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THE TIME TRANSPORTATION PROBLEM

1. Introduction. Given: a system (7, M) where T = {i;} is a mxn
matrix with ¢; > 0 and M = (8, ..., Gm; by, .-, bn) I8 & system of m+n

n
positive numbers a; and b; such that > a; =12 b;.
t=1 =1

Consider an mxn matrix X = {z;} where z; > 0 and satisfy the
conditions

n
Zmii=“i7 i=1,...,m,

j=1

(1) m
Zwﬁ=b,-, j=1,...,'n,.

9 i=1

By 0x we denote the set of all (¢, ) for which #;; > 0. The problem is to

find a matrix X which satisfies (1) and minimizes

(2) tx = max i;.
(iNdx

Every matrix X = {x;} where x;; are non negative and satisfy (1) we
call a solution. By an opiimal solution we mean each solution minimiz-
ing (2). One can give the following interpretation to this problem. There
are n suppliers which offer some product in amounts a,,...,a, for n
econsumers who need that product in amounts b,, ..., b,. It is assumed
that the supply and demand ftotals are equal.

By t;; we denote the amount of time necessary to deliver any amount
of the product from the ¢th supplier to the jth consumer. By X = {z;}
we mean a transportation program where #; denotes the amount of the
pProduct to be sent from the ¢th supplier to the jth consumer.

Then ix is the time (operation time) necessary to perform the whole
transportation program.

The problem, which will be called the Time Transportation Problem
(TTP), is to find a transportation program whose operation time is mini-
mal.
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The TTP was posed and solved in 1959 by A.S. Barsow ([1]). The
method of solution is based on the simplex method. E. P. Nesterov ([3])
solved this problem by an adaptation of Kantorovitch’s linear program-
ming method. In [3] there is also given a method by I. W. Romanowski
based on the reduction of TTP to a classical transportation problem
with a cost matrix changing in the course of the iterative solving
procedure. W, Grabowski ([2]) solved the TTP by transforming the
problem into a single classical transportation problem.

This paper presents a method of solving the TTP based on the theory
of graphs as developed in [4].

2. Definitions and theorems. Let & be the set of all points (%, j),
t=1,...,m,j =1,...,n Any subset 2 of @ we call a set of nodes. Two
nodes (i1, j1), (45, jo) are said to lie on one line if i, = i, or j, = j,. Two
nodes of £ are neighbouring if they lie on one line and between them
there is no node of 2 on the same line. Let p and ¢ be two neighbouring
nodes. By a link pg we mean a straight line segment of end-points p
and ¢. We assume that pg = ¢p.

A graph G, is called a sel of nodes 2 and a set of all possible links
in Q. Graph @ 18 a subgraph of G, if Q' = L. By a route p,— py we mean
a sequence of different links p,Ps, P2Ps, ...; Pr_1 Pr Where every two
consecutive links are perpendicular and at most two nodes of the route
are on one line. By a cycle we mean either a route p,—yp; where p, = p;
or a graph G, where I' is the set of all nodes in the route p,— p;. We
say that G, contains a cycle if there exists a subgraph of G, which is
a cycle.

G, is said to be connected if to any two nodes of 2 there exists a sub-
graph (of G;) whose all links form a route p—¢q. We then say that G,
contains a route p—yq.

Let B be a subset of @ consisting of m+-n—1 nodes. B is called
a basis if G contains no cyecle.

It is known ([4]) that G5 is a connected graph. It is also known ([4])
that to each basis B there exists exactly one matrix ¥ = {y;;} whose
elements satisfy (1) and also the conditions

yy =0 for all (i,)¢B.

If in addition all y;; are > 0, then Y is called a basie solution and
B — a feasible basis. Such a solutlon we denote by X(B) = {x5}.

Let (%,1)eB. Consider Gp_,y- It i8 easy to see that this graph
consists of two connected subgraphs, say Go, and G,,, where &, and £,
are two digjoint sets (one of these sets may be empty). By £2, we mean
either an empty set if (%, I) is the only node of B in column [ or that set
which contains a node in column 1. ‘



The time transporiation problem 233

By I, we denote the set of rows, and by J, the set of columns, of the
mXn rectangular table in which lie the nodes of Q,. In a similar way
we define the set of rows I, and the set of columns J, which are determined
by £,. :

Let I be the set of all rows and J the set of all columns of an mxn
table. Further let I, = I—-1I,, J, = J—d,.

We now introduce the following definition of a set ¥ (¥ < @)

(3) Y= I, xJ,—(k, 1).

Given a basis B and a node (%, l)eB, the set ¥ is uniquely determined.
To examine the properties of ¥ take an arbitrary element (¢, j) of ¥.
Then ([4]) Gz, contains exactly one cycle, say G, and the follow-
ing theorem holds:

THEOREM 1. The node (k,1) belongs to I' and both routes (i,j)—(k, 1)
of Gp consist of an even number of modes.

Proof. First a remark. From the definition of 2, and 2, it follows
that horizontal (vertical) links in G5 leading to. (k, 1) connect this node
with the nodes of 2, (£2,).

To prove that (k, 1) eI it is sufficient to show that Gz, contains
two different routes (i, j)}—(%k,7) with no common nodes except (i, )
and (k,1). Then both routes form a cycle. Now consider G4kl +(id).
This graph is connected and contains no cycle. Therefore ([4]) this graph
contains exactly one subgraph, say Gy, whose all nodes form a route
(2,5)—(%k, 1) of one of two kinds (Fig.1).

In the first case Q, is empty and (%, j) consists of one segment. Con-
gider now the second case. The first and the last segments in (¢, j)—(%, 1)

are vertical. This follows from: 1) the re-
mark given at the beginning of the proof,
2) the fact that in column j there is at

(ki) |
(k) (kt)

(ly/) (f,j) (f,j) (k,l) (f,j)
7M=497
Fig. 1 Fig. 2

least one node of Q, (see the definition of ¥) and in row ¢ there is no
node of 2,. It is easy to prove (by induction) that the number of nodes
in this route is even.

Now consider Gyt e y+(d): This graph is also connected and
without cycles and therefore ([4]) contains exactly one subgraph, say G,
whose all nodes form a route (¢, j)—(%,?) of one of two kinds (Fig. 2).
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In the first case 2, is empty. So, as before, one can show that (%, 1)
—(¢,j) consists of an even number of nodes (here the first and last
segments are horizontal; (¢, j) is the only node of 2,4 (4, )+ (k,1) in
column j, in row ¢ there is at least one node of 2,4 (%, 1)).

Since (¢, ) and (%, ) are the only nodes which belong to both routes
(8, §)—(ky 1), G 4o, 18 & cycle. Since @p,;; contains only one cycle
Gr, we have I' = 6, 0,. Thus the theorem has been proved.

Let us introduce, instead of (3), a set ¥’ defined as follows:

(3’) W'=I1XJ2-

Then the following theorem is true:

THEOREM 1'. The node (k, 1) belongs to the cycle contained in Gp,uy
and both routes (¢, j) — (k, 1) of this cycle consist of an odd number of nodes.
The proof of Theorem 1’ is quite similar to the proof of Theorem 1.

Remark. Let (i, j) be an arbitrary element of the set &— (B+¥+
+¥’). Gp,q,5 contains, as was said before, exactly one cycle Gr. One
can prove that (%, l)¢I.

Let X(B) be a basic solution and such that 5 > 0 (then (%, l)e B)
and let I7 be any set disjoint with B.

By a II solution we mean each solution of TTP which satisfies
additional conditions

2y =0 for all (3,j)ell.

We can state the following

THEOREM 2. If ¥ < IT then there exists no IT solution X = {wy} whose
element xy,; = 0 (Y).
Proof. First the following remark. It is easy to show that

5 bj—uZa,i if £, is not empty;
T = { JeJy il
b if 2, is empty.

If 2, is empty, then x;; is equal to b; (b; > 0) for all cells in column 1
except (&, !) belonging to ¥, which is a subset of I7. Let us turn to the

case where £, is not empty. Then af; = Y b;— Y a; >0. Assume now that
?.GJ 1 ‘icIl

there exists a solution X = {x;;} where @ = 0. Consider all columns
of J,. Since ¥ < IT and @ = 0, all positive x;, jeJ,, can appear only
in rows belonging to I, (see Fig. 3.)

Remark. All black nodes belong to 2,, all white nodes belong to 2,
and ¥ is the set of all crossed cells. Here (k,1) = (2, 4).

(*) One can prove even & stronger theorem: If W II, then there exists no IT
solution {zis} whose eloment i is < x5,
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- Su= 3 Seus 3 Say = Sa

jeJy tely jeJy iell jeJ
which contradicts the assumption that
wfz = Zb,'—- Zai > 0.
jeJy tely
This contradiction implies that the theorem is true.

| b

*r—— a,
—- (F ]l"— l 02
— o ' adlG
4
— | cL a5
ZM-498
Fig. 3

3. Method of solving the TTP. The method of solving the TTP is
the following.

1. Find an initial basic solution X(B,) by any of the known methods
(for example by the minimum row method).
2. Find ix) = max &y =1y. Define II, as follows:
(tNeox(B,))
AL = {(8,5)1(8, )¢ By, by =t}
and consider from now on I7, solutions only.
3. Find ¥. There are two cages:
(a) ¥ < II,. Then X(B,) is the optimal (and basic) solution of TTP.
This follows from Theorem 2.
(b) !I’I_L # 0 (2). Then proceed to

4. Find min #y = py,. Graph Gp g contains exactly one cycle,
(i!’)‘wl_zl
say Gp. Divide I' into two subsets I, and I, assigning neighbouring

®) I, = &—11,.
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nodes of I' to different sets and assigning (p, q) to I';. Then (%, I) belongs
to I'; (this follows from Theorem 1).

5. Find min 25! = % = 5!, determine a new basis B, = B,+
(‘l:,f)crz
+(p, g)—(r, 8) and a new basic solution X(B,) = {#{?} defined by the
formulas

o +E i (5,§)ely,
ot =\ wip—% it (i,])ely,
! it (4,5)¢0.
6. Repeat steps 2-5 for B, with the restriction to /7, solutions only,

where
I, = {(¢, )12, j) ¢ By, ty = txmy}
and continue this iteration until in the sequence
(4) X(By), X(By), ..., X(Bs)
either we obtain an optimal solution X(B,) (which will be established in

step 3) or X(B,) = X(B,) for an r < s.
In the latfer case proceed to step
7. Perform a perturbation, i.e. solve by using steps 1-6 the TTP
for a system (T, M) where M = (G,,..., @m; b1y ..., bs) and
ﬁ,-:a,i-l—s, ‘I;=1,...,m;
- bs, j=1,...,,n—1,
by = ]
by+me, j=mn,
where ¢ is a positive number chosen in such a way that for all possible

sets I*, J* — which are real subsets of I and J respectively — the
following relation is satisfied ‘

(%) Zﬁi #* 2 b;

ted* feJ*

(it is known ([4]) that we can always choose such a number g, that (*)
is satisfied for all ¢ from the interval <0, ¢,). Setting zero instead of ¢
in the optimal solution of this problem we get the optimal (and basic)
solution of the original problem.

Let X (B;) be the optimal solution of TTP. Take any II; solution X
of TTP. Then X is also an optimal solution of this problem, because
txgy) =1tx =ta (80 ®y >0 and a7 > 0).
The following theorem ig true.

THEOREM 3. If TTP is solved by the method given in steps 1-7 then the
number of iterations leading from X (B,) to the optimal basic solution is finile.
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Proof. The number of all bases is finite because it is less than

mi+n—1
g0 the set of basic solutions is finite. This implies that there exists at
least one basic solution minimizing (2). The solution procedure of TTP
orders the basic solutions X (B,) (which form the sequence (4)) in such a
way that

( o ) To each basis there exists at most one basic [solution, and

(8) Ix@B,) 2 1xByyyr 8 =1,2,...,
where also
(6) Hscﬂs+1, 8=1’2,..-

Suppose that the TTP has been solved without using step 7. Then (4)
congists of different elements and therefore is a finite sequence, q. e. d.

Suppose now that we have solved the problem by perturbation
getting a sequence :

(4) X(By), X(Bs)y cvvy X(Bu)y oovy X(By),...

where X (B,) are basic solutions of TTP for the system (7', #). Here (5)
and (6) are also satisfied.

All we have to do is to prove that (4’) consists of different basic
solutions. Suppose to the contrary that in (4’) appear two identical solu-
tions, say X (B,) and X (B,), where v > w. Then we must have: B, = B,.

It is known ([4]) that for each basic solution X (B,) of the perturbed
problem we have

(7) e >0  for all (3,j)eB,.

Let txp,) be equal to #;. Then (k,l) belongs not only to B, but
also to B, (otherwise B, would not be identical with B,). Consider wge
for 8 = u,...,». From step 6 and also from (7) it follows that the value
of af decreases as ¢ increases (if zpe+l = wie then Z (see step 5) is equal
to zero, which contradicts (7)), which is inconsistent with the assumption
that zp* — xp®. So(4’) consists of different solutions and therefore is
& finite sequence. This completes the proof.

4. Example. Let us consider a 4x5 TTP

6 14 9 I8 7 11

9 13 10 14 16 7

s | 1| 12| o 10] s

15 16 12 7 19 53

L] 4 8 10 3
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The numbers a; and b; are on the right and below the matrix T
= {l;} respectively.

First using the minimum row method we find the initial solution
X (B,)

Here ixp,= maxX ty =1, =16. So I, = [(1,4),(2,6), (4,6)]. We
(b)e0x(By) _
restrict ourselves to II, solutions and consider the graph Gg

¥ ¥ Y Y
@414 ("9)’ O
) @1— ‘1 |
- ® |1 12 ° 10

> 15 |08 t-@F

Determine £,. This set occupies rows 1 and 2 and columns 1,2, 3
and 5. Congider ¥ (i.e. the set of cells, except (4,2), which are on the
intersection of the row and the colamn arrows). Find min f; = t,, = 8.

(i.)ewir
Graph Gp . contains exactly one cycle G, where )P = [(3,1), (1,1),
(1,3), (2, 3), (2,2), (4,2), (4,4), (3,4)). Divide I' into I, and I', and assign
(3,1) to I';,. We find

min of = ! = 3.

- (34)ely
So B; = B,+(3,1)—(4,2) and X(B,) is as follows:
¢ T
- @ Cam——
I ¢ 3
> 9 T340 | .

- -fii‘-——-mf—@" 10

Here txpy = 13 =ty and H, = 11,4 [(4,1), (1,2), (4,2), (2,4)].



The time transportation problem » 239

Now £, is empty. We find ¥ (the whole second column except (2,2)).

The set WII, contains only one element (3,2). We repeat the procedure
from step 4 and obtain X (B,)

¥ ¥
- @4 9 @
- 9 E:;]-‘-—’s
| 8 @’——12——@’ 10
12 é)“

Here IT; = IT,. Determine the corresponding set Y. Since the set

YII, is empty, X (B;) is a basic optimal solution of TTP. Note that each IT,
solution is an optimal solution. See two examples given below:

Here the second optimal solution is not a basic one.
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W. SZWARC (Wroclaw)
ZAGADNIENIE TRANSPORTOWE Z KRYTERIUM CZASU

STRESZCZENIE

Mamy m dostawcéw, ktérzy oferuja pewien okreslony towar w ilo&ciach
@y, .., 0m i n odbioreéw, ktérych zapotrzebowania na ten towar wynoszg by, ..., bs.
n

m
Zakladamy, ze 3 a; =12 bj. Znane s3 liczby #;; oznaczajace czas potrzebny do
i=1 =1

dostarczenia towaru od i-tego dostawcy do j-tego odbiorcy. Przez zij oznaczmy ilosé
towaru jaki i-ty dostawca dostarcza j-temu odbiorcy. Liczby zij utworza maciers
prostokatng X = {zi}, ktérg mozna nazwaé planem transportowym. WprowadZmy
oznaczenia
(2} 0x = {(, )lai; > 0}, tx= max .

(t.f)e6x
Liczbe {x nazwiemy czasem wykonania planu transportowego (jest to czas najdiuzej
trwajacej dostawy).

Zagadnienie transportowe z kryterium czasu (TTP) polega na znalezieniu
planu transportowego o najkr6tszym czasie wykonania. Problem ten da sie zapisaé
nastgpujaco. ZnaleZé macierz X o nieujemnych elementach ;;, spelniajgcych wa-
runki

n
2”‘1=“i’ i=1,...,m,
7=1

m
Zx"tf = by,

i=1

(1)

I,e00,m,

dla ktérej tx osiaga wartosé najmniejsza. Liczby a;, bj 83 dane i dodatnie, przy czym
Tu-gu

W pracy korzysta si¢ z pojeé, ktére wprowadzone zostaly w [4]. Nie bede wiec
tych pojeé powtédrnie definiowal odsylajge czytelnika do pracy [4].

Rozpatrzmy rozwigzanie podstawowe X(B) = {a;“} i niech (k,7)eB. Graf
GB_(k,) sklada si¢ z dwéch spéjnych graféw Ggo, i Gq,, gdzie 2, i 2, sa rozlaczne.
Oznaczmy przez I,, J, i I,, J, zbiér wierszy i kolumn macierzy prostokatnej m xn,
na ktérych znajduja si¢ elementy odpowiednio zbioréw 2, i Q,.

Przez 2, oznaczymy albo zbiér pusty, jeSli (k,l) jest jedynym elementem
bazy B w kolumnie ! albo ten ze zbioréw, ktéry zawiera element w I-tej kolumnie.
Niech I = (1,...,m), J = (1, ..., %)

Wprowadzamy nastepujgce oznaczenie:

= (I=L)X(J—-Jg)— (k, 1).

Metoda rozwigzania postawionego zagadnienia opiera si¢ na dwéch twierdze-
niach.

Rozpatrzmy dowolny element (¢, j) ¥, Graf Gg.m,f) zawiera dokladnie jeden
cykl @p. Zachodzi nastepujace

TwIERDZENIE 1. Weeel (k,l)el’ i obie drogi (i,7)—(k,1) oyklu Gp zawierajg
parzystq iloéé wezlbéw.

Dane jest rozwigzanie podstawowe X (B), takie ze wfl> 0.

Niech IT bedzie dowolnym zbiorem rozlgeznym z bazg B. Prawdziwe jest
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TWIERDZENIE 2. Jedli W T, to nie isinieje macierz X = {xi;} spelniajgea (1),
© dla kidrej xy; = 0 dla wszystkich (¢, 7)ell a takie xp = 0.

W pracy podana jest metoda rozwigzania, ktéra prowadzi do optymalnego
rozwigzania po skonczonej ilosci krokéw (patrz dowdéd twierdzenia 3). Przytoczony
tu zostal takze przyklad liczbowy.

B. MIBAPI] (Bponxas)
TPAHCIOPTHAA B3AJAYA C KPUTEPHEM BPEMEHH

PESBIOME

MMeercs m mocTaBIMKOB HpeNJaaralnliuX ONpPeJelIeHHHNE TOBAap B KOJMYECTBAX
Gys +evs G M M TOTpeGuTeNel TOTPE6OBAHNA KOTOPHX HA 3TOT TOBAP PaBHHL [ N

m n

Hpunrumaem uro 3 a, =.21b,-. HMsBecTHH 4ucia iy 0003HAYAONIAE BpeMA HEOGXOLAMOe
=1 1=

ANA HOCTABKH TOBApa OT 4-TOTO IIOCTABIIMKA j-TOMY moTpebmremio. Uepes z;; oGosHa-

4IM KOJNYECTBO TOBAPA JOCTABIEHHOTO ¢-THM NOCTABIMMKOM A j-TOr0 HMOTpeGHTess.

Yucna =z COCTAaBIAKNT HPAMOYrodbHylo Marpuny X = {xi} kKoropylo MomHO
Ha3BaTh TPAHCHOPTHEIM IJIAHOM.

Beepgem oGo3HayeHUA
(2) O0x = {(3, )|z > 0}, tx = max f;.
(i,f)EOX
Yueno tx 06o3HAYaeT BpeMA BHIOOJHEHWA TPAHCHOPTHOTO ILIAaHA (9TO BpeMA HalGomee
JJIATEeAbHONA IOCTABKH).

TpancnopTeas sajaua ¢ KPUTEPMEM BPEMEHH COCTOMT B ONpeejeHHM TPAHC-
HOPTHOTO MIIaHa ¢ HaliGomee KOPOTKUM BpeMeHHeM BHIOAHEHUA. IIpoGuemy aty moskuo
samucaTh caepyomum obpasoM. HaliTu Marpuny X ¢ HEOTPHIATCNbHEMY 5JeMeHTAMH
Zif MCOOJHAIUMA ‘

n
—‘xijza‘i, t=1,...,m,
j=1
(1)
m
Zwﬁ:bf’ j=1,...,n

-,
I
-

AN KOTOPO# {X MHUHMMANGHOE, YMCIA af M bj M3BECTHH M HOJIOMKUTENbHHE IPHUEM
Zai=3b.
i ]

B paGore ncoonpsyoTcA MOHATAA KOTOPHe OHIKE BBeleHH B [4]. He 6yny smecw
9TNX NOHATHY IOBTOPHO ONpefedATh OTCHIAA vurarend K pabore [4].

Pacemorpum GasmcHoe pemenue X (B) = {wg} u  mycers (k,l)eB. T'pad
GB_ (k) COCTOMT H8 [BYX COeXMHEHHHX rpadon Gq, u Ga,, TRe 2, 1 Q, He UMelOT OGMUX
dnementoB. OGosHauum uepes I;,J, u I,, J, MHOKECTBO CTPOK M KOJNOHOK HpAMOY-
TOILHOM MATPHOH 7 X 7 B KOTOPHX HAXOAATCH SJIEMEHTH COOTBETCTBEHHEO MHOMECTB
2 n Q,.

Yepes £, 0Go8HAYMM HIK IyCTOe MHOKECTBO, ecam (k,l) emuHCcTBeHHEE 2JIe-
MeET 6asH B B KOIOHKe | HIU Ke MHOMKECTBO KOTOPOE MMEeT DIIEMeHT B I-TOi KOJOHKE.

Zastosowania Matematyki, Tom VIII, z. 3 ' 16
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Oyers I =(1,...,m), J =(1,...,n).
Beegem cnenyiomee o6osHAdeHUEE

Y= (I—-I)X(J~J3)— (k, ).

Meron pemeHHA HDOCTABJICHHOX HpoGileMH ommpaercA Ha ABYX TeopeMax.

Paccmorpum wni06oit siementT (i, j) e¥. I'pad GB4(i7) AMeeT TOYHO ORWH UK,
craxkeM @p. Copasepamsa caepyoImas.

TEOPEMA 1. Vsen (k,1l) npunadsencum x I' w ob6a nymu (i, §j)—(k, 1) yursa Gr
COCMOKM U8 HeMmHO20 Koaurecmea Ysaos.

HNwmeercss GasucHoe pemeHme X (B) B KoTOpOM a:,g> 0.

Ilycre IT mo6oe MHOkecTBO He mMemomee ¢ B o6mux smementoB. CrpaBefanBa

TEOPEMA 2. Ecau ¥ < IT mo ne cywecmeyem mampuya X = {25} ucnoanawwas (1),
Oas womopod xij = 0 O0aa ecex (i,7)ell u ede zpy = 0.

B paGore mpuBogmATCA METON pelIeHMs, HOTOPHI BeJeT K ONTHMAILHOMY pelie-
HUI0 HOCNE KOHEYHOTO KOJNUYECTBA MIAroB (CMOTPH MAOKAB8aTeTeILCTBO TEOPEMH 3).

ITIpuBonuTcA Tam:;xe unMcaoBOf mpuMep.



