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A remark on my paper
Regularly increasing functions in connection with the theory
of L**-spaces
by

W. MATUSZEWSKA (Poznan)

1. Let f denote a real-valued function defined for —oo < u < oo.
We shall use the following notation:

0 = {Figiolo(f(%-f-#)—f(")) = 0},
Oy = {u: im(f(u+ u)—f(u)) exists and is finite},

By = {: i [f(u—p)— f(u)] < o}

In [3] I dealt with theorems concerning the above-mentioned sets
under the assumption that f is measurable or possesses Baire’s property.
In my proofs I considered sets of the form B = {u: flu+p)—fw) <e
for uy < p < oy % = u,}, making use of their measurability. J. Karamata
kindly called my attention to the fact that this measurability is not quite
evident. In fact, after strict examination of my proof I have found that
the measurability of the set ¥ is obvious only in some special cases, e. g.
if we assume that f is continuous in (—oo, 4-o0) or possesses disconti-
nuities of a simple type. In the case of an arbitrary measurable function f,
the measurability of F is not obvious: it is even rather doubtful if we take
into account results of a recently published paper by Rubel [4]. Therefore
in this paper I shall prove the theorems considered in 1.3, 1.4 of [3] by
applying other arguments, consisting of a modification of the method
used in [1]. Those arguments are a little more laborious than the previous
one; however, if we assume f to be continuous (this may usunally be assumed
in various aplications), the argnments of [3] remain true, and the proof
of the measurability of C;, C} and B is easy. Moreover, the result of 1.3
[8] is even a little strengthened by replacing the assumption of the con-
tinuity of f by a more general assumption.
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2. Let f be o measurable funciion; then each of the sets C;, OF, B, is
either of measure 0 or identical with (—oo, 0o). If U = (—o0, co), then

(%) flut p)—f(u)

converges to ap uniformly in every bounded interval of values u, where a
is a constant. If By = (—oo, oo), then (%) is uniformly bounded in every
bounded interval of values n for sufficiently large u.

First we consider the case of C;. Let ¢ > 0, u, — oo, v, = o0, p, — 0,
Let us write

A5 = {p:|f (wat ) —f (wr)— (fon+ p) —f(op))l < 3¢ and
1f (s e ) —F (w4 i) — (F(0r+ et ) = F 0+ )| < e a8 & > m),
Obviously, the sets 4;, are measurable, (; = O JAY = M, where M

is a measurable set. We must show that m,(0;) > 0 implies 0; = (—o0, o).
If m.(Cy) > 0, then m (M) > 0, and so the set |_J A is of positive measure;
n

hence at least one of the sets 47 is of positive measure, where 1 depends
on & Leb us denote by 4j, the set obtained by translation by u of the
set Aj. Then, by a known theorem of Steinhams, there exists a Ho >0
such that 4~ Af, #0 for |u| < py. Let |ux] <po and % =1 There
are u', u' e A} such that u' = ur-+u'; hence
If (s o+ ") — F () — (F(on+ gt ") —f (o)) < e,
(et e+ ") — f (e ) — (F (or+ it 5" ) —f(or+ p))] < de.
This implies
(+) [f(urt ) —f (ur) — (F(or+ ) — flon))l <& for & = k.
Let us write
B ={ugt f (ut ) —flu)—(f(o+ p) = F0))| <z as u,0 =1, lu—pol <6,
where § > 0 is independent of w, v}.
Let poeCy; we shall show that e (B, Supposing tod By, to
everyn = 1,2, ... there exist z,, u, andnv,, such that i
(o —ppol < Lfmy ey 00 =1y \f (b i) — F () ~ (f O+ i) —F(0a)] > -
Let uy = fin— pto. Binee u, — 0, u,, v, — oo,
Ftn - n) —f () — (f (00 + tn) — £ (05) :
= [ttt p10) = F (Un+- pon) — (F(0nt i+ ) = 0+ )1+
+ U (nt ) —F () — (F (04 =5 (o)1
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and so by peeC; and (+), we get

f(un+ ﬁ‘n) "‘f(un) " (f(vn+ ﬁn) '—f(vn)) g O)
which is a contradiction. We proved C; < €, where ¢ = ({JBY*. On
kE =n

the other hand, it is clear that ¢ = ¢;; hence C; = (. Since B;, are open
sets, O is G5, and so C; is a measurable set. Thus the assumption m,(Cy) > 0
gives m(0y) > 0. Applying the already mentioned theorem of Steinhaus
we see that Oy is a rational basis, or more precisely, every real number
may be written in the form p = myu’—mpy”, where m is an integer and
u'y @' €Cy. On the other hand, it is known that if u', p' €Cy, then every
linear combination of u’, u'* with integer coefficients belongs to C; again;
consequently, ueC;, €y = (—oo, co).

Let us assume now that C; = (—oo, co) and let <u,, p,> be any closed
interval. Since C; = 0, every point mge{u;, g.> belongs to some B.
Hence the inequality

(++) [f(u+ p)—flw)—(fo+u)—flo))] <e

holds in a neighbourhood of u, for «, v > n, where n depends on the neigh-
bourhood. Since a finite number of these neighbourhoods eover <u,, 798
inequality (++) is satisfied for ue{uy, #s), %, v > u, where u, is suffi-
ciently large.

Let

in;(f(uﬁ'-n)—f(u)) = oy(p),

by (++)
flut+p)~flu)—op(m)] < e

for u > u, and pelu;, p,). We have yet to prove g;(u) = au. It is easily
shown thab g;(p1+pa) = os(p:)+ 0s(us) for arbitrary p,, u, and that
o;(#) is a measurable function. Hence, by a well-known theorem of Fré-
cheb, o;(u) is linear. However, for the sake of completeness, we give the
proof of this theorem by applying Steinhaus theorem once more. This
proof may be applied without change also under the assumptions made
in 2.3. The set Ay = {u: |os(u)] < k} is of positive measure for some %.
Hence there exists a u, > 0 such that every number u, ju| < g, is of
the form p = u’'—pu", where p', u”’ eAy. Consequently, choosing as m
an integer such that 1/ue+1>m >1/u,, we can write an arbitrary
number pe—1,1) in the form u = mu'—mu'" (', u"’ eA). Hence, by
the additivity of g;(4) we obtain jo,(u)} < 2mk in (—1,1> and gy(x)
= au by the classic elementary theorem.

Let us now consider the set (7. Let m,(C}) > 0; since O} <= G, we
have m(C;) > 0 and hence C; = (—oo,oc0). But we know that p/(u)
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" = ay for every #, and, on the other hand, ¢;(#) = 0 for infinitely many pu.
Consequently, & = 0 and 0} = (—oco, o).

‘We now consider the set B;. The proof is obtained in the same way
as that for Oy, with slight changes only. Supposing m,(B;) > 0, the et
U4}, is of positive measure for & > &,, where ¢, is sufficiently large,

n

Hence we deduce the inequality
Bon |f (st ) — f (o) — (F (0 ) — F (00 < o
k00
We define the set 0 as ¢ = | By, and an argument analogous to

n
the previous one gives By = 0. On the other hand, it is clear that ¢ B;.
Hence B; = (, and since Bj are measurable sets, so is B;. Arguments
analogous to those used in the case of C; gives B; = (—oo, oo). Let
B; = (—o0, oo) and let (u,, u,> be an arbitrary closed interval. Then, just
as in the case of 0y, we find that inequality (++) is satisfied in Sy y o)
for sufficiently large ¢ > 0 and for u,v > u,. Hence the inequality

G0 futp)—f(u) < g(u)

holds for u = (uy, u) and w > wuy, where g(u) = e [f (1o p)—f(uq));
evidently, g(u) is a measurable function and |g(u)| < co. Since the set
Ay = {u: g(u) <k, pepy, uyd} is of positive measure for some constant
k > 0 we deduce in the same way as in the case of 07(@) that there exists
@ positive integer m such that any number pe{—¢, >, where ¢ =
= SuP (lus], |ual), may be written in the form p, = mu' —mp' (u'y p' eAy).
But (%) immediately implies [f (% £ mu) —f(u)] < mg(p) for w > ug-+me,
peluq,y oy, Hence we have in (—¢, ¢

u+ po) —flu)] < mg(u')-+mg(u") < 2mk
for u = wug+ me.

2.1. A function f possesses Baire’s property if there exists a set P
of the first category in R = (—oo, oc) such that f is continuous on R\P
with respect to this set [2]. It is well known that every B-measurable
function possesses Baire's property, but there are functions which posses
this property and are not B-measurable.

2.2. If f possesses Baire’s property amd the set A = {u: f(u) <k}
is of second category, then A is a rational basis; more precisely, to every
to > 0 there emists a positive integer m such that every u satisfying the in-
equality |p| < py may be written in the Jorm p = mu’' —my’’, where u', p'' e A.

As a set of the second category, B = ANP is dense in some interval
0 =(a,b). Let uged ~ (R\P); then there exists a sequence %,eB,
Un > Uo; hence wged. Thus A ~§=(R\P)nduAd~Pnd ie
4 ~ 818 a residual set in 6. We denote by 4, the set obtained by transla-
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tion of set A by the number &. An arbitrary number p, ju| < 3(b—a),
may be written in the form p = p'— u" (#', w'’ ed), since we have 4 ~ A,
# 0 for such . Consequently, choosing a positive integer m so that 1 jm
< (b—a)/2u0; We can write every pu, lu] < Koy in the form p = p'— u'"
(0 p"" ed).

2.3, Theorem in section 2 remains true if we replace “measurable
function” by “function Possessing Baire’s property” and “set of measure
zero” by “set of the first category”.

The proofs given in section 2 remain valid without changes if we
again replace “measurable function® by “function possessing Baire’s
property”, and “set of positive exterior measure” by “set of the second
category”, and apply lemma 2.2. In this case, measurable sets of values u
introdnced above are replaced by sets of points of the type A = {u: f(u)
< k}, where f possesses Baire’s property.
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