ANNALES
POLONICI MATHEMATICI
XVI (1965)
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differential equations of the second order
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Introduction. Although in mathematical literature the problem
of eigenvalues and eigenfunctions is mostly considered for boundary
conditions of the Dirichlet type, in applications also other boundary
condition often have to be dealt with.

The purpose of the present paper is:

1° To determine boundary conditions in such a way that the exi-
stence of eigenvalues and eigenfunctions is guaranteed for a possibly
large class of domains;

2° To transfer some theorems on eigenvalues and eigenfunctions
known for the Dirichlet boundary condition to some other homogeneous
boundary conditions.

Our theorems will be formulated and their proofs will be carried
out in such a way that they will involve as a special case boundary
conditions the most often used in applications, including those of the
Dirichlet type.

In this paper we mainly deal with the number of nodal domains
of the nth eigenfunction (Theorem 1), with some properties of the first
eigenfunction and eigenvalue (Corollaries 1 and 2, Theorem 3), with
multiplicity of zeros of the nth eigenfunction and the number of sin-
gular points of nodal lines of this function (Theorems 4 and 5, Corollary 3)
and lastly with the alternation of zeros of eigenfunctions (Theorems 6
and 7).

§ 1. Introductory concepts.

DEFINITION_I. The curve C: z; = x,(t), &, = 2,(t), a <t < b is said
to be regular (or smooth) if there exist continuous derivatives zi(t) and
x5(t) and, moreover, [2{(t)]2 + [2:(t)]2 > 0 for a <t <b.

DEFINITION IL. The curve C is said to be piecewise reqular if it can

be represented as a sum of the finite number of closed regular arcs.
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DEerINITION ITI. We shall say that a curve (, contained in a do-
main @, divides G if G\C is a union of disjoined subdomains such that
in an arbitrary neighbourhood of any point of C there are points_be-
longing to two (at least) different subdomains.

DEFINITION IV. We shall say that a function f(x,, x,) is of class
Oy (n>=1) in the closure of G, if:

1° f(x,, 2,) is of the class "' in G,

20 G@ may be subdivided into a finite number of closed subdomains
in each of which f(z,, z,) is of class C".

We shall say that f(x,, x,) s of class it @ may be so subdivided
into a finite number of closed subdomains that f(«,,2,) is continuous
in each of these subdomains.

DEFINITION V. We shall say that f(zy,#,) is of class O; (n>=0)

in a domain @ (open connected set) if it is of class €y in every closed
domain contained in @.

Let @G be a bounded Jordan measurable domain (simply or multiply
connected) in the plane (z,, ©,). G may be approximated by an increasing
sequence of domains @, with regular boundaries (i.e. the boundary F(G,).
of Gp is a piecewise regular curve). We do not require any regularity
properties from the boundary of G.

In the sequel we shall consider

1° a selfadjoined elliptic partial differential equation of the second
order, i.e.
(1) L(u)+pou =0,
where

2
0 ou
L) = ) | oatan, 2) oo | (o, )
1,k=1

is a selfadjoined differential operator and u is a real parameter. Con-

cerning the coefficients we assume that: q(x,,x,) > 0, o(z,, x,) > 0 are

defined and continuous in @, au(z,, ;) = a2y, 7,) (4,k =1, 2) are of

class C' in @, and the quadratic form Y aw(w,, ) && in positive de-

= ik=1

finite in Q.
2° a generalized boundary condition corresponding to the boundary

condition of the form

(1a) %’—h(wl, Z)u =0 on F(@G)-I', w«=0on T,

where I' denotes a part of F(G) (I" being connected or not); in extreme
cases I' may be the whole boundary of @, or the empty set. Here k(x,, x,)
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is a non-negative continuous function defined in G and du/d» is a trans-
versal derivative of « with respect to equation (1), i.e.

2) = ) anlon, @) S cos(n, 21), (@1, @) < F(G),

1,k=1

n being the interior normal to F(@G).

The object of the following considerations are eigenvalues and eigen-
functions corresponding to equation (1) and condition (1a). The boundary
condition (la) comprises as special cases all the boundary conditions
useful in applications.

However, condition (1a) may have no meaning without further
explanations. Namely

1° we have not assumed the existence of the tangent to F (@),

2° we have no information about the behaviour on F(G) of the
solutions of (1), or about their derivatives.

It might be thought the natural to assume that the boundary of ¢ is
a piecewise regular curve and the solutions of (1) are of class C! in Q.
However, as A. Pli§ has shown, there are examples of regular domains G
(e.g., concave polygons) such that the solutions of (1) with the con-
dition » = 0 on F(@G) need not be of class C' in G. In the case of bound-
ary condition (la), the solutions of (1) need not be of class C' even for
a circle.

Therefore, we shall now give the meaning of condition (1a). Accord-
ingly, following Courant-Hilbert ([5], vol. IT, Chapter VII), we introduce
some bilinear functionals and some linear function spaces, in which these
functionals will be defined. Namely, we put

@ vew=[]] py 0y, 8 2 2 1 (s, @)y | Ao,

i,k=1

+ f h(®y, @) pyds
F@)-r

(4) H(p,y) = J(;f (2, @) pydz, dw,.

It immediately follows from (3) and (4) that the functionals D and H
are symmetric,

D(p,y) =D(yp,9) and Hip,y)=H(y,9).
Let us put ’

(8) D(p) =D(p,p) and Hp)=H(p,q).
11*
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Observe that
(6) D(p) =0, H(p)=>0
and

o D (ap + py) = a®D(p) +2aBD (9, y) +2D(y),

H(ap + fy) = «*H (¢) +2a¢fH (p, v) + /2H () .

The equality H(¢) = 0 may occur only if ¢ = 0. (7) is valid for arbitrary
real numbers a and S and for all functions ¢,y for which D and H
have meaning.

The functionals (3) and (4) are defined as follows. Given ¢ and w,
we take an increasing sequence of domains @, contained with its regular
boundary in G and converging to G. Suppose that the expressions (3)
and (4) are defined for ¢ and y and every G, n = 1,2, ... If these ex-
pressions have finite limits for every sequence {G}, these limits are
taken as the values of D and H, respectively.

DEFINITION VI. We denote by J€ the space of all functions ¢ of
class €% in G such that H(p) < oo.

DEeFINITION VII. Denote by D the space of all functions ¢ of class C-
in @ such that H(p) < oo and D(p) < oo.

DerFINITION VIII. Denote by D the subspace of D of functions
which vanish at all points of G whose distance from I" is less than or
equal to & (s being a fixed positive number).

DEFINITION IX. Denote by D the subspace of D of functions ¢ for
which there exists a sequence g, ¢ D such that H (pr»—@) >0 and D(p,—¢)
-0 for »—>oo.

In the sequel by the boundary condition % = 0 on I" we shall mean
that e D.

LEMMA A. If a function ¢(x,, x,) 1° belongs to D, 2° is continuous
on G+I'y, 3° ¢ =0 on I' (in the ordinary sense), then ¢ belongs to D.

Proof. Denote by Gsr the set of all points P of G such that the
distance P from I" is greater than 4. Following [8], p. 102, one may
construct by the integral mean procedure the function y; with the fol-
lowing properties: 1° ys =1 in Ggr, 2° 36 =0 in G—Gsr, 3° ys is of
class C" in @, n being arbitrarily large. It is obvious that ¢; = ys¢ be-
longs to 9. Further, one easily checks that D(gs—¢) >0 and H(ps;—¢) -0,
when 30, ie. ¢ eD. QE.D.

DEFINITION X. Let & denote the subspace of D of all functions ¢
of class C? in G such that L(p) e X.

We want to give meaning to the boundary condition du/dv —hu = 0
on F(@)—TI. Accordingly consider domain G, contained with its regular
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boundary F(G.) in &, such that the distance of F(@,) from F(G) is less
than ¢ Let ¢ € F and y € D. We shall prove that

o

I's denoting the set of points of F(@,) whose distance from I' is less than
or equal to e.
Indeed, integrating the identity

(8) Dig, )+, (% ,L(g), wp) +
F@)-r,

2

2 2
\| ¢ op \ 2_7 dp atp 21 7 op
(9) 24 x4 (“"‘aa;,, )__ Mk By Oy 'P‘ 2z, \ ¥ o,
i k=1 3,k=1

i, k=1

over the domain G,, we obtain

(10) f / Z - (o 22 ) dmao,
ﬁff”v Zam (“"‘am )dwldwz-l-ffza"‘am 8:0 2, 43, .

By (2) (definition of transversal derivative) and since p¢D and p = 0
on Iy we get

2
o (,. o% _ f dy
(11) ff .Zga(am%w)dw,dwz —_ p L as.
G, i,k=1 F(G,)—T,

Combining this with (10), we obtain

o [ 3o 2t
l=l
_{_ffza"‘aw oy o, dary + fwttii—ids=0'
e, F(@)-T,

Adding now equality (12) to the equality

ffq(sm.v —gp)dndo,+ [ hipy—gp)ds =0,
F(G)-T,

we get (8). Let ¢ >0 in (8). Since there exists limits D(p, ) = lim D.(p, )
e—>0
and

H(l (q)),ep)—-hmﬂ( ,go)
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then there exists also a limit

]1 (di—hqa)me_hm f(‘fl—"—:—w)apds.

e—>0

() -T F(G)-T,

All the limits involved are connected by the formula

(13) D(«p,w)+H(1L(¢),w)+ f (%q)—hq?) yds = 0.
e F&-r "
One may prove (compare an analogous theorem in [5]) that if (13) is
valid for every @ ¢ ¥ and y ¢ D, then it is also valid for p ¢ F and y € P.
The boundary condition du/dv —hu = 0 on F(G)—TI for u ¢ F is now
defined by the requirement that the equality

to[du
(14) J (E, —hu) pds =0
F(@)-T
be valid for all y e D. The boundary condition (1a) is defined by the
requirements that « ¢ ¥ ~ D and (14) be valid for all {7 eD.
DEFINITION XI. 55 (@) will denote the space of all functions ¢ e F
satisfying (1a) in the above sense.
We define eigenvalues and eigenfunctions of problem (1) (1a) in the
following way (variationally):
The first eigenvalue 1, of problem (1) (1a) is defined by

(15) A, = min (tp),
ped H(p)

and the first eigenfunction u, is that ¢ which realizes minimum (15).
Having defined eigenvalues 4,, 4,, ..., 4, and the corresponding eigen-
functions w«,, %,, ..., s, We put

D)
(16) ]‘ﬂ+1 ::,I:H:'H( ) ’

where K, is a subclass of D of the functions ¢ that satisfy the ortho-
gonality conditions

(17) H(p,w) =0, i=1,2,..,n,

and the #,,; is that ¢ € K, which gives minimum (16).

HYPOTHESIS Z. Given (1) and (1a) there exist a sequence of k (1 < k
< oo) eigenvalues

(18) 0<11<---<1k7
and a corresponding sequence of eigenfunctions

(19) Uy(Byy @) 5 +en y Un(@yy T5)
which belong to F.
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The problem whether the hypothesis Z; is satisfied under the as-
sumptions which we have made concerning the coefficients of equation (1)
will not be dealt with in this paper.

The existence of eigenvalues and eigenfunctions defined as above
is proved in [5], Ch. VII, for a less general equation than (1) and under
some assumptions on the coefficients of the equation. There is also pro-
ved in [5] the following theorem:

“Eigenfunctions (19) satisfy equation (1) and boundary condition (1a)
for the corresponding eigenvalues’.

We shall now prove the following

TEEOREM A. If hypothesis Zy is satisfied, them each function u, of
sequence (19) satisfies equation (1) for uy = Ap, n =1, ..., k, and uy € Fp r(G).

Proof. To begin with, observe that by (13) if ¢ € 5, (@) satisfies (1)
for p =1, then

(20) D(p,y)—tH(p,9) =0,

for every y e D. We shall now show that if (20) holds for a fixed ¢ € F2,r()
and for every y € D, then ¢ satisfies (1) for 4 = t. Indeed, by (13) and (20)
we have

(21) a(w+350),v)+ [ (Z—m)vas=o.

FG)-r

By the arbitrariness of ype® and by Lagrange’s Lemma ([7], p. 275)
we have

L(p) +top =0, f %—M)wds=0-
F(G)-r

Therefore the only thing left to be proved is the equality
(22) D(%nyyp)—InH(Un,9) =0, n=1,..,k,

for any ye 9. This will be done by induction with respect to «.
1° n = 1. Let y be an arbitrary function of D and let  be an arbi-
trary real number. Put ¢ = u, +7p. Then by (15)

(23) D(p) = L,H(p),

whence by (7) and by the definition of u, we get

(24) 2v[D(uy, ) — A H(uy, p)] +7[D(y) — 4 H(y)] > 0.
The 7 being arbitrary, this is possible only if

(25) D(uy, p) —A4 H (%, ) =0,

which is equivalent to (22) for n = 1.
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20 Assume that (22) holds for n =1, ..,8 <k and for any o eD.
Because of (16) we have

(26) D(p) = As1 H(p), ¢ = Ug41+7L,

7 being an arbitrary real number and { an arbitrary funetion belonging
to K,. Hence, as in 1°,

(27) D(ts41y8) — Agr1 H (ts41, ) =0,

We have to show that this equality holds also for every ye D, Indeed,
given y ¢ O, take s real numbers a,, ..., a; such that { =y a4, -+... +
+asu, belongs to K. This is always possible by putting
. H(y, w) _
a = Hwg) l=1,..,s8.
Tor such a {, by the induction assumption and because of the symmetry
property of D and H, we get

(28) D (%st1y 9) —Aer1 H (%541, 9) = 0,  Q.E.D.
§ 2. It follows from the definition of #,, n =1, ..., k, that

=0, if i#j,

i =1, e, k.
£0, if d—j, 1Tl

(29) H(us, ) {

This implies that all functions (19), except at most one, change their
sign in G. And since the functions are continuous, there exists a zero set
in G for these functions.

It was proved in [4] that any function u satisfying (1) and changing
its sign in G vanishes along lines which are called nodal lines. The nodal
lines divide @ into so called nodal domains. The nodal lines are oscilla-
tion lines, i.e. the function « changes its sign in every neighbourhood
of every point of its nodal line.

LEMMA 1. No eigenfunction of (1) (1a) can vanish identically in any
subdomain of domain G.

This is a direct consequence of the general theorem of [1], correspond-
ing to which no solution of an elliptic equation can have zero of infinite
order in G without vanishing identically in G.

DEeFINITION XII. Every subdomain G, C G bounded by nodal line
of an eigenfunction «(z,, z,) and by a part of F(G) such that u(x,, x,)
# 0 in @, will be called the nodal domain of u, associated with (1) (1a)
if there are no points of F (@) on the boundary of &, G, will be called
the interior nodal domain.
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LEMMA 2. Under the assumption Zj the nodal lines of any function
u e Fpr(@) satisfying (1) with u < in (n < k) divide G into less than n
nodal domains.

Proof. Let u e F1,r(G) and let

(30) L(u)+ uou =0.
Suppose the nodal lines divide & into subdomains Gy, G,, ..., Gy, ... Put

w(@, @) In Gy, X
3 = - =1,..,m.
(31) Ui =0 in @-—@, = o®
It is obvious that U,, ..., U, are linearly independent in G. Put
(32) F(wl, wz) == at]_ Ul + vee +a” Un [}

where a,, ..., a, are real numbers such that a;+..-+as> 0, and the
funetion F is orthogonal to wu;, %,, ..., %, with respect to the funec-
tional H. The choice of ax, k=1, ...,n, is always possible; they are
a solution of the system of n—1 linear equations. The function ¥ be-
longs to K,, thus by (16)

(33) D(F) > nH(F).
Since u € 55, (G) and u satisfies (1), then by (20)
(34) D(u,y) = uH (u, )

for every y e D. Let v=aU,+..+a U,. Then Pe 9. The definition of

U,, ..., U, implies that they are orthogonal with respect to D(p) and
H(¢). Hence by (7)

(35) D(F) - D diD(Uy), H(F) = aGH(U).

i=1

Further, D(p,y) and H (g, ) being bilinear, we have

(36) Diu,yp) = Y éiD(Us), H(u,p) =, &H(TU)).

In virtue of (34), (35) and (36) we have

(37) D(F) = pH(F),
whence by (33)

ImH(F)<D((F)=uH(F).
Thus A, < u, which contradicts our assumption.

LEMMA 3. Under the assumption Zg, if dn = Any1 = .. = Ants—1 < Anta
(n+s < k) (i.e. 4p is an s-fold eigenvalue of (1) (1a)), then the nodal lines
of each function w e Fpr(G) satisfying (1) with u = Ap divide G into at
most n domains.
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Proof. Let Gy, G,, ..., Gny Gni1, ... be nodal domains of #. As in
the proof of Lemma 2, we put

w in Gy, :
38 Uy = — = =1, ..
(38) ‘ {0 in GG, reeer T
and F = a,U, L ...+ a,U,, the coefficient a,, ..., a, being chosen in such
a way that ai +... +as > 0 and F is orthogonal to the functions u,, ..., %,
of system (19) with respect to the functional H. Repeating the reasoning
used for deriving (37) we conclude that

(39) D(F) =H(F).

By the construction of F we have F =0 in G,;;+... The functions
NUny vory Unts—1 are by Lemma 1 linearly independent in each subdomain
of G which has been considered. Thus F,%,, ..., %nis-1 are linearly
independent in G. Put

@(xl, w2) = F +cnuﬂ, + cae +cn+3_]un+s_] .

Then @=£0 in G. Let ¢ = —H(F, w)/H(w), l=mn,..,n+8—1. Then

@ is orthogonal to #%,, ..., #,4+s—1. The definition of F and the orthogonal-
ity of eigenfunctions imply that @ ¢ K,.._,. Hence
(40) D(D) > in+s H(D) .

On the other hand, ¢(@,, @;) = Caly +... +Cris—1Un+s—1 belongs to Fy r(G)
and satisfies (1) with 4 = 4,. Therefore by (20) we have

(41) Dip,y) =aH(p, y)

for every ye D. As a special case of (41) we get

(42) D(p, F)=22H(p, F),

(43) D(p) =21 H(p).

Because of the equality @ = F +¢, (42), (43), (39) and (7) imply
(44) D(P) = i H (D),

whence by (40) 4, > 4,45, Which is a contradiction. Lemmas 2 and 3
imply the following

THEOREM 1. Under the assumplion Zy, if N (n) denotes the number
of nodal domains of the n-th (n < k) etgenfunction associated with (1) (1a),
then for each n we have

(45) N(n)<n,

the equality occurring only when A,_y < Ay.
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Proof. Inequality (45) follows immediately from Lemmas 2 and 3.
Suppose that in (45) the equality takes place and 4,_, = A4,. Then, by
Lemma 3, the number of nodal domains of the nth eigenfunction would
be less than or equal to n—1, which is a contradietion. Thus 4,1 < 2,.

§ 3. If » =1, Theorem 1 implies the following
COROLLARY 1. The first eigenfunction of (1) (1a) does not vanish at
any point of G. '

LeEMMA 4. Under the assumption Zy, if u, 8 a real number such that
there exists a function wu(x,, x,) € Fy,r(G) which is different from zero in
the whole G and which satisfies (1) with u = u,, then u, is the first eigen-
value A, of (1) (1a).

Proof. We shall use formula (13) first for the pair », #, and then
for the pair #«,, #. Sinece both # and wu, belong to F,, (@) and satisfy (1)
with g —= u, and u = 4;, respectively, we get by (13)

D(uyuy) =y H(uy ;) and  D(uy, w) = A H(u,, u),
whence by the symmetry property of D and H
(ta—A)H(w, u,) =0.
Since # and %, do not change their sign in G, then H(u, #,) # 0, and
thus ”1 — ll'
THEOREM 2. Under the assumplion Zy the n-th eigenvalue i, (n < k)
i8 the first eigenvalue for each nodal domain of uu(x,, o).

Proof. This follows from Lemma 4 by observing that in every
nodal domain G, the equation

L(un) +ln Q’Mn == 0
is satisfied and that w, e 5y r,(G), where I', = F(G,) —F(G,) ~[F(G)—1I].
THEOREM 3. Each function ¢(x,, x,) € Fn,r(G), not vanishing identically
i @ and satisfying (1) with p = A,, is equal to the first eigenfunction of
(1) (1a) multiplied by a constant ¢ # 0.

Proof. Suppose ¢ and u, are linearly independent. Acecording to
E. Schmidt there are constants ¢, and ¢,, ¢; 4-¢3 > 0 such that

D(wy, X) = €Uy + Ca

is orthogonal to u,. Since %, = 0 in @, @, being orthogonal to u,, changes
its sign in @. Since @ =£0 and @ satisfies (1), then its nodal lines di-
vide G. On the other hand, @ satisfying (1) with x = 1, and @ ¢ F,, (@),
by Lemma 3 we have @ 0 in G or @ = 0. We get a contradiction.
So ¢ = cuy, ¢ #0.

CoROLLARY 2. The first eigenvalue of (1) (1a) i3 @ single eigemvalue,
e A < Ay
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LeMMA 5. Under the assumption Zy the n-th eigenfunction of (1) (1a)
(n < k) depends in each of its nodal domains G4 linearly on the first eigen-
function of G; belonging to Fy,r,(Gy), where I'y = F(G;) —F (G5) ~ [F(G)—-TI].
The proof follows from Theorems 2 and 3.

LeMMA 6. Under the assumption Zy, if two eigenfunctions u and v
corresponding to the same eigenvalue A, (n < k) of (1) (1a) are linearly
dependent in a subdomain G* of G, they are also linearly dependent in the
whole G.

Proof. Let w =cv in G* ¢ # 0 being constant. Put @ = u—cv.
Since the equation and the boundary condition are linear, the func-
tion @ satisfies (1) with u¢ = 1, and @ € 5, (G). But & =0 in G* and
so, bygLemma 1, @ vanishes in the whole G. Thus % = ¢v in G.

§ 4. In this section we shall state some results concerning the multi-
plicity of the nth eigenfunction of (1) (1a) and some results concerning
the number of singular points of nodal lines of this function. I am in-
debted to A. Pli§ for drawing my attention to the possibility of such
results.

DEeFINITION XTII. We shall say that the function w(z,, x,) has zero
of order N at the point Py(x,,x,) if « satisfies the following conditions

U(Lyy 2) “(wla

gt

(46) -0, §=0,.. N1, “72)+o

when 7 = (@, — #,)2 + (@ — &,)2 0.

DEFINITION XIV. We shall say that the point Py ¢s a singular point
of a nodal line of w if u has zero of order N >2 at P,.

In the sequel we consider a family R of curves dividing domain G
in the sense of Definition III. Besides, we assume that every point of
an arbitrary curve of R is an origin of an even number of smooth arcs.

DEerINITION XV. We shall say that P is a point of intersection of k
locally different curves of R if there exists a neighbourhood O(P) of P
such that P is an origin of 2k smooth arcs of R (restricted to O(P)),
no two of which have common points in O(P) except P.

DEerFINITION XVI. We shall say that the point P is a singular point
of multiplicity p of the family R if P is an intersection point of p 41
locally different curves of R.

We shall prove the following

LEMMA 7. If R is mot empty and the total amount of multiplicities
of stngular points of all curves of R (belonging to the interior of G) is equal
o 8, then the curves of R divide domain G into at most s +2 subdomains.

Proof. We shall use induction with respect to s. Lemma 7 being
true for s = 0, suppose it is true for s = % and let s = k+1. Let P be
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a fixed singular point of a curve of K. By Definitions XV and XVI
there is a neighbourhood O(P) of P contained in G such that the curves
of R restricted to O(P) have no common points except P. Let us take
.a circle K, with centre P and radius r contained together with its in-
terior in O(P). Take two points A and B of K, belonging to two diffe-
rent subdomains in such a way that one of the subarcs of K, (obtained
by taking A and B) meets exactly two arcs, I, and l,, of R starting from
point P. Such points certainly exist.

Let A’ and B’ be the points of K, common with I, and 1,, respect-
ively. Now delete the parts of !, and I, contained between the points
A’P and B'P, respectively, and add the arc A'B’ of K, belonging to the
arc AB as a curve of the family R.

After this modification of R both the total number of multiplicities
of singular points of E and the number of subdomains diminish by one.
By the induction assumption there are at least k+2 modified sub-
domains; thus if s = k+1 the curves of R divide & into at least & +3
subdomains. The proof is completed.

THEOREM 4. Under the assumplion Zyg the sum of the orders of zeros
of the n-th eigenfunction (n < k) associated with (1) (1a) at the singular
points of ils nodal lines does not exceed n +r—2, where r denotes the number
of the singular points of the funmclion.

Proof. According to Baranski’s results ([3]), if an eigenfunction of
(1) (1a) has zero of order N at a point P, then there are exactly N nodal
lines of the eigenfunction passing through the point P, so that P is
a singular point of multiplicity N —1 (cf. Definition XVI) of the nodal
lines. Hence, because of Theorem 1, Lemma 7 and the definition and
properties of nodal lines, we have obtained the required proof.

THEOREM 5. The n-th eigenfunction of (1) (1a) cannot assume zeros
of order greater than n—1 in the tnierior of Q.

Proof. Let P, be a point of the nodal lines of ux(x,, x,) with the
greatest multiplicity. Denote by N the order of zero of us(x, z,) at P,.
Let 7 be the number of the singular points of the nodal lines of u,(x,, %,).
Since at any other singular point the function wx(z,, ¥,) has zero of order
at least 2, then by Theorem 4 and by the results of [3] we have n+r—2
> N-2(r—1), whence N <n—r <n—1.

COROLLARY 3. The family of mnodal lines of the wm-th eigenfunction
of (1) (1a) cannot have more than n—2 singular points in the interior
of G.

Indeed, since at each singular point the eigenfunction has zero of
order at least 2, the sum of the orders at r singular points is at least 2r.
Thus by Theorem 4 we have r < n—2.
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§ 5. In the following two theorems we shall suppose that the assum-
ption Zg, k> 1, is satisfied.

THEOREM 6. If A4 < A;, then in each nodal subdomain of wuix,, x,)
there are modes of the eigenfunction wi(x,, x,), where 1,7 < k.

Proof. Let G4 be an arbitrary fixed nodal subdomain of #;. Denote
by I, that part of the boundary of @4 which is composed of nodal lines
of u;. By Corollary 3 Iy is a regular curve. Put I'; = F(G) ~ I'. Since
uty 15 € Far(G) and u¢e Fpryr(G:), by applying (13) first for wg, u; and
then for u;, u¢ we get

dui
D(m, u,) = MH(’M, Uj) — J (——hu;)u;ds,

dv
To

(47)
D(uzy i) == A3 H (ug, u1) .

But w;, u; are of class C' on Iy and u; =0 on I'y. Therefore

d
D(’m, ’uj) = }.zH(’ui, ’Mj)— u;ﬂds,

dvy
Io
(48)
D (usy wi) = A H (ugy u4)

whence by the symmetry property of D and H we have

d
(49) Aj— M) H (ugy ug) = fﬂj dq:‘

Suppose u; > 0 and %; > 0 in G;. Then the left-hand side of (49) is po-
sitive. On the other hand, the transversal goes into the interior of G4
([6], p. 147, problem 14), and so dusdv > 0 on I,. Thus the right-hand
side of (49) is non-positive—a contradiction. Analogously, we arrive at
a contradiction when assumming any other possible combination of
signs u; and w;. Therefore #; has to change its sign in G.

THEOREM 7. If u and v are two eigenfunctions linearly independent
and corresponding to the same multiple eigenvalue As (s < k), then tn each
nodal domain of w there are nodes of v, and, inversely, in each nodal do-
main of v there exist nodes of wu.

Proof. Let G¢ be an arbitrary nodal domain of u. Let Iy and I
have the same meaning as in the proof of Theorem 6. Then

du

D(u,v) = A H(u,v)— v

(50) o
D(v,u) =AH (v, u).

Hence by the symmetry property of D and H we have

ds

(51) v—J;)ds =0.

I’y
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Suppose «# > 0 in G; and » +# 0 in Gy, for instance v > 0 in G;. The funec-
tion » has to be positive on a non-void subarc of Iy. Otherwise by Lem-
mas 4, 5, 6 and Theorem 2 it would be linearly dependent on u, con-
trary to the assumption. In virtue of Corollary 3, grad?« does not vanish
on any subarc of Iy, whence by [6], p. 44, duj/dv # 0 on I,. Finally,
v and du/dv are both non-negative on I'y. This, however, is contradictory
to (51). Similarly, we would get a contradiction, if we assumed any other
combination of the constant signs of 4 and v in Gq.

Remark 1. Theorems 6 and 7 have been formulated and proved
by Baranski in [2] for the boundary condition %4 = 0 on F (@) and under
more restrictive assumptions on the coefficients of (1); namely he has
assumed that the coefficients of (1) are analytic and that the solutions
considered are of class C' in G.

Remark 2. All the lemmas and theorems of our paper (except
those of § 4 and § 5) together with their proofs may be generalized
without essential changes to the case of more variables.

My deepest gratitude goes to Professors M. Krzyzanski and A. PL§
for their valuable remarks and advice during the preparation of this

paper.
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