280 V. Klee

(Reprinted in Semi-ordered linear spaces, Japan Society for the Promotion of Seience,
Maruzen 1955).

[6] T. Nishiura and D. Waterman, Reflewivity and summability, Studia Math.
23 (1963), p. 53-57.

[7]1 8. Sakai, Review of [6], Math. Reviews 27 (1964), p.974.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WASHINGTON

Regu par la Rédaction le 24. 6. 1964

icm°®

STUDIA MATHEMATICA, T. XXV. (1965)
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Introduction. It very often happens that considering an (#)-space
we are virtually confronted with an inverse sequence of pseudonormed
spaces which yields the (%)-space as its projective limit.

However, it may happen that together with restricting our attention
to the inverse limit only, we are loosing some of important properties
of the spaces from the initial sequence.

This paper suggests a method of handling an inverse sequence as
a whole. The object introduced for such purposes we call an (#)-sequence.
The concept of (#)-sequence, announced in [5] ecomes as a consequence
of a careful analysis of results and methods of [2]-[4]. Applications to
some essential points considered in [2]-[4] will appear separately.

Though the bare notion of (%) and pre-(F)-sequences gives scarce
intuition as to its most important applications, it is still a very natural
thing to consider these notions and their elegant mathematfical form
should appeal even without any important applications at hand.

Terminology and notation. We denote by {z,} the set of elements
of a sequence m,, @y, ... of elements of some X which justifies writing
the ineclusion {x,} = X. ‘

An operation is said to be linear iff it is additive and homogeneous
and we do not require any kind of continuity. This differs from the stand-
point of [1]. :

Pseudonorms will always be urderstood as subadditive non-negative
and positive-homogeneous functionals vanishing in zero. As usual a pseudo-
norm may assume the value zero on mon-zero element.

Suppose X and ¥ are subsets of the same set Z and ¥ is provided
with some topology 7. We say that X is of the second calegory in (Y, 1)
iff X ~ Y is of the second category in (Y, 7).

Consider two linear topological spaces (X;,<7;), ¢ =1,2. We say
that (X, t,) is coarser than (X,,7,) and we write (X, 7;) < (X,, 7a)
iff X, is a subspacé of X, and the identical injection of (X,,7,) into
(X;, 71) .18 continuous. .
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A sequence B = {(V,, |'ll,)} of linear spaces each provided with

a psendonorm is said to be a pre-(F)-sequence iff (V,, |-[l.) < (Vs

and ze MV, 1 —t

=1

I lyr) for n»=1,2,.. vanishes whenever

for every n.

If the pseudonorms of a pre-(&)-sequence B are not given directly,
we shall write |||y, for the pseudonorm of the n-th space of the ge-
quence B,

With any pre-(%)-sequence B = {(V,,[|l.)} We associate the fol-
lowing three motions:

(i) The linear space
[Q}I = Vn

(ii) The linear locally convex metrizable space

o0
AB =NV, 7),
n=1
where 7 denotes the topology of (M V, induced by pseudonorms
Nl
Wll:n=1,2,...}
‘(iii) The metric-function gy, defined and translation-invariant on G
considered as an abelian group with the linear space addition as the

group operation, given by fixing the distance gy (1) = gy (#—0) of x|V
from 0 as follows:

on(2) = Zzﬂnﬁm,n(m),
n=1

‘where
1
o0 (@) = l2lln/(1+[l2lla) ~ for —@eV,,
1 for @¢|B|—7V,.
Since O are alll. subadditive, oy must be subadditive as well,
The metric-function gy and the topological group [BV], where

ar
[%] = (3, %),
are said to be assigned to B.
A p.re-(éir )-sequence B is said to be an (F)-sequence iff [B] is complete.
It is easy to see that ~B is a cloged subgroup of [B].

Examplfns. L. Consider the k-dimensional Buclidean space E* and
de'mote bylg the space of all complex valued functions f defined on F*
with continuous derivatives D'f for every p = (py,... y Px) with [p]
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=py+...+ P <m. Let |[fll=sup{|f(@)]: 2B, |Ifl= ([ If (@)]"da}'?, 41,
Iflgm = 3 D% and ”f\lm=l |2 ID"flls. For any compact K < E*
pi<m

[p{<m
we write 2™(K) = {fe 2™: support f < K}.
With any descending sequence {K,} of compact subsets of E* such
that each K, coincides with the closure of its interior, we associate (F)-
sequences

D = {(9"(Kn), [loma)}, Dy = {(Z"(Ea), I llm,)}s

where {m,} is an increasing sequence of natural numbers.

In the first case the spaces (2™ (XK,), ||-||gm,.) are all complete and
then [D]is automatically complete, and in the second case none of (2™ K,),
Il lsm) is complete while [Dy] is still complete. Moreover, if MK, is

diserete, then ~ D is trivial, i. e. represents (#)-space that consists of
only point zero.
II. Consider & k-dimensional complex linear gpace Z¥. For z = (2, ...
oo vy 2) €2 we write |22 = 2,7, +...+ 47 and Tmz = (Ima,, ..., Imz) < B*.
Take any entire function f defined on Z*. We put

Iflln = sup(L+ le)"f ()] e* ™, a >0,

and
S = {f—entire on Z": fli% < co}.

For any increasing {m,} and decreasing {a,}, a, > 0, tending to some
a > 0, we introduce an (#)-sequence

S = {(Fam - lhm)}-

It is clear, that for K, from Example T equal to {x<E*: [z| < a,},
the Fourier transform F maps |D|, where D is defined in Example I,
into |3|. Tt turns out that F is closed in the sense which will be introduced
in this paper, every 5+ contains some F9™¢(K,) and, vice versa, every
F9™ (K,) contains some £, This can serve as an illuminating illustra-
tion to Theorems 3 and 4 yielding in the same time a more general formula-
tion of the Paley-Wiener theorem.

III. Consider a sequence 3 = {(Zy, ||»)} of linear spaces with pseudo-
norms guch that (Zn, | ln) = (Znyry |*lnga) for n=1,2,..., the linear

o0
gpace X = | J Z, and a space X' of linear functionals over X, X’ closed
=1

with respect to the pointwise addition, multiplication by secalars and
convergence of sequences of functionals.

‘We define the polar 3* of 3 in X' setting 3* = {(Z3, |- [%)}, where
|o'[% = sup{|2'2|: 2eZn, ¢l <1} and Z; = {0’ X': |2'|5 < oo}
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It is clear that 3* is an (#)-sequence and that () Z¥ consists of all

M1
funetionals continuous onsthe inductive limit of 3. It is clear, 1oreover,
that the spaces (Z;, |-r) need not be complete.

IV. Take a topological space R and let {&,} be a sequence of open
subsets of R, R, < R,_, for n=1,2, ..., such that R = U R,.. For any

Th=al
U c R denote by €(U) the linear space of all continuous scalar-valued
functions defined on R and bounded on U. For fe((U) let Iflly =
= sup{|f(1): te V).

. . N 0o

The sequence € = {(C(R,), | I,)} is an (#)-sequence. Here N C(R,)

. . . Mol
consists of all eontinnous functions on R which are bounded on every
B,. The spaces that constitute € are generally not complete.

Y. Consider two (#)-spaces (X;, ), § = 1, 2, where the topologies 7,
are given by pointwise non-decreasing sequences of pseudonorms {1l
for ¢ =1, 2 respectively. ’

Let the a space of linear mappings of X, into X, closed with respect
to the pointwise addition, multiplication by scalars and convergence.
We put

[l = sup {|Aw]ly,, :[J|

IS 1}7 Llc,n = {deL: ]AII«,n < oo},

) It is easy to see that with any increasing sequence {k,} there is as-
sociated an (&)-sequence

L= {(Lkn,ny I ' Ilan,n)}'

VI. Cor}sider an (#)-space (X, 7), where 7 is induced by a pointwise
flon-de.crea'sm.g sequence of pseudonorms {||-|,} and (Y, ¢) which is an
inductive limit of a sequence {( ¥y, |||- [llx)} of Banach spaces, (¥,,, |||*]|lx)
= (‘Y,,, +15 l][*[lln41). Denote by B the linear space of all bilinear funetionals
defined on XX Y. For any peB we define

ol = sup{lp(e, y)l: iyl <1, fal <1}
and further we set

Blc,n = ‘{‘PEB: |‘F|Ia,n < oo}

Exactly like in the previous example o any increasing sequence
{k,} there corresponds the (# )-sequence

B = {(Bk",ny I |k,n,n)}-

Sefting X = X, and ¥ = the adioi
‘ = joint to (X,,7,), where (X;, %)
are from Example V, we find that agsigning to 4 eL,thle’fun.etional q)’sB,
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where p(x, #')= o' (Ax), we obtain a mapping of |2| into |B|. This, together
with Example II, provides the reader with some intuitive background
as to what kind of mappings are subject to the discussion presented in
this paper.

However, we do not propose to draw any conelusions from Theorems 3
and 4 of this paper as yet, waiting for another paper which together with
further development of the theory will bring better opportunities for
a ecareful study of the examples.

PROPOSITION 1. Consider a pre-(F)-sequence B = {(Vy, I l)}-

A. A sequence {®,} < |B| tends to zero in [B] iff to each p there corres-
pond my, such that x,eV, for n = m, and Lm {z,)], = 0; {x,} tends to x

my<n
in [B] iff {x,—x} tends to zero in [B]; {2,} satisfies the Couchy condition
in [B] iff to every p there correspond m, such that &, — T, eV, for m,n = m,

and  Lm |, — B/, = 0.

My <1

B. Denote by Cly the operation of closure in [B]. A point we|B| belongs
to the closure ClgG of some G = |B| iff for every n the set G ~ (x+Vy,) is

non-v0id and
inf{|lz—wln: we@ ~ (@+TV,)} = 0.

C. If {&,} = |B| satisfies the Cauchy condition in [B], then for every
scalar t we have {iw,} satisfying the Cauchy condition in [B). If, in parti-
cular, the sequence {w,} tends to some xe|B|, then {tw,} tends to iz
in [B].

D. Take z¢|B| and o sequence of scalars {tn} tending to some scalar t

different from countably many tn. If {t,2} tends to ix in [B], then xe ﬂl V.
N=

Proof. Convergence of {z,} to zero in [B] is equivalent to ogp(w.)
tending to zero for every p separately and then amounts exactly to the
condition given in A. The next follows from the fact that [B]is a topolo-
gical group. Similarly, the Cauchy condition for {=.} amounts to
op p(®n— ) tending o zero for every p separately which again is equi-
valent to the condition given in A. An element « belongs to ClgG iff
oun(@—@) = 0 for every n. Hence, for every = the set G (x4 V)
must be non-void and ppn(®—6) = inf{|le— ull: ue@ ~ (#4Va)} =0
which proves B. The last two assertions are simple consequences of the
first one. .
PROPOSITION 2. To every pre-(F)-sequence B = {(Va, |- |la)} there cor-
responds an (F)-sequence B~ = {(Vr , |- |x )} such that V,c Vy, Vy=Clg-V,
form =1,2, ..., where Cly— denotes the closure in [B~] and |||l coincide
with ||| restricted to V, respectively for m =1,2,... The (F)-sequence
B~ is called the complelion of B. ;
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Proof. Let (V—, o) denotes the completion of the abelian topological
group [V]. Then, |B| is a dense subgroup of (V= o~) and s 18 the restrie-
tion of o~ to |B|. From Proposition 1 it follows that the multiplication by
scalars in |B| can be extended over V™ in such a way that V- becomes
& linear space. Indeed, if {#,} = |B| tends to some xe V™~ in the genge of
¢”, then for any scalar ¢ the sequence {¢z,} tends in ¢~ to some T eV,
Setting «, = iz we obtain a non-ambiguous definition of multiplication
by scalars in V™ which makes a linear space out of the group V-. Since
all gy, arve continuous with respect to gy and then o~ as well, we can
extend them over V™ to o, . Since ¢~ ig the extension of oy over V* we
shall have

o (@) = D 27" (w)
o |
for zeV ™. '

Setting Vi = {weV™: g, () < 1} we find that V- = Vi, Vi oV,
and, moreover, for every p the pseudonorm II-ll, extends from V., over
ij to ||l . Indeed, if {#,} < |B|, op (#n—2z) — 0 and ¢p () < 1, then
0p (a.:n) <1 for n =y and {2,:n >n} < V,. Then [0 — @l — 0 and
setting [lz]l; = hin lnlly we find that the definition of lzll, does not depend

. ﬂ»q\ﬁ
on the choice of {z,} and produces the extension of [l ll, to a continuous
pseudonorm on Vs such that g (z) = lelly (1 [lwlly ) for weVy. It is
clear that B~ = {(V;, ||-[=)} is an (#)-sequence with [B7] = (V", ),

satisfying all the requirements of the Proposition. This finishes the proof
of Proposition 2. )

Oons'ider a pre-(&F)-sequence B = {(V,, || |l,)}. With any natural p
we associate the p-th shift pB of B defined as )
P8 = Vs 11} =p+1,p+2,...},

i e. 2B is prod.uced from B by dropping first p elements of the éequence 3.
Using the notion of p-th shift we can express the space that appears in
the p-th element of B as [pB|. Hence, we can write now the identity

B = {(InB, [I*lwn)}-

Here comes a pr&position showing that for every B we have the
decomposition |B| =”Ql [l(n+1)B|— [nB|] into disjoint open and cloged
subsets of B.

. idP;(;;(;jIﬁ})iﬁ?;b Uo;nts’rz:;e}g Zn tpre-(ﬁ);seqymoe. B. For any nmfuml n
wnd clowed in 1y o [B] is bicontinuous and |nB| is open

Proof. The bicontinuity of the identical iniecti i
injection of [#B] into [BV]
follows from the fact that the convergence of og(x,) to zero amounts
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to the convergence to zero of gy, (2,) separately for every p taken from

any fixed countable set of natural numbers. Hence, for {z,} < |pD| the

condition lim gy(w,) = 0 is equivalent to the condition lim g,y (%,) = 0.
n n

Bvery |pB| is closed in [V]. Indeed, if {,} tends to some ze|B|,
we have x—a,¢|pB| for sufficiently great n and then ze|pB| as well.
Similarly, if {z,} < |B|—|pB| and {z,} tends to some x¢|B|, we have
again @— @, ¢|pB| for sufficiently great m and this time, since every =,
does not belong to [pB|, # does not belong to |pB| either. This finishes
the proof of Proposition 3.

It is worth noticing that the fact of bicontinuity of the identical
imbedding of [pB] in [B] generalizes to the bicontinuity of such imbed-
ding of any [B,] obtained by dropping of any fixed countable number
of elements of VB in such a way that the remaining is still an infinite
sequence. This is which was practically proved in the above given proof.

Consider two pre-(#)-sequences B; (4 =1,2). The sequence B,
is said to be finer than B,, which we write

B, >B,,

iff there exists a number p such that |pDB,| is a subspace of |B,| and the
identical injection of [pQB,] into [B,] is continuous; B, is said to be equi-
valent to B, iff B, > B, and B, > B,. Obviously B, >V, implies ~ B,
> ~B, and every pre-(F)-sequence BV is equivalent to any subsequence
of itgelf.

For example, the (#)-sequences D and Dy, introduced in Example I
are equivalent by virtue of the well-known Sobolev lemma agsuring that
the uniform convergence of derivatives up to a given order follows from
L*convergence of derivatives up to some higher order.

Consider a pre-(&)-sequence B = {(V,, ||-[l»)} and a linear [B]-closed
subspace L of [B|. We define the quotient pre-(F)-sequence (cf. [3])

BIL = {(Va/Ly | lnjz)}

as follows. We set |B/L| £ Q|/L and we denote by V,/L the subspace
of |B/L| with répresentants taken from V,. We define in the following
the pseudonorms

|#/Lllnyz. = inf{[lz—Klln: ke L ~ (24 Va)}
for #/LeV,/L. Notice that L ~ (z+V,) i8 non-void for z/LeV,/L. If
#|Le(\Va/L and |g/Lfjsz =0 for n=1,2,..., then weL, i. e. &/L =0.
n=1

Indeea, if #/LeV,/L and |g/Lll,z = 0, then there existy k,eL such that
B—kpeV, and M,|e—kyll, <1/n, where {M,}, M,>0, are chosen
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in such a way that M|z, < My, ll@lye: for eV, n=1,2,... Hence
{k,} tends to # in [B] and, since L is closed in [V, we have L.

In view of the fact that the relations

(ValLy I ) < (Vi /L, lbyz)y n=1,2,...,

hold as simple consequences of the corresponding relations in B itself,
we conclude that B/L is a pre-(F)-sequence.

Looking at [B] from the topological group viewpoint we can always
construet the factor-group [B]/L which is a topological group in the cage
of closed L and, moreover, the group [V]/L is complete whenever the
original group [B] 18 complete. In view of the definition of B/L| we
know that |B/L| and |B|/L are identical algebraically.

PROPOSITION 4. Consider o pre-(F)-sequence B and o linear [BI-closed
subspace L < |B|. The topological groups [B[L] and [B] L are topologically
the same.

Proof. Let B = {(V,, |*ll,)} and take u,/L¢|B|/L, where L is a [B]-
closed linear subspace of |B|. The sequence {z,/L} tends to 0 in [B] /L
iff there exists {k,} = L such that gy (2, — k,) tends to 7ero, i. e. &, — ke V,,
for n > m, and lim ||z, — yll, = 0 for p =1, 2, ..., where {my} is a pro-

<N

perly chosen s:-sn(ziuence. Thiy can be equivalently expressed by saying
that for every p we have »,/LeV,/L for n = my and Mm@y, (L], = 0
My

which means exactly that {z,/L} tends to zero in [‘B/f}]. This finighes
the proof of Proposition 4. )

To establish a relation between topologies of the elements of a given
pre-(#)-sequence B and the topology of the assigned group [B] we prove
the following statement:

PROPOSITION B. Let B be a pre-(F )-sequence and define for any positive
v and natural n the following subsets of B:

Ko (r) = {2<|B): enl@) <1},  Kyulr) = {we[nB: |2y < 7}

A. To every natural p and &> 0 there aowespmzdssn > 0 such that
Ky(n) © Kgyl(e).

B. To every &> 0 there correspond a natural P and n >0 such that
Ky(e) = Kygy(n).

Proof. I z¢V, % 3B, then

at
on (%) = ggn(®) =1
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for n > p and

e@ @ Y 20w = Y o =o.

n=p-+1

Hence ¢V, implies o(2) > 27 and by the contraposition p(z) < 277
implies zeV,,. Thus, given natural p we can always find sufficiently small
7 >0 to have Kg(n) = V,.

Now, 0> ¢(x) > 27"g,(x) implies g,(z) < 277y or, for e V, and 2%y
<1, lallsp < 27/(1—27y). Taking # so small that Kg(q) o V, and
0 < 2°/(1—2%y) < & we obtain Kg(y) < Ky ,(s) which proves A.

To prove B take arbitrary but fixed p and assign M, to it in such
a way that Mylwlyy > llolly: for zeV,, i=1,2,...,p. Then for
weKy,(r/My) we find that g;(s) < 7/(1+r) for i =1;2,...,p and then

» o .
i§2"gi(m) <r[L-+7). Sinceizg 12"Lg¢(m)< 277, we find that »eKy ,(r/M,)

implies  o(#) < 27"+7/(1+r). Hence, if we choose p and 7 in
such a way that 27°+r/(1+7) <e and if we put 5 =r/M,, then
Kgp(n) = Kg(e) which finishes the proof of B and then of Proposition 5
as well.

From Proposition 5 we obtain the following equivalent characteriza-
tions of the continuity of a pseudonorm defined on |B]:

PrOPOSITION 6. Consider a pre-(F)-sequence B and a pseudonorm
-1l defined on |B|. The following conditions are equivalent:

. The pseudonorm ||-|| is bounded on at least one Kg(r).

B. The pseudonorm |-|| is bounded on an open subset of [B].

y. The pseudonorm |-|| 48 [Bl-continuous in 0.

3. The pseudonorm ||-| is [Bl-continuous in the whole |B|.

e. The pseudonorm |-|| is comtinuous in at least ome (|nB|, I g ) -
A The pseudonorm is bounded on at least one Ky, (r).

Proof. Let us list at the beginning the obvious implications -and
equivalences. We have the equivalence of ¢ and A as the well-known fact
out of the elementary properties of pseudonorms. The equivalence of y
and § follows from the subadditivity of |-]. The equivalence of « and A
follows directly from Proposition 5. The implication « — B is obvious.
To prove the converse we notice that 8 amounts to the inclusion

{z: o(@—mp) <7} <= {m: [lo]l < mo}
for gsome x,¢|B|, n, and r > 0. This implies the inclusion
{: ly+all < mo} = Kg(r),

or, using the subadditivity of |-|| and remembering that |z, < ., the
inclusion
{y: il < 2n0} > Kg(r)

Studia Mathematica XXV 2. 3 13
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which amounts to the boundedness of ||| on Kg(r). Hence « and § are
equivalent. .

The implication & — vy follows directly from Proposition 1 and then
to complete the proof it is sufficient to show the implication vy — a. We
show it proving its contraposition. If ||| is not bounded on any Igy(r),
then from A of Proposition 5 it follows that |- is not bounded on any
Kyn(r) and then to each n» there correspond #,eKgy,(1/n) such that
|lzall 2 1. Hence, by virtue of A of Proposition 1, {«,} tends to zero in
[B] and |,|| =1 for every n which contradicts v.

This concludes the proof of Proposition 6.

From now on we shall start using the notion of topological ca-
tegory. Applied in the ease of the assigned group this notion admits
some exfra properties which are explained in the following propo-
sition:

PROPOSITION 7. Take a pre-(F)-sequence B. If Y < |B| is of the second
category in [k, then Y is of the second category in [B] as well.

Proof. Suppose Y is of the second category in [kB] and take a de-

composition ¥ = (M} ¥,,. There must be then a Yno which clogure con-
=1

tains a ball K, taken in [£B]. Since in view of Proposition 1, || is open
in [B], the ball K, is open in [B] as well and Y, is not nowhere dense
in [B] which concludes the proof of Proposition 7.

Now comes the well-known result which is often called the Banach
and Steinhaus Theorem:

TarOREM 1. Consider a pre-(F)-sequence with the second category
assigned group [B]. Ewvery [Bl-lower semi-continuous pseudonorm defined
on |B| is [Bl-continuous.

Proof. In view of the Proposition 6 it is sufficient to show that every

[Bl-lower semi-continuous pseudonorm {1is bounded on at least one open
subset of [V].

We have
(=]
1B = ﬂU1 {@e||: o) < n}
and since [|-]| is lower semi-continuous, every {z¢|3|: llzll < m} is closed

in [B]. Furthermore, [B] is of the second category and then at least
one of {x<|B: |jz] < n} is not nowhere dense in [B]. Hence there is 7,
and an open subset U of |B| sueh that |z < n, for we U and the Theorem
follows.

In order to prove some other properties of pre-(&#)-sequences we shall
need certain new notions.

) Consider two pre-(# )-sequences B; (i = 1,2) and a linear map-
ping T of |B,| into |B,|.

@ ©
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The mapping T' is said to be nearly-open iff the following condition
holds:

1. To every &> 0 there correspond 7% > 0 such that
Cly, THg, (¢) > Kg, (1),
where Clg, denotes the operation of closure in [B,] and Kg,(r) (¢ =1,2)
are defined according to Proposition 5.
The mapping T is said to be open iff the following condition holds:
2. To every ¢ > 0 there correspond 5 > 0 such that

TEg, () = Eg,(n),

where Kg () are defined according to Proposition 5.

The mapping T is said to be complete-closed iff the following condi-
tion holds:

3. If {w,} = |B,| satisfies the Cauchy condition in [V,] and the se-
quence {T#,} tends in [B,] tq some y&|B,|, then there exists x¢|B,| such
that {,} tends to 2 and y = T.

The mapping T is said to be closed iff the following condition holds:

4. If {z,} = |B,| tends in [B,] to some z¢|V,| and {Tx,} tends in
[B,] to some ye|B,|, then y = Tu.

The coming proposition will explain the notion of nearly open and
open mappings entirely in terms of elements of participating pre-(#)-se-
quences.

PROPOSITION 8. Consider pre-(F)-sequences B, (¢ =1, 2) and a linear
mapping of | By into |B,).

A. The mapping T is open if and only if the following condition holds:

5. To every n and e > 0 there correspond m and 7 > 0 such that

TKy,n() = Egym(n),
where Kg,po(r), ¢ =1, 2, are defined according to Proposition 5.
B. Define
Srp(¥) = {@e|Byl: Trey+ [pBa|} ~ Ky, nl(r).
The mapping T is nearly open if and only if the following condition
holds:
6. To every n and every e > 0 there correspond m and n > 0 such that
for every YKy m(n) and every p we have
a. 8, ,(y) is non-void, .
b. T8 p—¥Yllw,o = IDE{|T2—Yllg,p: ©<Saz(y)} = 0.
Proof. Let us put briefly Kg,(r) = K;(r) and Kg,»(r) = K;p(r)
for ¢ =1,2.
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Ad A. Suppose that 2 holds and fix any ¢ > 0 and natural x. Then,
using A of Proposition 5 we find ¢ > 0 such that K,,(s) > K,(¢') and
then, applying 2, we find »' > 0 such that TK,(s') > K,(%'). Applying
again Proposition 5, but now part B, we find 5 > 0 and m such that
Ki(n') > Kym(n) and we finally get TK,,(e) = Kyn(y). This proves
the implication 2 — 5.

Let conversely 5 hold. Applying B of Proposition 5 we find that to
any fixed &> 0 there correspond &' > 0 and natural » such that K,(e)
> K,,(¢') and then from 5 we find %" > 0 and m such that TE,, (&)
=) Kl:’m(ﬂl)' Now, from A of Proposition 5 it follows that there is 4 > 0
such that K, (7') > K(n) and consequently TK,(¢) > K,(5) which
shows that 5 implies 2 and concludes the proof of the first part of Pro-
position 8.

Ad B. Write §,(y) = {2¢|By|: Twey+ |pB,|} ~ K, (r).

From Proposition 5 it follows that 6 can be replaced by the following
equivalent conditions:

7. To every e > 0 there correpond 7 >0 such that for every ye<K,(n)
and every p we have

a. S,(y) s non-void,
b. inf{|T2—yllg,»: eSu(y)} = 0.

Indeed, suppose that 6 is satisfied and take arbitrary & > 0. From B
of Proposition 5 it follows that there are ¢ > 0 and » such that K a(8)
> K,y (&'). From 6 it follows that there are %' > 0 and m such that for
ysK},m(n’) and every p we have 8% ,(y) non-void and inf {{| T —ylls,
2eSy,(4)} = 0 and then from the previously introduced inclusion we
conclude that for y e K, ,, (n') the set 85 (y) is non-void and inf {72 —ylly, »:
ze8;(y)} = 0. Now, from B of Proposition 5 we find 7 > 0 such that
Kim(n') > Ky(n) which proves together with the previous facts that
a and b of 7 hold for the ¢ and ». Hence 6 implies 7.

Suppose, conversely, that 7 holds and take arbitrary & > 0 and na-
tural #n. From B of Proposition 5 we find &' > 0 such that Ky (e) o Kyfe",
From 7 it fo}lows that there is #' > 0 such that for y ¢ K, (5') and every p
we have S8j(y) non-void and inf{HTm—yH%l,p:meSfj,'(:l/)} = 0. Applying
the above-given inclusion we find that for yely(n') and every p we have
875(y) non-void and inf{]|Tm~yH%1,p: weSy(y)} = 0. Using B of
Proposition 5 we find % > 0 and natural m such that K 1(n) 2 Kym(m)
and we conclude that a and b of 6 hold for the ¢, nand 5, m. This establ.
ishes the implication 7 6 and then also the equivalence of 6 and 7,

To finish the proof of B of Proposition 8 it is gufficient to notice
that T8} (y) = (y+pB,) ~ TE,(r) and then, by virtue of B of Proposi-
tion 1, 7 amounts exactly to 1, i. e. states that 7' is nearly open.

This way Proposition 8 has been proved.
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It should be mentioned that Proposition 8 has been introduced
only for the explanatory purposes, i. e. to show how great a simplification
it is to use the concept of the assigned group instead of translating everyth-
ing on the language of sequences of pseudonormed spaces. Though we
expect to use Proposition 8 in some other ocasions, it will not be used
in any proof given in this paper thanks to the application of this efficient
tool which is the assigned group.

ProrosIrion 9. Consider a pre-(F)-sequence B. For every &> 0 and
every natural p we have

D] = U {@elB): galafm) < e+277}.

Mm=1
Proof. If z¢|p<B|, then lim gy ,;(z/m) = 0 for 4 = 1,2, ..., p and for
n

any given & > 0 we can find m such that

”
22‘193,i(m/m) < &.
=1

Then

oy(afm) < et Y 27 =et27P
i=p-1
which proves our assertion.

PROPOSITION 10 (Banach [1]). Consider pre-(F)-sequences B, (i =1, 2)
and a Uinear mapping T of | B, into |B,|. If to every p there correspond
k,, such that T |p<B,| s of the second category in [k, B, ], then T is nearly open.

Proof. From Proposition 7 it follows that we can put all &, equal
to 1. Let g; = gy, for ¢ =1, 2. Take any ¢ > 0 and let p be such that
e/4 > 27", From Proposition 9 it follows that

o0

PBsl = U {#]Byf: 0alm/m) < &/2}.

Mm=1

Setting H,, = T'{x¢|B,|: pa(z/m) < &/2} we obtain
T1pB,| < L)IHm

Sinee T'|pDB,| is of the second category in [B,], there exists m, such
that H,, is not nowhere dense in [B,]. Hence, there arﬁ Yoe|B,| and r >0
such that Hy o {ye|By|: 01(¥— o) < 7}, where G~ = the closure of G
in [B,]. _

From now on we repeat the proof given in [1]. It follows t]%a,t I:Il
> {ye|Bil: 01 (y—Yo/mo) < 7jme}. Indeed, o;(y—yofmo) <7[m, implies

e1(MmeyY—Y,) = 01("”'0(9_?/0/”"0)) < M 01 (Y—Yofme) <7
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and then myyeH, or, finally, yeHy. There exists y,cH, with 0:(y
—My—Yy) < 7 gr/2m0. Then

0—

Y €1B1l: 01 (y—yo/me) < rme} o {y¢|Bul: o1 (y—11) < 7}
and
Hy o {ye|Bil: o1(y—w) < 5}
Take ye|%| with e.(y) <7. We have 1> 0,(y) = o ((y,— )~ )

and then y,—yeH7. Hence y—v, eH;, further Yey—Hy = (y,—H,)~
and we conclude that

(%) YelBil: 0(y) < my = (y2—Hy).

Moreover, if y = y,—wuey,—H,, then there are @y, Ve|B,| with
gz’(wl), 02(v) < /2 such that y, = Tw, and « = Twv. Betting 2 = 4, —v
wé have y = Tw, where g,(2) < 02(@1)+ 0:(v) < e and we find that

(%) Yi—Hy « T{we|By: 0:(®) < &}.

Joining together () and (%*) we obtain

Ko = {yelBil: e2(y) < n} = Oly, T{we(B,]: 0,(2) < ¢} = Ol K (e)

and then the Proposition is proved. )

Here comes a statement which explaing the connection between
complete-closed and closed mappings. i

P.ROPOSITION 1:.L. Conisder pre-(F)-sequences B; (t=1, 2) and a Unear
mapping T of | Byl into |B,|. If [B,] s complete, then T is complete-closed
whenever it 4s closed.

Proof. This is a triviality.

The nezAtt proposition, which is originally due to Banach, explains
th.e con.nect.lqn between nearly open and open mappings and together
with PI'OpOBltl(.)n 10 appears to be the essential part of the theorems known
88 open-mapping and closed-graph theorems.

PR.OP];)SITION 12 (Banach [1]). Let DB; (i — 1,2) be two pre-(F)-se-
quences. Lvery complete-closed nearly open linear mappi )
Lt oo 7 pping of |B,| into
' Pro.of. The proof is the almost exact repetition of that given by
Ba.na;eh in [1] but because of some necessary rearrangements of the Ba-
nach’s proof we should like to repeat it here in full.

Let 9«:20.*8‘; VAGEY¢ (r) for 4 =
i B; or 7 =1,2, take
7w >0, be such that lim#, = 0 and " ¢>0 and teb {n},
n

(%) Clo,T{2(By|: 0a(2) < 27"} > {y<|By): g, (9) < 7}
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Put 7 = 7, and let yeK, (7). We can always find o, ¢K,(2~%) such
that @,(y—T®,) < #%,. Suppose we have found #,...,,_, such that

(o) o1(y —T (@ 4.+ @)} < 7y and @K, (2 %) for i=1,...,n—1.

If such is the ease, then applying (+) we find @, from K,(2 ") such
that o ([y—T (w1+... 4+ @ _1)]—T%,) < 7,4, and it follows that we can
define by induction a sequence {x,} satysfying (xx) for each m. Setting
T, = & +...+ o, we find that {#,} satisfies the Cauchy condition in[ B,]
while {T%,} tends to y in [B,]. Since 7 is complete-closed, there must
be the limit # of {%,} in [V,] with y = Tx. We have

0:(%) <

o
n=1

o0
ox(y) <& 22—1» =&

n=1

and then xeK,(s) which completes the proof of Proposition 12.

We are provided now with all the necessary informations to express
the main results, i. e. the open mapping and the closed graph theorems.

THEOREM 2 (The Open Mapping Theorem I). Consider pre-(F)-se-
quences By (1 =1, 2) and a complete-closed mapping T of |B,| into |B,].
If to every p there correspond ky such that T |pB,| is of the second category
in |k, By, then T 4s open.

Proof. It follows after succesive application of Propositions 10
and 12.

THEOREM 3 (The Open Mapping Theoreny IT). Consider (F)-sequences
B; (1 =1, 2) and a closed mapping of | Byl into |Byl. If to every p there
correspond k, such that T|pB,| o [k,Byl, then T is open.

Proof. This follows from Theorem 2 after application of Proposition
11 and the Baire theorem on categories.

COROLLARY. Let B; (i =1, 2) be two (F)-sequences, B, > B,, such
that to every p there correspond ky, such that |pB,| o [k, B,|. Then B, > B,,
i.e. B, and B, are equivalent.

Proof. Since B, is finer than BV,, there exists p, such that [p,B,|
= |B,| and the identical injection of [p,B,] into [B,]is continuous. De-
note this injection by 7. Of course T is closed and T'[pB,| = k,B,| for
P = p,. This means that the assumptions of Theorem 3 are satisfied and T
must be open as a mapping of [p,B,]into [B,]. Therefore we have |¢,3,]|
c |QB,| for some ¢,, the identical injeetion I~ of [¢,B,] into [B,] is con-
tinuous and the Corollary follows.

TEEOREM 4 (The Closed Graph Theorem; cf. [2]). Let B; (i=1, 2)
be twd (F)-sequences. Bvery closed mapping of |B,| into |By| such that every

[pB,] contains some T [k, By, is° continuous.
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Proof. Let L = {w¢|B,|: Tz = 0}, The mapping T can be factorized
to a one-to-one closed mapping T of |B,|L| into |B,|. Here L is closed
in [QB,] and then B,/L is an (F)-sequence. Denote by ¥ the image of T'
in [B,] and let B = {(¥ ~ 0B, | llg,w)}- The mapping 71 i closed,
maps |B| = Y onto [B,| and, moreover, i"‘lrp%ll > |k (B, /L))

Applying Theorem 3 we find that 71 is open, consequently T i
continuous and then 7' must be continuous as well which finishes the proof
of Theorem 4.
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Basucibie mocieoBATENLHOCTH, GROPTOrOHAIBHbIE CHCTEMbI H HOPMHDYIOHIHE
MHOeCTBA B HpocTpancrsax Bamaxa u ®peme

M. M. KANEIl (Xapskos) u A. IEJYHIIBCKU (Bapwasa)

B monorpafuu Banaxa [1], crp. 238, nphnonmcg Ge3 moKasaTeNbCTBA
PesyunTar, 4ro Ji06oe GeckOHEYHOMEPHOE GAHAXOBOE IPOCTPAHCTBO CO-
NEpPIKAT  GEeCKOHEYHOMEPHOe 3aMKHYTOe IIONTPOCTPAHCTBO C 6A3UCOM.
Hauwnasn ¢ 1958 rona moABMWIOCH B JIATEPAaType HECKONLKO OKA3ATENHLCTB
aroro ¢awnta ([12], [2], [4] u [9]). Kar norasauno B [2] u [4] pesymbrar
Banaxa ocraérca BepHBIi Tawke B Cilydae J060r0 6eCKOHEYHOMEPHOTO
npocrpancrsa @peute (= IOKANBHO-BRIOYKIOrO, NOAHOIO, JIWHEHHO-Me-
TPHYECKOTO upocTpancTa). [loxasatenbcrBo, manHoe B [4], OCHOBaHO
Ha HeomyOIMKOBAaHHOM RoKasaTelbcTBe Masypa muna npocrpaders Banaxa,
HBIIOMEHHOM MM Ha ONHOM M3 3aceJaHHit ceMHHAPA 110 YHKIHOHAILHOMY
apanusy B BapmasckoM VYrusepcuTere B 1955 romy. Hemasmee moxa-
3arenbeTBO [IaA ycmiruBaer pesyisrrar Banaxa, nokassisas, uTo B I060M
GecroneyHoMepHOM (aHaxXOBOM IPOCTPAHCTBE X CYLIECTBYET GUOPTO-
TOHAIBHAA CHCTEMA (%, , @) TaKas, uTo ||z, =z} =1 (n =1,2,...)
¥ I0CTeoBaTeNbHOCTh (&,)-0a3ucHad, T.e. obpasymoumasa Gasuc B IOM-
npocrpancTse ImpocrpaHcTBa X. JIpyrme KOHCTPYKLMH DAasHBIX BHJIOB
OMOPTOrOHAJLHEIX CHCTeM H GA3MCHHX IOCIEe0BATeIbHOCTEH MOKHO
nafitu B paborax [18], [19], [20], [33] m [7]. B paGore [18], cMm. Tome
[43], mokaspiBaeTCA CYyIECTBOBaHUE B J1060M GeCKOHEYHOMEDHOM IIpO-
crpancTBe Banaxa X YCIOBHEIX GasMCHEIX IIOCIEI0BATEIBHOCTeH, T. e.
ofpasywomux He GesycioBHsi ([10], crp. 73) 6asuc B nonmpocrpancree X.
C mpyroii croponsl, B [7] noxasaro, uro B JMo6oM mpocrpancrse Dperue,
KOTOpOe He M30MOPYPHO HUKaKOoMy 6aHAX0BOMY IIPOCTPAHCTBY, CYUIECTBY-
er feckoHeunas OesyclopHas GasHcHAas IOCHENOBATEILHOCTL (HATATH-
Bajolad AxepHoe mpocrpancerso). Bompoc [3], [9], [41], cywectByer
¥ B NPOM3BOILHOM GeCKOHeUHOMePHOM 6aHaXO0BOM IPOCTPAaHCTBE Gecro-
HeyHAsA GesycioBHAA (a3ucHAA IOCIENOBATENLHOCTh, 0CTAETCH OTKPHITHIM,
U, NOBMIEMOMY, SBJIAeTCA TPYHHEIM. JIpyrme HepemHHbIE = BOIPOCH
MOKHO HaiiTh B peepare [41] m B o630pHoit cratbe 3umrepa [46]. C mo-
MOIN 6a3UCHBIX TIOCIENOBATENHHOCTEH M GHOPTOrOHANBHEIX CHCTEM MOFK-
HO IONYYWTH DPasHble XapaxrepHcTHKE pednexcusHocTH. Tak Hampumep,
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