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TEEOREM 2. Let X be a real Banach space of dimension not less than
two. Conditions (a), (b), (¢) of Theorem 1 are equivalent to each of the fol-
lowing conditions:

(d) for every rectifiable curve I' in XN{0}, l(sgnl") < (I jd(I"

(e) for every rectifiable curve I' in X that contains no interior point
of the unit sphere (i.e., with d(I'") = 1), l(sgnl") < ().

If the dimension of X is not less than three, X satisfies these equivalent
conditions if and only if X 4s a Hilbert space.

Proof. (d) obviously implies (e); conversely, if I" is any curve, and
we set o = d(I), then d(67") > 1 and (e) implies I(sgnl") = I(sgno 1)

<Uo™) = U(I)/d(I), so that (e) implies (d). Now (a) implies (d) by
Lemma, 4. The conclusion will follow from Theorem 1 if we prove that (d'
implies (b).

Let w,vedZ, u + v 7 0, be given. For each 1, 0 < 1 < 1, we consider
the curve I'y given by fi(v) = 441w, 7¢[0, 1] (a line segment). Now
Ay >1—12, UTY) =24, Usgnly) > [sgnf(A)—sgnf(O) = alu, u+ in].
By (d),

Alalu, u-+Av] =

Uy UsgnT)) = () =

and (b) follows on taking the inferior limit as A — +0.

1—1,
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Summability in #(p,,p,,...) spaces *

by

V. KLEE (Seattle)

A Banach space E will be said to have the BS- -property provided
every bounded sequence in F admits a subsequence z, whose sequence
of arithmetic means

2 37+ 22), HEt2t2), ...

is norm-convergent to a point of B. This property was established by
Banach and Saks [1] for the spaces L, and I, (1 < p < o), and by Ka-
kutani [2] for all uniformly convex Banach spaces. Nishiura and Water-
man [6] recently showed that the BS-property does not imply uniform
convexifiability, that it does imply reflexivity, and that reflexivity is
equivalent to a different summability property. In his review of [6],
Sakai [7] asked for an example of a reflexive Banach space which lacks
the BS-property. The purpose of this note is to supply such an example
by means of the #(p,, p,,...) spaces of Nakano [5]. (I am indebted to
Mr. K. Sundaresan for caﬂmg my attention to these spaces m a different
connection.)

Let P denote the set of all sequences in ]1, oo and let s denote the
linear space of all sequences of real numbers. For p = = (P1) Pay --.) P

and o = (@, @,,...)es, lot
= Dail"/p.

T=1

o (0)

Let #(p) denote the set of all points zes such that |||, < oo, where
1
“w“p = 1]J.f{l >0: 7 (‘lz) gl}

Then I(p) is a linear subspace of s and || |, is a norm for ¥(p). It
follows from results of Nakano (or by direct reasoning analogous to that
for the classical ¥, spaces) that the spaces }(p) are all reflexive Banach spaces
(for peP), and that ¥(p) is uniformly convex if and only if 1 < inf{p;}
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< sup{p;} < co. (See especially Theorems 40.6, 40.9, 43.6, 44.8, and
54.14 of [3], Theorem 89.12 of [4], and the paper [5].) Hence the following
result provides the example requested by Sakai [7]:

TEEOREM. For 1 < p; < oo, the space }(py, P, ..
perty if and only if 1< inf{’pi} and sup{p;} < oco.

Proof. The “if” part is immediate from Kakutani’s theorem and the
criterion for uniform convexity of ¢(p). Using 6; to denote the Kronecker
delta (as a point of I(p)), we proceed to the “only if” part. Here the basic
idea is that the sequence 6,, d,, d;, ... is a bounded sequence in the space ?,
which does not admit any subsequence whose sequence of arithmetic
means is norm-convergent, and the same behavior should be exhibited
by the space ¥(py, ps, ...) if inf{p;} = 1. A similar remark applies to the
sequence 6y, 6,4+ 8y, 6;+ 85+ ds, ... in the space ., and to the condition
that sup {p;} = co.

Let B denote the open unit ball {el(p): |jafl, < 1}. It follows from
the definition of || ||, that B = {#: u,(x) < 1}, and then from the convexity
of the function w, that

(1) eBo {miup(w) <e} for O0<e<l.

Now suppose first that inf{p;} = 1. For each ze¢]l, co[ and each
te[0, oof, let g(z,t) =t"/t. Let m(1) =1, and having chosen m(s) for
1<i<j, leb m(j) be suech that m(j—1) < m(j), Pmg_1) > Pmy), and

.) has the BS-pro-

@) P (Dmgys &) > P(Pmgys 1+ 1) — @ (Pmgiy, )
& 1
whenever 1/j <& <1, ¢<j,0<¢t<t+n <1 and t <1/2. (To achivee

this it suffices to take pmy sufficiently close to 1.)

Consider the sequence dugy, Sy, - .. in §(p). Since p,(d;) = 1/p; < 1,
I8, < 1 and the sequence Om(@ 18 bounded. Consider an arbitrary sub-
sequence Jng) 0f Oy, and let u, be the sequence of arithmetic means
formed from dy(. The sequence u, converges coordinatewise to the origin 0
of t(p), so it must be norm-convergent to 0 if it is norm-convergent to
any point. If |u,l - 0, then u,(u,) = 0 by (1). However, we show on the
contrary that
(3) 0 <y (20y) < () <

and the contradiction yields the desired conclusion. To establish (3),

observe that
th (p’"-(i) ’ ) 29’ (Z)n(t) "— )

— 1 Z( p"(")? 1/k) (pn(i)v 1/@f‘1))'“¢(pn(i)7 I/k))
k(k—1) 1/k 1(k—1)—1/k ’

o (U} — oy (thge__)

Hs
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and then apply (2) to show that the individual summands are all positive,
noting that (k) = m(j) with j > % and hence 1/k >1/j.

Now suppose, finally, that sup{p;} = oo, and let the sequence m (1)
<m(2) < ... be such that puy > for 4 = 1,2,... For each Jy let

i
= D g by
=1

The sequence y, is bounded in #(p), for

i
1 1 Pt
im0 = ) o ™ 22""”‘*’ S
= Pma

=1

and consequently |[y;]l, < 2. The same reasoning shows that (p) includes
& point w such that wyy = pilep® for i =1,2,..., while w; =0 for
j¢{m(@1), m(2),...}. Consider an arbitrary subsequence Yny Of Yo, and
let v, be the sequence of arithmetic means formed from Yn@- The sequence
v, converges coordinatewise to the point w, so it is norm-convergent to w
if it is norm-convergent to any point. But it cannot be norm-convergent
to w, for with

1
vy = JT(ynu) + Yny+- -+ Yngiy)

and with & = n(j+1), the &™ coordinate of v; is equal to zero and the &t
coordinate of w is equal to piP*, whence we have

1
oy (W — ;) 2> p—(?}c’p")p" =1
%

and consequently |w—u;|, = 1. The proof is complete.
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On the theory of (#)-sequences
by

W. SEOWIKOWSKI (Warszawa)

Introduction. It very often happens that considering an (#)-space
we are virtually confronted with an inverse sequence of pseudonormed
spaces which yields the (%)-space as its projective limit.

However, it may happen that together with restricting our attention
to the inverse limit only, we are loosing some of important properties
of the spaces from the initial sequence.

This paper suggests a method of handling an inverse sequence as
a whole. The object introduced for such purposes we call an (#)-sequence.
The concept of (#)-sequence, announced in [5] ecomes as a consequence
of a careful analysis of results and methods of [2]-[4]. Applications to
some essential points considered in [2]-[4] will appear separately.

Though the bare notion of (%) and pre-(F)-sequences gives scarce
intuition as to its most important applications, it is still a very natural
thing to consider these notions and their elegant mathematfical form
should appeal even without any important applications at hand.

Terminology and notation. We denote by {z,} the set of elements
of a sequence m,, @y, ... of elements of some X which justifies writing
the ineclusion {x,} = X. ‘

An operation is said to be linear iff it is additive and homogeneous
and we do not require any kind of continuity. This differs from the stand-
point of [1]. :

Pseudonorms will always be urderstood as subadditive non-negative
and positive-homogeneous functionals vanishing in zero. As usual a pseudo-
norm may assume the value zero on mon-zero element.

Suppose X and ¥ are subsets of the same set Z and ¥ is provided
with some topology 7. We say that X is of the second calegory in (Y, 1)
iff X ~ Y is of the second category in (Y, 7).

Consider two linear topological spaces (X;,<7;), ¢ =1,2. We say
that (X, t,) is coarser than (X,,7,) and we write (X, 7;) < (X,, 7a)
iff X, is a subspacé of X, and the identical injection of (X,,7,) into
(X;, 71) .18 continuous. .
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