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THE DISCRETE BUSY PERIOD DISTRIBUTION FOR VARIOUS
SINGLE SERVER QUEUERS

I. Introduction and notation. For a single server queue in statlstwal
equilibrium, consider the following probability distributions:

p(n), n =0,1,2,... — the distribution of queue length, including
the person being served;
gn,t), n =0,1, 2, — the probability of » persons joining the
queue in a tlme perlod of length {, beginning at an arbltra,ry
instant;

h(z), 0 <2 < co — the density function for the service time;

w(x), * =0, 0 <& < co — the (mixed discrete and continuous)

~ distribution of waiting time; 7

a(n,r), n =r,r+1,r4+2,... — the discrete busy period distri-
bution, i. e. the probability that, beginning with » in the queue,
exactly » will pass through before the queue first becomes empty.

To distinguish several types of input and service, we will use the
Kendall symbol (Kendall, [12]), omitting the third element, with the
following meodifications: (i) In the Erlang case, it is customary to give
one parameter, k, as a subscript on £. We will give both parameters,
writing for example K, ; and extend the notation to the Poisson case,
writing for example M,, (ii) We shall consider processes more general
than the renewal process, @, namely stationary point processes, and denote
these by the letter 8.

A subscript on the function » will, for S cases, have the analogous
meaning to the starred superscript in the G case, namely the density
function for the total length of several continuous intervals:

In a queue with § service termination points, density for length
of n service periods is h,(x).

In a queue with G service termination points, density for length
of n gervice periods is h"*(x).

The Laplace transformations of ¢ and % will be denoted respectively
by 7 and %.
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II. The main theorems.
THEOREM 1. For an M,/D, queue,

(1) (n, 7) =%f g(n—r, HE™ (1) dt.

Thig theorem was proved for » = 1 by Borel ([3],) in general by
Tanner ([20]). A purely combinatorial proof was given by Tanner ([21)
and Mott ([16]); this proof is quite independent of the M 2/ D, assump-
tion, and in fact requires no queue-theoretic interpretation whatsoever.
It merely shows that the proportion of Ways ®—7 Ppersons can pass
through a queue beginning with » in queue $0 that the queue does not
become empty before the (n— r)-th person is 7[n. Exactly the same proof
can be used for the following result:

THEOREM 2. For an M,|G queue, equation (1) holds.

In fact, if we replace the convolution notation by the corresponding
subscript notation, we can apply Tanner’s proof to the following" still
more general results:

TH]%_OREM 3. For an M,/[S queue'
r (e o)
() m(n,7) =~ [ q@n—r, Oy (1)t
0

THEOREM 4. For an S|/M, queuwe, equation (1) holds.

If the distribution denoted by the letter ¢ is to have the property
“beginning at an arbitrary instant”, as in our definition, we must keep
one of the symbols M. But if we were prepared to substitute the expres-
sion “beginning at the start of a service period”, we could even allow
Tanner’s proof to establish equation (1) in the § /8 case. Such an extension
will involve much more complicated expressions for ¢(n,t), and will
not shed much light on the busy period question. For this reason we con-
sider various special cases of M,/8 and 8/M, queunes, most particularly
the latter.

Note that nome of the parameters defining the input and service
processes are shown in equations (1) and (2), although of course they
must enter the picture once special functions are assumed.

II. M;/8 quenes. The simplest cases have Poisson input; many of
these are already well known. Let

(3) g(n,t) = e *(a5)In!.
ExAvpLE 1. M;/D,, A/u = o. Then

h(x) = 6(m——1—), K™ () = é(w——ﬁ),
Iz Iz
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leading to
e—gnen—r,nn—r-l

lr -
n (n-—r)!

(4) mw(n,r) =

?

the Borel-Tanner distribution; see also Haight and Breuer ([10]).
ExavpLe 2. M;/M,, A/lp = o. Then

—px n_n—1

5 — e t® wegy = & HE
(8) ha) = pet?,  We) = = T
leading to

r i
6 _ 2n—r—1 0
(6) 7(n,r) " ( o ) At

Equation (6) is 2 distribution discussed by Haight ([8], [9]), and
it is a special case of a distribution of Narayana ([17]).

ExaveLe 3. M,;/H;,, A/u = ¢. Then

e p:c/uk wk— 1 - e ne ‘unk mnk— 1
MO ="anr MO =
leading to
T (nk+n—r—1 ot
(7) JZ(’I’L, r) = ;( nk—1 ) 1+ @)nk+n~r ’

which includes examples 1 and 2.
The cases M;/@ have been dealt with by Cox and Smith ([4]), and

Takacs ([18]); the latter also gives a complete bibliography of the busy

period question. In the M,/S case, if we assume furthermore that h(x)

is independent of 4, we can write

r (—1)”“’. a-r _

(8) W(n, Ir) = —’n/_ ('n,-__/r)! dan—r hﬂ(l)

which reduces, for the M,/G case, to

r (——A)““". a-r

(9) (N, 1) = ; (m—ny! ar—"

[T

Equations (4), (6) and (7) respectively can be easily obtained from
equation (9) by setting
e s for equation (4),
h(s) = u(u+s)"" for equation (6),
uF(u+8)"% for equation (7).
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In general, different assumptions regarding the service time distri-
bution are troublesome only insofar as their Laplace transformations
are troublesome. Since these functions have been extensively tabulated,
there is little interest in pursuing special service time distributions.

IV. §/M, queue, arrival rate dependent upon . In the present sec-
tion we will assume that equations (5) hold. Then equation (1) is the deriv-
ative of a Laplace transformation (with variable x) only if the counting
distribution for joiners, ¢(n,?) is independent of u. We will not make
that assumption for the present. '

ExAMPLE 4. Queue with feedback. Takacs ([19]) discusses a queue
in which a proportion P of departing customers rejoin the queue and a pro-
portion ¢ = 1—P go away. With Poisson new arrivals, the queue is of
type M;,p,/M, and the equation (1) yields

Y fon—r—1 (P+ Q)rhr
(10) w(my7) =7nj( 1 )‘@:@'ﬁfr-

ExAMPLE 5. Queue with balking. In a model proposed by Haight
([61, [7]) and studied by Finch ([5]) and Ancker and Gafarian [(1], [2])
g(n,t) depends on u in such an intricate and complicated way as to be
“impossible” to write explicitely. In this case, it is desireable to find
some way to relate the busy period probabilities n (%, r) directly to the
queue length probabilities p(n) without needing to find first the joining
probabilities ¢(n, ). .

If we consider a departing customer, who has spent time ¢, waiting
and time ¢, being served, we know that the probability of a queue of =
at this time is just q(n, {,+1,). Since the distribution of ¢, is w(z) and the
distribution of ¢, is 2(x), we can write

(s <]

(11) pn) = [ q(n,2)[w(@)*h(@)]de.

0

On the other hand, an arriving customer, if confronted with a queue of
n—1 waiting and one being served, will wait » negative exponentially
distributed service periods for service. Therefore

0

(12) w(z) = p(0)d(@)+ D p(j)K*(@).

=1

Using the convention A" (x) = 6(x), we can write equation (12) in the
form

(13) w(@) = D p()i* ().
i=0
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- Substituting equation (13) into equation (11), we find that the proba-
bility vector p(n) is unchanged by an infinite matrix (8):

(14) ./p(n):Zﬂm'p(j)) n=0,1,2,...
- Where
(15) fy = | ali, )7+ @) da.

1}

Now, the coefficients Bi; are connected with the discrete busy period
distribution in a very simple way:

r
(16) w(h, r) = —ﬁﬂn_r,n‘_], r=1,2,..., #wn=r,r+1,..

or, written the other way around,

i1 .
J —am(j+1,j—i+1), 4,j=0,1,2,...

(17) ﬂia'_]__H_l

Because of their role in connecting the queue length distribution
with the discrete busy period distribution, we will make a special study
of the coefficients 8;. We first note that the column sums are all unity:

o

jﬂi;‘= fooh(”l)* Zqz x)dr = f RO (m)dae = 1.
= ; ;

=0

The row sums, on the other hand, are not unity:

o Su= 3wt

McFadden ([13]) has shown that for any stationary point process (in
this case the joining process) the integral of the counting distribution
with respect to the counting period is the covariance of gaps separated
by n—1 gaps, multiplied by the mean count 4, that is

7+1 7

e"‘”dw—-,ufqz x)dx.

(19) D' By = B (X,X,),
i=0

where X, is the length of an arbitrarily selected interarrival gap and X;
is the length of a gap separated from it by ¢— 1 other gaps. For a G/ M,
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queue, the covariance is the product of the means, and since each mean
is 1/, the row sums reduce to

S 1
(20) Zﬁﬁ =
7=0 ¢

The diagonal sums of the matrix (f;) are related to mean values of
the busy periods. If

M) = Y na(n,r)

N=r
then, using equation (16) we obtain

o0

(21) M) = D rBupirs

n=0

so that M (r)/r is the sum of the r-th superdiagonal of the matrix.
ExAmpLE 5. (Continued) In an M,/M, queue with balking,

(22) P(n) = ¢,0"p(0)

where ¢ = A/u is caleulated for all arrivals, whether they join or not, and
is therefore not a true traffic intensity, and where ¢, are some constants
characterizing the mentality of the customers and hence independent of the
behavior of the queue. Substituting these values into equation (14),
we obtain

(23) " = > Bucid .
F=0

If we compare equations (23) with the analogous set for an M,;/M, queue
without balking, namely

0 o™
2 - S
we see that one set of coefficients f;; satisfying equations (23) is certainly
% 'i+j) ¢
25 SRR (e ) [N S—
( ) ﬂw ¢ ( 7 (1+ 9)i+i+1 ’

provided none of the ¢; vanish. But before deducing #(n, r) from equa-
tions (16) and (25) we need to know that the f;; given by equations (25),
are indeed of the form given in equation (15). Although they satisfy the
conditions given by Mirsky ([14]) for the existence of the infinite matrix,
we have not been able to prove that they are the correct coefficients
for the busy period of a queue with balking.
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V. 8/M, queue, arrival rate independent of x. If the probabilities
q(n,t) do not depend upon the value of u, equation (1) is again the
derivative of a Laplace transformation:

L.Mn(_l)n-—l. d’n-—l _

@) an = e e A .

ExAmriE 6. For an B, ;/ M, queue, ¢(n, t)is the Morse-Jewell distribu-
tion; of. Morse ([15]), Jewell ([11]), Whittlesey and Haight ([22]),

(27) Q(%s t) = (1+%) [Fnk+k*rnk]+ (1 _n) [Fnk_rnk—k]“i_

(AR — Loy 1+2 ks —Toge— 1],
where

o]

1
(28) I, = fe‘””w”“dx.
I(n) 4

For an understanding of the rather curious form of the Morse-Jewell
distribution, the formula of McFadden ([13], equations 2.15) relating it to
the compound gap distribution is helpful. With some attention to detail,
one can obtain from equation (27) the Laplace transformation

an—k+1 [(l_l_ S)k— lk]2

(29) Q(n’ S) = k32(l+8)nk+k
For an 8/M, queue, the coefficients B; are
7'+1(H1)J' dﬂ )
(30) by = g A ).

Differentiating equation (30) with respect to 4, we obtain the following
differential difference relationship for the f8:
d +1
(31) gy =1
dp 2
From equation (16) we know that

(Big— Pigs1)-

Q0

(32) Z n-:—r :Bn,n+r—1 =1.

n=90

If we use equation (31) to differentiate equation (32), we find that

M(r) M(r+1)

(33) 7 r41

which yields
(34) | Mr) =rM(1).
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Therefore the diagonal sums of (8;;), on and above the principal diagonal
are all equal to M(1).

Similarly, we can differentiate the equation defining M (r) with
the aid of equation (31), and obtain

“ dM (r) - M,(r) . My(r+1)

(35) r du r r+1

+M(1),

where M,(r) is the second moment of the discrete busy period distri-
bution. Reducing this further, we can write

(36) M,y(r) = 7#1112(1)4(1»—1)[Mil-ﬂ-gﬁ(ti fAM(l)]

for the second moment, and obtain higher moments for r in terms of
the first (r = 1) higher moment.
Finally, if we define the generating function

= 2 s (s "')y
j=r
we find without too much trouble that II(s,r) satisfies the equation

6H(s,r)_i_617(8,r) r oHl(s,r+1)
du s s r4+1 - 0s )

(37) H
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DYSKRETNY ROZKIAD OKRESOW PRACY
ROZNYCH JEDNOKANALOWYCH SYSTEMOW OBSLUGI MASOWEJ

STRESZCZENIE

Rozwazmy jednokanalowy system obslugi masowe] pracujacy w warunkach
réwnowagi statystycznej. Niech = (n, ) oznacza prawdopodobienstwo tego, ze w okre-
sie od dowolnego momentu, w ktérym bylo r 0s6b w systemie, do najblizszego momentu,
w ktérym kanal bedzie pusty, dokladnie n o086b przejdzie przez system. Litera S
w symbolice Kendalla bedzie oznaczala stacjonarny proces punktowy. Autor wy-
kazuje, e podana przez Tannera kombinatoryczna metoda wyznaczania z(n,r)
dla systemu M/D/1 moie byé réwniez zastosowana w przypadkuch M/8/1 1 S/M/1.
Pozwolilo to autorowi powigzaé prawdopodobienstwa z:(n,r) z prawdopodobiefi-
stwami dlugosci kolejki za pomoeg nieskonczonej macierzy. Macierz ta zostala zba-
dana dla réznych szezegdlnych przypadkéw systemédw obslugi masowej, wérdd nich
takze dla takich, w ktérych proces wejécia zalezy od éredniej intensywnodci obstugi.
Wyprowadzono czastkowe réwnanie rdézniczkowo-réznicowe na funkeje tworzs&cad
prawdopodobienstw =z (n, +).
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D, A. XAUT (Jloc Anmaceaoe)

PACIHPEJEJNEHHA JUHCKPETHAIX ITEPHOJOB HEIIPEPEIBHOH PABOTAI
PA3BHBIX CHCTEM MACCOBOI'O OBCHYXHBAHHUA C OJHHUM KAHAJOM
OBCHY/KHBAHHA :

PESIOME

PaccmaTpuBaeTca cucremMa C OJHEIM KaHauoM o6ciysxuBanug paboraoman
B YCIOBHAX CTATUCTHYECKOro pasHOBecMA. IIycTs n(m,r) BepoOATHOCTH TOTO, YTO
B MHTEPBAJle BPEMEHH, HAYNHAA C JM060r0 MOMEHTA, B KOTOPOM B CHCTeMe GRLIO 7 JIHI
u K OnmHafiieMy MOMEHTY, B KOTODOM CHCTeMa BIEPBHE CTAHOBHUTCA NMycTolf, TOYHO 2
aun mepeiiper depes cucreMy. BykBa § B cumGonmke Hempanma 6ymer o6osmauars
CTALMOHAPHEIA TOYEUHHIH nponecc. ABTOpP HOKABHBAET, YTO KOMOMHATOPHHN MeTOJN
Tannepa onpefenenua sepoaTHOCTed 7 (n, r) B cucreMe M /S /]l npuMeHHM TOme K cHC-
remam M/S/1 u §/M/1. Ucnoasaya 9T0T METOX ABTOP CBASHBAET BePOATHOCTH 7 (n, 1)
C pacmpefieleHHeM [JIMHHB OYepefa NOCPeACTBOM G(e3KOHEYHOM MATpDHIH. JTa Ma-
TPULA HCCIE0BaHA aTBOPOM MJA pasJMYHHX CHCTEM MAaCCOBOI0 OGCIy:KMBaHUA,
Cpey HHUX JJIA CHCTEM, B KOTOPHX BXOZHHIA NpoOIecc B3aBHCUT OT CpejHEll MHTEH-
CHBHOCTH 0GcnyusanusA. Busefeo paHoCTHO-fuddepeHnuanbHoe ypaBHEHKE B 4acT-
HHX NpPOM3BOAHHX MAuA obpasymonieit QyHKUMM BeposaTHOCTE# 7(n,r).



