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Unitary dilations in case of ordered groups

by W. MLAK (Krakéw)

In this paper we investigate unitary dilations of semi-groups of
contractions. Such semi-groups are representations of semi-groups of
some groups. It is assumed that those semi-groups induce an order in
a group in question.

If we are given the semi-group 7'(£) of contractions and the order
in a group is induced by a semi-group whose representation is 7'(§),
then T'(£) may be extended on the whole group to a certain operator-
valued function. We show that this function is positive-definite and
consequently has a unitary dilation. The group is assumed to be abelian.

We present the canonical decomposition of 7'(£) and establish
several geometrical relations in terms of some subspaces. This is done
in the spirit of the prediction theory. The investigations are modeled
after the method used by the author for semi-groups of powers of a single
contraction in {3], [4]. We study mainly the remote pasts of the processes
arising from unitary dilations.

1. Let G be an abelian group. The inner group operations are written
additively. Suppose now that G, is a semi-group in @G, i.e. that

(1.0) if ae @, and f ¢ G4 then a+fe @, .

We assume throughout the present paper that zero of @G belongs to G4,
ie. 0e@;. For ZC @ we define —Z = {a e @| —a € Z}. Suppose that

(1.1) (Gy) v (—Gy) =6,
(1.2) (G4) N (—G4) = {0}.

Then @, induces the ordering relation “<” defined by a < f =f—aeGy.
Conversely, if an order in & is given, then the set of elements dominating 0
forms a semi-group which satisfies (1.1) and (1.2), provided the order
is compatible with the group operations. We will write for simplicity
a< f in case a< g and a # §.

Suppose that H is a Hilbert space with the inmer product (f, g)
(f, g € H). Lot us denote by B(H) the totality of bounded linear operators.
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in H. Suppose we are given the function 7T'(£) e B(H) defined for £ ¢ G,.
We say that T'(£) is a semi-group of operators if

(1.3) T)=I, T(¢+n)=T¢)T( for &,nely.

Although the above definition depends on the order in &, namely on G,
there will be no difficulty since we will work with one fixed order.
For T e B(H) T* stands for the adjoint of 7. If V(&) is an arbitrary
operator-valued function defined on G4 and such that V(0) = V(0)* we
define a new function V,, determined on the whole group @ by the formula

v—{V‘“ it feGy,
V(e i Ee(—Gy).

Since (1.1), (1.2) hold, the definition (1.4) is well posed. If @ is an arbitrary
group and V, is an arbitrary function with values in B(H), we say that V,
is positive difinite [6] on @ if

(1.4)

(1.5) D (Vorseg (&), g(m) = 0
né

for every vector-valued function g(a) e H such that g(a) # 0 only for
a finite number of a. The unitary representation U, of G in a Hilbert
space K D H is called the unitary dilation of V. if

(1.6) Vef =PUgf for feH and ée@.

P gtands for the orthogonal projection of K onto H. The unitary dila-

tion Up.is called minimal if K = \/G UgH. If @ is abelian and ordered by G4,
te

then the equality in (1.6) satisfied merely for & ¢ @, implies that it is
true for & e (—@4) provided V_, = V§. This applies when V; arises from
a semi-group V (§) aceording to formula (1.4). In this case we may call Ug,
without any ambiguity, the unitary dilation of the semi-group V(§).

2. Suppose that the group @ is ordered and abelian. Let Ve B(H)
be defined for & ¢ @. The left-hand side in the positivity condition (1.5)
may be written in the form

L= (Veeag(®),9(n) .
&n

Let @y < @, ... < ap be the sequence of all a for which g(e) is different
from zero. Then

L= i; (Vai—agg(at)a g(af)) .

Now. write Vi = Voo and consider the operator-valued matrix ¥ with
the (¢, j)-entry equal to V¢;. The matrix V is an operator in the orthogonal
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sum H" of n+1 copies of H and (V§,§) =L for jeH", § = {g(an)}. The
positivity condition (1.5) is equivalent to the positive definiteness of ¥
in H" for n > 0. Let T'(¢) be the semi-group of operators and 7 its ex-
tension by (1.4) and let T be the corresponding matrix. It is easy to see
that T is now Hermitian symmetric and its (i, j)-entries for § <j are
the values of 7, in G,. I. Halperin in [1] proved that T admits
a factorization of the form 7' = W*DW, D being a diagonal matrix, if G
is an additive group of integers. In this case 7'(£) is the semi-group of
powers of a single contraction. The following lemma shows that the
arguments of Halperin apply in a more general situation, namely if G
is an arbitrary ordered group. More precisely, the following lemma holds
true:

LEMMA 2.1. Let the order be induced tn the abelian group G by G,
and let T (&) be a semi-group of operators. Define Tg by (1.4) and suppose
that ay < a; < ... < ay are arbitrary elements of G. Define T =the matriz
with (i,j)-entry (i, =0,1,...,n) equal to Toy_o. Then T = W*DW
where the (3, )-entry Wiy of W is defined by

Wiy = { Loy z:f i: = ? ’
0 if 1>9,

and the entries of D are

Dy =1,
D=0, 4 i#7j,
Dy =T1— 7.":‘_.,,_111,“_,,,_l for t=1,2,..,n.
Proof. Since both 7 and W*DW are Hermitian symmetric, it is
sufficient to prove that their (2, j)-entries are equal for ¢ < j. Let (W*DW)gy

be the (¢,7)-entry of W*DW. Since (W*)ux = (Wi)*, the (¢, k)-entry
of W*, is zero for &k > ¢, we have

(W*DW)y = D) (W*)a(DW)s.
k=0

If ¢+ = 0, then obviously (W*DW),; = (T’)o, = Toy—a,- We can just assume
that ¢ > 0. Since D is diagonal, we get

i 1
(W*DW)y = 2 (W*)exDex Wy = 2 To—ax Dike Toy—ay

k=0 k=0

i i
= T:j—ao Ta;-ao + 2 T:;—at Tq—ab— Z T:;-a;-T:g-a;--;Tag-u-.;Taj—ap .

ko1 k=1
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Since
T:: —ak T:k—ﬂl:-l = T:(_'ak-l and Tdk—ﬂk-l Tﬂl—ﬂt = Ta:—ax—1

by the semi-group property, we get

i f
(W‘DW)U = T:(—anTaj—aa '+' 2 T:l—akTa;—ak— ZT:‘—Gk—1Tﬂj—llt—.l

k=1 kel
= TST.,,_M = Ta;—a( = (T)ﬁ’

which completes the proof.

Suppose now that the semi-group Z7'(£) consists of contractions.
Consequently I—T(§)*T (&) = 0 for & € G, which implies that the matrix D
of lemma 2.1 is positive definite on H™. It follows that 7 is positive definite.
Indeed, (7§, §) = (DW§, W§) > 0 in this case.

Lemma 2.1, the above discussion and the dilation theorem of [5]
imply the following theorem:

THEOREM 2.1. Let the abelian group @ be ordered by the semi-group @.
and let T (&) be a contraction-valued semi-group. Then T(£) has a unitary
dilation Ug in a suitable dilation space K D H; U, is determined by the
minimality condition K =eVaU‘5H uniquely up to the unitary isomorphism.

The above theorem extends the results of Sz.-Nagy, who proved
it for @ = N — the additive group of integers and & = R — the additive
group of reals, both with natural order (see [5]). In case G = R the
semi-group was assumed to be weakly continuous. The next theorem
concerns the so called canonical decomposition of a semi-group of con-
tractions. 1t extends the results of Langer [2] and Sz.-Nagy and Foiag [6].

The proof of this theorem is essentially the same as in [6] and may be
omited.

THEOREM 2.2. Let the abelian group G be ordered by G, and let T
be the function defined by (1.4) for the semi-group T (&) of contractions acting
tn the space H. Then there exists a wunique decomposition H = H' @H"
such that:

(2.1) H' and H'' reduce all Tg for Ee G,

(2.2) The part of Ty in H' is a unitary representalion of G,

(2.3) T'he only vector f e H"' which satisfies |T¢f| = |f| for all & ¢ G is the
zero veclor —f = 0.

The space H' is of the form H' = () U;H and is called the unitary
teG

part of H with respect to T';. H" is called the non-unitary part of H. The
part T'(&) of T(£) in H' is formed by unitary operators in H’. The part
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I"(€) of T() in H” is called the completely non-unitary part of T(£). If
T(E) = T"(&), then T(£) is called a completely non-unitary semi-group
of contractions. In this case H' reduces to {0}. T'(£) is completely non-
unitary iff for every f ¢ H there is a & ¢ @ and 0 < k < 1 such that | 7,f|
< k|f|. The decomposition H = H'@H'"' is called the canonical decom-
position of H. The decomposition T'(&) = T'(§)@T''(€) is called the
canontcal decomposition of the semi-group T'(§).

3. Let U be the unitary dilation of the semi-group 7T'(£) of contrae-
tions. The space in which U, act is denoted by K, and that in which 7'(§)
act —by HC K. Let S be a subspace of H and write

ML(8) = VU8, M_(S) =V UeS
Ri(8) = ) UeMu(S), E(8) =) U M(S).

If 8 is a one-dimensional space spanned by f + 0, we write f in place
of § in the above definitions. Note that R+(S) reduces U;

The basic lemma is the following omne:

LeEMMA 3.1. Let U be a unitary dilation of the semi-group of con-
tractions T'(£). Suppose that h e Ug M (8S) for some & > 0. Then

(3:1) T(£)PU_sh = Ph.
If heU ;M_(H) then (&> 0)
(3.2) T(&)*PUch = Ph .

Proof. Since A = lim '5‘ Ugm o Wlth suitable £ > £ and fMe H

N—=00 v=-l

we get

Ph — lim 2 T(E)T(E™— g™ = Lim T'(8) PU_, Z Uemf"" = T(£)PU_sh,

R0y p=1

as was to be proved. (3.2) follows by symmetry.
The above lemma will be used in the proof of the following one:

LEMMA 3.2. Suppose that the assumplions of lemma 3.1 are satisfied.
Then

33) (I-P)R(H)|U_H, (I-P)E(H)|UH for £2>0,
(3.4) (I—P)R(H) |l M_(H),
=) +)

(3.5) Ru(H)L(U_e—TEYH, R(H)L(U—TE)H for £>0.

\Y
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Proof. Let £ > 0. By lerhma 3.1
T(&PU_th— Ph =0 (heR,(H))
and consequently for fe H
(3.6) (P—I)U_¢h, U_¢f) =0.

Since every element of R.(H) is of the form U_,h with suitable & ¢ R (H)
we conclude that the first relation of (3.3) holds true. The second one
follows by symmetry. (3.4) follows immediately from (3.3). Relation (3.5)
follows easily from (3.6).

We are now in a position to characterize the unitary part of the
canonical decomposition in terms of R(H) and R_(H).

THEOREM 3.1. Let U; be the minimal wunitary dilation of the semsi-
group of contractions T (E). Then

EQU&H = .R+(H) m R+(H) .

Proof. It follows from (3.3) of lemma 3.2 that
(I—P)(R(H)~R_(H)) L U:H for ' Ee@.
Since U is minimal, we conclude that
(I—P)(R(H) ~ R_(H)) = {0},
le. R¥(H) ~ R_(H)C H. On the other hand,
Ue(B+(H) ~ R_(H)) = Ry(H) ~ R_(H).

It follows that .
By(H) ~ R(H)C () UH .
. 14

Suppose now that he() UsH. Let £ > 0 and > 0. There is an element
de@

heH such that h = Ugigh. Since Ugynh = UgUyh, we infer that

h="UUyhe UM (H). Since & was arbitrary, we get he E.(H). By

similar arguments we prove that h e R_(H). Hence ('}; U:HC Ry(H) A
43

~ R_(H) and we are done.
It follows from theorem 3.1 that T'(£) is completely non-unitary if
and only if '

(3.7) ' R,(H) ~ R_(H) = {0} .
In general, if S C H then
(3.8) RA{8) A R_(S)CEQ; UeH .
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In particular, if § is a subspace of the non-unitary part of the canonical
decomposition of the space H, then R.(S) ~ R_(S) = {0}.

Let S be a subspace of H and denote by P, the orthogonal projection
onto UgM.(S). Lemma 3.1 implies

THEOREM 3.2. Suppose that f ¢ S. Then
(3.9) \Pefl <|T(&)*f| for E>0.
Proof. Since P;f e UM (8S)C UsM+(H), we have

T(E)PU_;Psf = PP;f .
But Pf = f. Hence

(3.10) ‘ (PU—-¢ Pef, T(E)*f) = | Pef* -
Using (3.10) and the Schwartz inequality, we obtain

| Pef P < | Pef| T (&)
as was to be proved.

Remark. It follows from theorem 3.2 that if in:£|T(£)"'f| =0 for
f¢8 then Ry(S) = {0}. ”

An important question is to find conditions under which M,(S)©R.(S)
# {0}. Suppose the contrary, i.e. M (8S) = R(S). Then U_, M, (8) = R(S)
for every %> 0. Hence 8 C R,(S), which implies that T(£)PU_.f =f
(SCH!) for f eS8 and &> 0. It follows that U_;f = T (&)*f for £> 0 and
f € 8, and consequently S C Qa U:H. Using similar arguments one proves

that if M_(S) = R_(S) then SC{\ U_.H. We infer from theorem 3.1
&0

that the following theorem holds true:

THEOREM 3.3. Suppose SC H and suppose that the projection of 8§
onto the non-unitary part of the canonical decomposition is not a zero space.
Then M. (S)S R(S) or M_(8)D R_(8) 48 non-trivial.

The above theorem is completed by the following one:

THEOREM 3.4. If for some f € S C H and some & > 0 there 18 a constant
ke[0,1) such that |T(&)*f|<k|f|, then the subspace M.(S)O UsM.(8S)
18 non-trivial and the projection Pgf of f onto U M.(8S) satisfies |(I— Pg)f|?
> 1k ]2

The proof of theorem 3.4 is based on theorem 3.2.

Suppose now that H is a complex Hilbert space and G is an ordered,
abelian, locally compact group. Using the standard arguments of harmonic
analysis on groups and using the spectral measure of unitary dilation
one easily proves the following theorem:
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THEOREM 3.5. Suppose that the semi-group T (&) of coniractions is
weakly conttnuous tn the topology of G. Let f be a vector belonging to the
non-unitary part of the canonical decomposition of H corresponding to the
semi-group T (£). Then R.(f) = R_(f) = {0}.

The proof of theorem 3.5 is almost the same as in the case of a semi-
group of powers of a single contraction (see [3]) and may be omitted.
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