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Summary. A new method is given for determining the reactive force on a cir-
cular cylinder in uniform translatory motion, and for calculating the flow field near
the surface. The underlying idea consists in the exploitation of special properties of
a general representation formula for the solution. The result for the force is identical
to one originally obtained by Lamb, although the present analysis i8 based on differ-
ent principles. The analysis is formally justified by a uniqueness theorem.

1. An infinite circular cylinder Z immersed in a viscous incom-
pressible fluid which fills all space outside the cylinder, is translated
with (small) constant velocity — U in a direction orthogonal to its axis.
One seeks to determine as much as possible about the motion. It will
be assumed that the motion proceeds in the planes of orthogonal sec-
tions of Z and that the velocity field is the same in each such section.
It will further be supposed that at points whose position relative to Z
remain fixed in the motion, the vector velocity is time independent.
Viewing the motion from a Galilean frame attached to the cylinder,
one is then to find a solution [w(x); p(2)] = [{wy(@1, @5), ws(T,, Ta)};
p(@,, @,)] of the “Navier-Stokes equations”

1) pudw— ow -Viw—Vp =0, V-w-=0

such that w = 0 on the circumference Z: #;+a3 = a’, and such that
w—>(U,0) at 2z = co. Here w = velocity, p = pressure, u = viscosity
coefficient, o = density. Since the motion is supposed slow, it is natural
to study first the same problem for the approximating “Stokes equations”,

(2) pldw—Vp =0, V-w=0

which are obtained from (1) by neglecting terms which are quadratic
in w and its derivatives.

As is known (cf. [1], [2]), there is no solution to this problem; in
fact there is no field w(z) for which (2) holds outside Z, such that



360 R. Finn

w =0 on Z and |w| = o(logr) at infinity. This is the “Stokes Paradox
of hydrodynamics.

2. The ‘“Paradox’ has been clarified by Oseen ([3], p. 165]), who
showed that there is a non-uniformity in the perturbation process, so
that the physical assumptions underlying the perturbation are violated
at infinity. As a way to avoid the difficulty, Oseen proposed the linear-
ization of (1) about the flow at infinity, which leads to the system of
“Oseen equations”

(3) pr—ﬂF%—Vp=0, V-w=0.

A solution of (3) for which the boundary condition on Z is approxi-
mately satisfied has been given by Lamb [4], who then obtained for
the force of reaction of the fluid against the body,

4) T 8ruU -
1—2Mg%r

where logy = Euler’s constant, ~.577, and Re is the Reynolds number, Re
—= oUa/u. For the (non-dimensional) “drag coefficient” Cp = T (4eU%)”’,
Lamb’s solution thus yields

16w

Re (1 —2log 1%6—)

(5) Cp =

3. The motivation for the present paper rests on the fact that
a solution of (2) in three dimensions which represents a flow past
a sphere has been obtained explicitly (Stokes [1]), and that although
this solution is in some ways physically unrealistic, the calculated
reactive force is asymptotically correct for small Re. (This has been
shown rigorously in [5], [6].) It seems therefore natural to seek a solution
of (2) exterior to a cylinder Z, which, although singular at infinity,
would satisfy the boundary condition exactly and would be sufficiently
meaningful near Z to yield sensible values for integrals of the motion—
notably the reactive force—at low Reynolds numbers. I shall show that
such a solution can be selected from among a family of singular solutions

w, = A[——z log% + cos26 + aﬁr"zcosza] ,
(6) w, = A[sin20+ a*r—%sin26],

p =4A‘uco:0
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all of which satisfy w, = w, = 0 for r = a. These solutions, although
not appearing in Stokes’ paper, were certainly known to him. The prob-
lem centers on a judicious choice for the parameter A.

4. One computes easily that the reactive force on Z, per unit
length, is directed along the x-axis and has the magnitude

(7) T =—8nd.

With this in mind, we may now state a basic uniqueness property in
a form appropriate for this paper.

UNIQUENESS THEOREM. Let w@, w® be solutions of (2) exterior to Z
such that w@ = w® on Z, such that |w@|, |\w®| = o(r) as r >oo and such
that both solutions vyield identical values of reactive force on Z. Then
w©@ = w'® throughoul the flow field.

Thus, since (7) shows that A may be chosen to yield any desired
value of T, we find that (modulo a rotation of coordinates) the family (6)
contains every solution [w(x), p(2)] of (2), such that \w| = 0 on Z and such
that |w| = o(r) at infinity.

Proof. I appeal to Theorem 1 of [2], in which the general repre-
sentation

(8) w(x) =wy+ x(z) - TH+O(r 1)

is established for any solution w(x) of (2) in a neighborhood of infinity,
for which w(x) = o(r). Here I is the vector net reactive force on an
inner bounding surface, y(z) a fundamental solution tensor associated
with the system (2), and w, a uniquely determined constant vector.

The difference w(x) of two solutions which are equal on Z, both o(r)
at infinity, and for which I is the same, would then admit the repre-
sentation

w(z) =wy+0(r?).
From Theorem 2 of [2] one then concludes w(x) = 0 in the flow region,
which establishes the stated result.

S. In what follows, it seems conceptually best to write (2) in non-
dimensional variables. In order to avoid cumbersome notation, the same
symbols will be used. Thus z, w, p will now signify, in the old variables,
%, %, ;‘% p, respectively. Equations (2) become
(2%) Aw—Vp =0, V-w=0

and the Oseen equations (3) take the form

(3%) Aw—Re2® _pp—0, V.w=0.
’ 3.’&‘1
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The general representation for solutions of (2*) which are o(r) appears
as before,

(8%) w(x) = wy+ x(x) - T+0(r )

where all quantities are now non-dimensional.

The crucial remark is the following: in the case of three-dimensional
solutions of (2*) or of (3*), the constant w, has the physical interpre-
tation of (non-dimensional) velocity at infinity, that is, w, = lim w ().

T—0

In the two-dimensional case, even though the solutions of (2%*)

w, = A[—2logr+ cos264-1r"2 cos26],

(6%) w, = A[8in26+r2s8in26},
_ ¥ cos
p=44=-—

do not approach limits at infinity, the same formal procedure leads
again to a constant w,, and it is natural to interpret this constant as
a velocity at infinity in a generalized sense. Recalling the non-dimen-
gional character of the equation, we seek a solution w(x) of (2*) from
the family (6*), such that w(z)—>(1,0) at infinity in that sense. The
normalizing vector (U, 0) is then to be interpreted as the physical
velocity at infinity.

6. A difficulty appears in the fact that in the case considered, the
value of w, in (8*) depends on the particular choice of the fundamental
tensor y(x). It is natural to choose this tensor to be defined everywhere
except at the singular point, and such that all components are o(r) at
infinity. In this case, the material of [2] shows that the components
xi necessarily have the form

T
r2

1
X = - [5” logr — + 011]
where O are constants which may depend on Reynolds number,
Ci; = Cy(Re). For any choice of Cy, one computes from

(7*) T = —8=4

and from (6*) and (8*) that corresponding to the desired limiting wvelo-
1

_m' Thus for the non-dimen-

city must hold €, =0, and 4 =

sional reaction on the cylinder,

8w
1—2011 )

$=
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It is evident that nothing has been accomplished except to transfer
the difficulty from the choice of the arbitrary constant A to be choice
of the arbitrary constant C,,. However, there is a natural way to choose
this latter constant, which simultaneously takes account of the inertial
reaction of the fluid elements. To do 8o, consider the fundamental solu-
tion tensor 3 of (3*). In this case ¥ is uniquely determined by the con-
dition that its components vanish at infinity. Near the point z =0,
these components admit the representations (cf. [3], p. 38)

R
-’»Uiza?j -+ 6”10g}’ T@ + 0(’)'_1)] .

- 1
X5 = E[aglogr -

Comparison with the above formula for yx suggests the identification

Gu = 6(; log;f:—e
from which one obtains the drag coefficient,
Cp— 16w .
Re (1 —2log 7T

This result is identical to the one obtained by Lamb (equation (5)),
but its derivation has been based on different principles.

7. There is apparently a contact between the procedure given above
and the method of Kaplun {7], in which it is sought to approximate
a solution of (1) (supposed to exist) by two separate expansions, valid
respectively near the body and near infinity. The coefficients in these
expansions are determined by a matching procedure in an intermediate
region. The similarity appears in the determination of the Cy by
a process which can be considered as a matching of the fundamental
tensors associated with (2*%) and with (3*). However, the particular
interpretation I have given to the constant w, does not seem to
have any counterpart in other theories. It should be noted that the
reactive force is calculated from a solution which satisfies exactly
the condition on Z, whereas in the work of Lamb this boundary con-
dition is fulfilled only asymptotically as Re—>0. A comparison of this
and of other results with experimental measurements has been given
by D. J. Tritton [8].

The stimulus for this paper arose in conversation with Professor
G. S. S. Ludford, to whom I am indebted. I should like also to
thank Professors I. Dee Chang and M. D. Van Dyke for helpful dis-
cussions.
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