f||| < oo.
Let ¢ = } p4,0; be a step function where 4, are disjoint sets of %. Then

Zlf((pAial)l = Zlf(pd1aldm ‘ < Zf(PAila*ﬂld/‘

= [ Y oaladdn = [ 1pldu < aF,(p, »),

peFP (v).

hence [||fl]] € a < oo.

¢) Now let m and f be in correspondence and let B, ¥ be two Banach
spaces such that X ¢ #(H, F). From the first part of the proof we deduce
that [lldu <|||IfIl|N,(p,) for every step function p = 3 Pa;0; With ;¢4
and from the second part of the proof, for a = {||f|||, we deduce that there
exists a locally »-integrable function g > 0 such that u = gv and N,(g, )
< Il < oo. Let ¢ = 3'g4.a; be a step function with 4; disjoint sets
of # and N,(p,7) <1. Then

2 [flea, @) = Z‘I‘PAiaidm{< wai\ai[ dps
= | Dealalan = [lglau = [lolgdv < Ny(g, »),
hence |||f||| < N,(g,+), and therefore
Nolg,») = Il

i @eZh(v), then xgeZy(v), hence TeLy(u)= FLy(m); therefore
FE(») ¢ LE(m) and we have

J12ldn = [ i@lgdy < Ny(@, )N,(g,v) = IfIIV, (@, »).
It follows that
|J@am| < [ zldu < 1IN, (@, %) for  meshiv);
therefore the mapping = — Jedm is continuous on #4(»). Since
f@) = f xdm for every step function x= 3 pa,% of Ly(R),

o

and since the two members of this equality are continuous functions of ®
in #%(»), we deduce that

f®) = [®dm  for @ Lh (),

and thus the theorem is completely proved.
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COrROLLARY 1. Let X be a Banach space. There exists an isomorphism
f &> m between the set of the continuous linear mappings f: L1 (v) - X and
the set of the regular measures m: B — X with finite variation p such that
u < ay for some a > 0.

The correspondence is given by the equality

flpa) =m(4)

If f and m are in correspondence, then p = gv with N (g, ») = ||fl|
and for every pair of Banach spaces B, F with X ¢ Z(E, F) we have

fla) = fmdm for

for e'z}ery Aea.

TeLy(v)
and

[ielap <|Ifilflmlds  for weLh).

CoROLLARY 2. Let X be o Banach space. For every linear mapping
f: &P (v) - X we denote by f° the restriction of f to ¢ (T). Then the correspon-
dence f—f° is an isomorphism between the set of the linear mappings
f: £ (v) > X with |||fll] < co and the set of the dominated linear mappings
' A (T) — X such that

[lgldun < aly(p, »)

Then up = gv with Ny(g,») = |lIflll, 1/p+1/g =1, and for every
pair of Banach spaces B and F with X = £ (E, F) we have L5(v) = LE(up)
and

for some a >0 and every pet (T).

J1Zldmo < IV, (@,9)  for  @eLB).

The following two theorems are proved in [3] (under some coun-
tability hypotheses) and in [20] in a different way (for E and F locally
convex spaces).

THEOREM 10. Let v be a scalar regular Borel measure and f: Lx(v) > F
a linear mapping with |||f]]| < co. There exists then a function Up: T —
ZL(E,Z') having the following properties:

1) The function |U;| belongs to £*(v) and we have

11
No(TUyy») = [|Iflll, where 5"‘&:1‘

2) The function U; is Z-weakly v-measurable and we have
fl@), 2> = [<Ty(B)@(1), 2>dv(t) for aeLh(v) and zeZ.

3) If o is a lifting of £ (») we can choose U; uniquely locally v-almost
everywhere such that o[U;] = Uy.
If, in addition, p = 1, we can take U, uniquely such that o(Uy) = Uy
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4) If there exists a family A €€ (v) such that for every K et and every
w eI the convex: equilibrated cover of the set {f(px); pe ot (T, K), [lp|d]y| <1}
is relatively compact in F for the topology o(F,Z), then we can choose
Us(t)eZ (B, F) locally u-almost everywhere.

4'y If for every weE the comvex equilibrated cover of the set {f(pm);
ped (T), floldlr| <1} is relatively compact in o(F,Z) for the topology
o(F, Z), then we con choose Uy(t)e % (H,F) for every tel.

Let m: # — Z(E, F) be the measure with finite variation u, cor-
responding to f and |»| by Theorem 9.

Wo have ;= g» with Ny(g,») = [[Iflll; it » =1, then u < [||flll»
We have Z%(») ¢ LE(m) and

f(w):fwdm for xeLH(»).

Then let V,,:T — Z(B,Z') be the function corresponding to m
and » by Theorem 2.

We have u = |V,||v|, whence |V,,(t)| = g(¢) locally »-almost every-
where and therefore

No(Viny ) = Nolg, %) = lIfIlI.-

If we take U; = U,,, then from Theorem 2 we deduce that U; has
all the required properties.

The following theorem is in a certain gense the converse of Theo-
rem 10:

THEOREM 11. Let v be a regular scalor measure, 1 < p < oo and
U:T —>%*(E,F) o Z-weakly v-measurable function such that

(1) No(U,») < oo, 1fp+1/g=1.

There exists a linear mapping f: LE(v) —~Z' such that

HAN < Mo(T, »)
and

{f(x), 2y :f(U(t)ac(t),z)dv for  xeFG(v) and zeZ.

(i) If, in addition, there exists a lifting o of £ (v) such that o[ U] = T,
then we have

Al = Mo (U, »).

(i) We have f(®)e I for every axeL%(v) in each of the following cases:
a) V is simply v-measurable; in particular F is of countable type;
b) For every weB there exists a family A €% (v) such that for every

Kedt the convex equilibrated cover of the set {U(tyw; teK} is relatively com-
pact in F for the topology o(F,Z).
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Proof. We remark first that for each xe«#%(») and each z¢Z the
function (U, 2) is »-meagurable and

[T 1K=, o>ldi] < el [* 1T j@ld bl < 2V, (2, )H (T, %) < o0;
therefore (Ux, 2> is »-integrable. Put
Fol®) = [<Um, 2yd.

The mapping f(x): 2 ~ f,(x) is a linear and continuous functional
on Z; therefore f(x)e«Z' and

If(®)] < No(U, 9)Np (2, 9).

The mapping f: & — f(2) of L%(») into Z’ is linear and continuous
and we have
Il < N (U, »)
and
(@), 2> = fy(x) = f(Uw,z}dv for x<Z%(v) and zeZ.

We now prove that |||f]|l < N (U,»). Let m=2:pAimi be a step
function such that 4; are disjoint sets of & and N,(x, ») < 1. Then (see
[2], chap. V, §2, lemme 2, pp.11-12)

Diftpael < Y [*1T0pqaidapl < D) [*|Ulgsleidlbl
= 101 Yoslad)an < [* 101 X oo

K Ny(U, »)Np(2,7) < N, (U, »);

dv|

therefore [||fl|] < Ny(U,») < oo.

Suppose now that ¢[U] = U for some lifting ¢ of %™ (»). Let Uy be
the function corresponding to f by Theorem 10, such that o[U;]= Uy,
Al = No(T,») and

{f(z), 2y = f (U, epdy  for xeLi(v) and zeZ.
We then deduce that
[<Us, eypdv = [<Usm,2ypdy for pet (T), vl and zeZ;

therefore (U (t)w, 2y = (Uj(2)z, 2> locally »-almost everywhere for each
zel and zeZ, i.e. U = U;. Then U(t) = Uy(f) locally »-almost every-
where, and consequently

leHI = Nq(Un"’) = NQ(U) v).
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Let m:% —~2(B,Z') be the measure corresponding to f by
Theorem 5:

f@) = [wdm  for wedn(T).

If U verifies one of the conditions (iii), then by Theorem 3, m i8 with
values in & (B, F); therefore f(x) e (E, F) for every <4 g(T) and then,
passing to the limit, for every xe%%(v).

The theorem is completely proved.

Remarks. 1 If we consider the condition

i" _)‘* [TU@x)|dly] < oo for every w®eZY(v)

instead of (i), we can deduce as in the proof of Theorem 11 that there
exists a linear mapping f: %%(v) - Z’ such that

(@), 2y = [(Ux,epdv  for xePB(») and 22,

and [IIflll < No(U,9) < oo

We remark that (i) implies (i')

2. Consider the conditions (i) and (ii), Then we have |||f]|| = N (U, ).

In fact, if |||f]]| = oo, it follows that Ny(U, %) = oo, and if |||f]]| < oo,
Wwe reason as in the proof of the theorem.

3.. If condition (i) is verified, one can prove that we have the
equality |||f]|| = N,(U, ) also in each of the following cases:

1) B is of countable type and there exists a countable norming
set S < Z.

2) B is of couJ'Jta,ble type and U is simply »-measurable. In this case
we deduce from (i') that the function #—» U(z)w is locally y-integrable
and then that the function ¢ — [U(2)] is locally »-integrable, and we have

fla@) = f Ux(tdv(t) for wePB(y).

3) U is locally s-integrable. In this cage we have

flo) = [TWeWd(t) for pe?().
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